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Abstract

It is standard in multiagent settings to assume that agents will adopt Nash
equilibrium strategies. However, studies in experimental economics demon-
strate that Nash equilibrium is a poor description of human players’ actual
behaviour. In this study, we consider a wide range of widely-studied models
from behavioural game theory. For what we believe is the first time, we evalu-
ate each of these models in a meta-analysis, taking as our data set large-scale
and publicly-available experimental data from the literature. We then propose
a modified model that we believe is more suitable for practical prediction of
human behaviour.
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Quotation

Now, a clever man would put the poison into his own goblet, because
he would know that only a great fool would reach for what he was
given. I am not a great fool, so I can clearly not choose the wine
in front of you. But you must have known I was not a great fool;
you would have counted on it, so I can clearly not choose the wine
in front of me.

— William Goldman, The Princess Bride
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1 Introduction

Decision making becomes more complicated when it moves beyond the single-
agent case, as agents must form beliefs about the strategies (and thus, at least
implicitly, the beliefs) of other agents. A standard approach is to assume that
agents will adopt Nash equilibrium strategies (Nash, 1950) — that they will
jointly behave in a way that ensures that each agent optimally responds to the
others. This solution concept has many appealing properties; e.g., in any other
strategy profile, one or more agents will regret their strategy choices. However,
there are three key reasons why an agent might choose not to adopt such a
strategy. First, she may face a computational limitation (“bounded rationality”)
that prevents her from computing a Nash equilibrium strategy, even if the game
has only one. Second, even if she can compute an equilibrium, she may doubt
that her opponents can or will do so. Third, when there are multiple equilibria,
it is not clear which she should expect the other agents to adopt and hence
whether she should play towards one herself — even if all players are perfectly
rational.

Problems of bounded rationality and the need for a better normative theory
are particularly acute when it comes to the human play of games (and, thus,
to the design of agents to play against human opponents). Extensive work in
experimental economics has established that human subjects often fail to adopt
Nash equilibrium strategies even in very simple settings (e.g., see Stahl and
Wilson, 1995; Capra et al., 1999; Goeree and Holt, 2001; Costa-Gomes et al.,
2001). The relatively new field of behavioural game theory (BGT) aims to ex-
tend game-theoretic models to account for human behaviour by taking account
of human cognitive biases and limitations (Camerer, 2003). Experimental evi-
dence is a cornerstone of BGT, and researchers have developed many models of
how humans behave in strategic situations based on experimental data. These
models vary quite widely, as each tends to focus on different observed devia-
tions from the standard equilibrium model. Furthermore, most existing work in
BGT aims to understand the reasons for behaviour. As a result, there has been
an emphasis on fitting models to experimental data, rather than attempting to
predict experimental behaviour.

In Chapter 2, we give the formal game theoretic framework within which
this thesis operates. In Chapter 3, we describe four key BGT models — level-k
(Costa-Gomes et al., 2001), cognitive hierarchy (Camerer et al., 2004), quan-
tal response equilibrium (McKelvey and Palfrey, 1995), and generalized level-k
(Stahl and Wilson, 1994) — along with the behavioural data upon which we
based our study (taken from Stahl and Wilson, 1994; Costa-Gomes et al., 2001;
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Goeree and Holt, 2001; Rogers et al., 2009). We then present our two key
contributions. First, in Chapter 4, we evaluate the quality of the behavioural
predictions made by these four models. Second, in Chapter 5, we perform deeper
analyses of the elements that make up the models. Overall, we conclude that
BGT models, particularly generalized level-k, better predict human behaviour
than both Nash equilibrium and a feature-based learning model. We also con-
struct a model with roughly equivalent performance to generalized level-k that
is conceptually simpler and more parsimonious, in the sense that it assumes
more homogeneous agents.

The final two sections of this chapter describe related work in artificial in-
telligence and economics.

1.1 Related work in artificial intelligence

There has been a wide range of work on designing strategies that work well
in practice, given both informational and computational restrictions. This line
of work is perhaps exemplified by the very influential series of Trading Agent
Competitions (Wellman et al., 2007). In the annual Trading Agent Competi-
tion, researchers submit agent programs to compete against one another in a
multiple market scenario based upon a real-world situation such as travel agents
assembling trips for clients, or PC suppliers obtaining components and manu-
facturing PCs for sale to customers. These scenarios provide a standardized
environment for empirically evaluating and comparing techniques for operat-
ing under computational bounds (with other, similarly bounded agents), as
they are sufficiently complex that finding an optimal strategy is not analytically
tractable. Unlike our work, this line of work typically does not specifically target
human behaviour, but rather attempts to find algorithms that have empirically
good performance in complex multiagent settings, where the other agents are
assumed to also be algorithmic.

A great deal of study has also been performed on the theoretical side on
alternative solution concepts. This includes set-based solution concepts that
attempt to provide a stronger justification for restricting the set of actions con-
sidered. In a weak Nash equilibrium at least one of the agents is completely
indifferent between the equilibrium strategy and one or more non-equilibrium
strategies. Weak Nash equilibria are therefore considered very unstable, since
at least one agent has no incentive not to deviate; therefore the fact that a game
has a weak Nash equilibrium does not provide a strong justification for exclud-
ing non-equilibrium actions when considering what agents might do. Conitzer
and Sandholm (2005) proposed an eliminability criterion that is intermediate
in strength between domination (which may not exist in a given game) and
Nash equilibrium (which may exclude more strategies than seems warranted).
Similarly, Basu and Weibull (1991) introduced CURB (Closed Under Rational
Behaviour) sets, which are sets of strategy profiles such that all the best re-
sponses to each strategy profile in the set are also in the set. CURB sets are a
more stable solution concept than Nash equilibrium, since no agent can ever fail
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to lose utility by deviating to a strategy outside the set. Benisch et al. (2006)
study the complexity properties of CURB sets and provide polynomial-time al-
gorithms for finding minimal CURB sets in arbitrary two-player normal form
games.

Other theoretical work on solution concepts aims to find formally-justified
solution concepts that provide more intuitive or natural solutions to games. In
this vein, Halpern and Pass (2009) propose a solution concept called iterated
regret minimization, where agents act to minimize their regret (rather than
maximizing utility) in situations where they have no probabilistic beliefs about
the actions of the other agents. The outcomes specified by this solution concept
are arguably more intuitive than those specified by Nash equilibrium in many
cases (as well as being closer to empirical outcomes in the case of the Traveller’s
Dilemma (Goeree and Holt, 2001; Becker et al., 2005)).

Another line of work seeks to provide worst-case guarantees on payoffs that
do not depend upon other agents’ rationality. Tennenholtz (2002) defines C-
competitive strategies as strategies that are guaranteed to obtain at least 1/C
as much payoff as the agent would obtain in a Nash equilibrium. He shows
that C-competitive strategies are guaranteed to exist in many settings impor-
tant to artificial intelligence, including first-price auctions. Hyafil and Boutilier
(2006) tackle a similar problem from the perspective of mechanism design. They
analyze a class of mechanisms that incrementally elicit type information from
agents, until an acceptable bound on efficiency has been attained. Such a mech-
anism can simultaneously give bounds on the maximum gain that an agent
achieves by reporting untruthfully; if this bound is sufficiently small, the cost of
computing a profitable deviation may exceed the gain, leading to “approximate
incentive compatibility.”

The work described above aims to either provide compelling, non-Nash ac-
counts of rationality, or guarantees in the face of arbitrary irrational (non-
optimal) behaviour. By contrast, in this thesis we focus on models that aim
to accurately model human behaviour specifically, without regard to whether or
not it is optimal.

A closely related approach to our work is learning association rules between
agents’ actions in different games to predict how an agent will play based on its
actions in earlier games (Altman et al., 2006). This requires data that identifies
agents across games, and cannot make predictions for games that are not in the
training dataset. By contrast, the behavioural approaches that we will explore
below are able to learn from summarized datasets, and to predict actions in
novel games.

1.2 Related work in economics

Standard economic models based on expected utility and Nash equilibrium of-
ten do not predict actual behaviour. For example, Goeree and Holt (2001)
describe several games that experimental subjects play very differently based
on modifications that do not affect the predictions of Nash equilibrium for one
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or more players. McKelvey and Palfrey (1992) report experimental results in
which all game theoretic equilibrium concepts make the same prediction, which
the subjects do not follow.

Behavioural models are attempts to extend the standard theory to account
for these and many other anomalies. Since the value of a behavioural theory
lies in whether it accounts for actual behaviour, evaluating the fit of models
against experimental data is very important. A standard technique for evaluat-
ing behavioural models is to use a χ2 statistical test on the fit of nested models
— models where one is a generalization of the other — to experimental data.
Harless and Camerer (1994) evaluate several behavioural generalizations of ex-
pected utility in this way. The various models are compared to the expected
utility and expected value models only, and not pairwise, since the various be-
havioural generalizations are not nested. Harless and Camerer (1995) perform a
similar evaluation of the performance of the intuitive and sequential refinements
to Nash equilibrium.

One technique for comparing non-nested models is to compare the log likeli-
hoods of data given the models. Camerer et al. (2004) compare their cognitive
hierarchy model to Nash equilibrium in this way. Rogers et al. (2009) compare
the log likelihoods of Nash equilibrium, cognitive hierarchy, and several variants
of McKelvey and Palfrey’s quantal response equilibrium (McKelvey and Palfrey,
1995). One drawback of comparing dataset log likelihoods directly is that it is
difficult to determine how important differences are, unlike χ2 tests, where one
model is either significantly better than another or not. Rogers et al. (2009)
address this issue by calculating and reporting best-case and worst-case log like-
lihoods (the log likelihood of the actual distribution and the log likelihood of a
uniform distribution respectively) alongside the model log likelihoods.1

A different approach than devising and comparing the fit of various models
is to fit a single heterogeneous model in which different “archetypal agents”
use different decision-making rules, and then test the hypothesis that various
archetypes are present. Stahl and Wilson (1995) propose and test such a model
with 5 boundedly rational archetypes, plus a “rational expectations” archetype
that best responds to the true empirical distribution of play. Their data rejects
the hypothesis that the rational expectations archetype is present, but is con-
sistent with the boundedly rational types. Costa-Gomes et al. (2001) perform
a very similar study on 4 non-strategic and 5 strategic archetypes.

Evaluating models based solely upon their fit to a specific dataset leads to a
danger that some models may appear stronger than they are due to overfitting
— in which noisy or atypical aspects of the dataset are fit — rather than due
to better modelling the underlying process. One way to guard against this is
to divide the experimental data into a training set, which is used to estimate
the models’ parameters, and a test set, which is used to test the predictive
performance of the models. Stahl and Wilson (1995) manually divide their
games into a test and training set. However, since they are not comparing
multiple models, they are only able to use this division to show (again via a χ2

1For nested models, they also perform χ2 tests.

4



test) that the parameters estimated for their model on the training set are not
a significantly poor fit for the test set. Similarly, Camerer et al. (2004) perform
leave-one-out testing at the game level. For each game in their dataset, they fit
their model on the other games and then evaluate the resulting model on the
remaining game. Again, because they are not comparing multiple models, this
testing is only to check that the performance of their model on out-of-sample
data is reasonably robust.
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2 Framework

In this chapter we give an overview of game theoretic concepts and notation
that will be used in later chapters. Chief among these is the normal form game,
which is the formalization of multiagent interaction that this study concentrates
upon. We also describe three standard solution concepts from game theory that
we will refer to later in the thesis.

2.1 Normal form games

Game theory abstracts interactive situations to mathematical objects called
games. The simplest type of game is the normal form game.

Definition 1 (Normal-form game). A normal form game is a tuple (N,A, u),
where

1. N is a finite set of n agents.

2. A = A1 × . . . An is a finite set of action profiles, where each Ai is a finite
set of actions available to agent i for all i ∈ N . So each a ∈ A consists of
a tuple of actions ai, one for each agent.

3. u = (u1, . . . , un) is a tuple of utility functions ui : A 7→ R, such that
ui(a) is agent i’s utility for the outcome where each agent plays their own
component of a ∈ A.

A normal form game specifies who the players are, what they can do, and
what each agent’s utility is for each possible combination of actions by the
agents.

Each agent is assumed to play a strategy simultaneously. A strategy can
be either a pure strategy, in which a single action is played deterministically,
or a mixed strategy, in which an action is chosen stochastically according to a
probability distribution over the agent’s actions in Ai. If only one action is
played with positive probability, then it is a pure strategy; if more than one
action is played with positive probability, it is a mixed strategy. We use the
notation Π(X) to represent a probability distribution over the elements of a set
X. Hence, the set of i’s strategies is Π(Ai).

The combination of strategies played by each agent is referred to as the
strategy profile. Each strategy profile induces a probability distribution over
action profiles. The expected utility to agent i of a given strategy profile is the
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C D
C 3, 3 −1, 5
D 5,−1 1, 1

Figure 2.1: Prisoner’s Dilemma

average of the utilities of each possible action profile, weighted by the probability
of the action profile given the strategy profile. Let s(a) be the probability of
action profile a induced by strategy profile s, and si(ai) be the probability that
agent i plays action ai under strategy si. Then agent i’s expected utility under
strategy profile s is defined as

ui(s) = Eaui(a)

=
∑
a∈A

s(a)ui(a)

=
∑
a∈A

∑
j∈N

sj(aj)

ui(a).

For each agent i ∈ N , let Si = Π(Ai) be the set of all distributions over
Ai. Then Si is the set of all i’s strategies, and S = S1 × . . . × Sn is the set
of all possible strategy profiles. For convenience, we use often use the notation
s = (si, s−i), where s is a strategy profile, si is the strategy played by i in s, and
s−i is the tuple of strategies played by all agents other than i in s. Similarly,
S = Si×S−i, where Si is as above, and S−i is the cross-product of the strategy
sets of all agents other than i.

Each agent is assumed to be rational and self-interested. That is, they have
preferences that are fully representable by utility functions, and they act to
maximize the expected value of their own utility function.2

Two-player normal form games are commonly represented by a matrix, with
one row for each action of the first player and one column for each action of
the second player. The utilities to each agent for each action profile are listed
in the corresponding cell of the matrix. See Figure 2.1 for an example. In that
game, the utility to the first agent of the action profile where agent 1 plays D
and agent 2 plays C is 5. In the same action profile, agent 2 receives utility −1.

2.2 Solution concepts

A solution concept is a criterion for identifying a strategy profile or strategy
profiles in a game that are in some way “interesting”. A solution concept may

2Note that an agent’s being “self-interested” is not equivalent to the agent’s being a so-
ciopath. Agents’ utility functions are assumed to contain all relevant information about the
agents’ preferences over action profiles. In particular, this means that if agent i wants agent j
to be happy, then this will be reflected in agent i’s utility function (by agent i having a higher
utility for outcomes in which agent j is happy).
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be interpreted as a prescription (i.e., that rational agents ought to play the
profile identified by the solution concept), or as a prediction (i.e., that we would
expect to observe the given strategy profile in actual plays of the game).

2.2.1 Dominant strategies

Consider again the game in Figure 2.1. If agent 2 plays C, then agent 1 is
better off playing D (for a utility of 5) than C (for a utility of 3). But if agent 2
plays D, then agent 1 is also better off playing D (for a utility of 1) than C (for
a utility of −1). So no matter what agent 2 does (including mixed strategies
that include both C and D), agent 1 has higher utility for playing D than for
playing C. In this situation we say that the pure strategy D dominates the pure
strategy C.

Definition 2 (Dominance). Consider two strategies si, s′i ∈ Si. Strategy si
dominates s′i if

1. ∀s−i ∈ S−i : ui(si, s−i) ≥ ui(s′i, s−i), and

2. ∃s−i ∈ S−i : ui(si, s−i) > ui(s′i, s−i).

We say that a strategy si is dominated if there exists another strategy s′i
that dominates si. We say that a strategy si is dominant if it dominates all
other strategies s′i ∈ Si.

A strategy profile in which each agent plays a dominant strategy is called an
equilibrium in dominant strategies. The strategy profile (D,D) is an equilibrium
in dominant strategies of the Prisoner’s Dilemma.

Equilibrium in dominant strategies is a solution concept, since it identifies
a specific strategy profile (i.e., one in which each agent plays a dominant strat-
egy). However, not every agent has a dominant strategy in every game (indeed,
typically no agent has a dominant strategy), so it is not a solution concept that
applies to every game.

2.2.2 Nash equilibrium

By far the most commonly used solution concept is the Nash equilibrium. The
Nash equilibrium is defined in terms of agents’ best-response correspondences:

Definition 3 (Best response). A strategy si ∈ Si is a best-response to s−i ∈ S−i
if

ui(si, s−i) ≥ ui(s′i, s−i) ∀s′i ∈ Si.

An agent i’s best-response correspondence is a function BRi : S−i 7→ P(Si)
that maps from each profile of strategies by the agents other than i to the set
of i’s strategies that are best-responses to that profile. Formally,

BRi(s−i) = {s∗i ∈ Si | ∀s′i ∈ Si : ui(s∗i , s−i) ≥ ui(s′i, s−i)}.

8



R P S
R 0, 0 −1, 1 1,−1
P 1,−1 0, 0 −1, 1
S −1, 1 1,−1 0, 0

Figure 2.2: Rock-Paper-Scissors

M F
M 2, 1 0, 0
F 0, 0 1, 2

Figure 2.3: Battle of the Sexes

Definition 4 (Nash equilibrium). A Nash equilibrium is a strategy profile in
which every agent plays a best response to the strategies of the other agents.
That is, s∗ is a Nash equilibrium if

∀i ∈ N : s∗i ∈ BRi(s∗−i).

Theorem 1 (Nash 1950). Every game with a finite number of players and
action profiles has at least one Nash equilibrium.

Note that every equilibrium in dominant strategies is also a Nash equilib-
rium. So the strategy profile (D,D) is a Nash equilibrium of the Prisoner’s
Dilemma. We refer to a Nash equilibrium in which all agents play a pure strat-
egy as a pure strategy Nash equilibrium. A Nash equilibrium in which one or
more players plays a mixed strategy is called a mixed strategy Nash equilib-
rium. For example, in the game of Figure 2.2, the mixed strategy equilibrium
([ 13 : R, 1

3 : P, 1
3 : S], [ 13 : R, 1

3 : P, 1
3 : S]) is the only Nash equilibrium.

It is entirely possible for a game to have both pure strategy and mixed
strategy Nash equilibria. In the game of Figure 2.3, there are two pure strategy
Nash equilibria, namely (M,M) and (F, F ). There is also a mixed strategy
Nash equilibrium: ([ 23 : M, 1

3 : F ], [ 13 : M, 2
3 : F ]).

A Nash equilibrium is a stable strategy profile, in the sense that no agent
has an incentive to deviate (play a strategy other than the one prescribed by the
equilibrium) given that the other players are playing their equilibrium strategies.
How the agents would come to play a Nash equilibrium in the first place —
particularly, but not exclusively, in games with multiple or even infinite Nash
equilibria — is a separate question.

2.2.3 Iterative dominance

Section 2.2.1 defined the concept of dominated strategies. Intuitively, it makes
sense to assume that no rational agent would play a dominated strategy. There-
fore removing a dominated action from a game G results in a smaller game G′

that is in some sense strategically equivalent to the original game.
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When common knowledge of rationality exists, performing these deletions
iteratively also yields a strategically equivalent game. An interactive setting
has common knowledge of rationality when each agent is rational, and each
agent knows that every other agent is rational, and each agent knows that every
other agent knows that he is rational, and so on, as an infinite regress.

Definition 5 (Iterative removal of dominated strategies). Let G = (N,A, u)
be a game in normal form. Let G0 = G. Fix some k > 0. If Gk contains no
dominated actions, then Gk+1 = Gk. Otherwise, Gk+1 = (N,Ak+1, u), where
Ak+1 = Ak1 × . . . × Aki \{ai} × . . . × Akn and ai ∈ Aki is a dominated action in
Gk. Let ω be the smallest integer such that Gω = Gω+1.

Then a pure strategy a′i survives iterated removal of dominated strategies in
G if and only if a′i ∈ Aωi .

Games that have been reduced by iterated removal of dominated strategies
will always contain at least one Nash equilibrium of the original game, but may
not contain all of them.

In some games, the process of iterated removal of dominated strategies does
not terminate until all but one strategy has been eliminated for each player.
These games are called dominance solvable.

Example 1 (Traveller’s Dilemma). The Traveller’s dilemma is a two-player
normal-form game. Each agent chooses an integer between 2 and 100. If both
agents choose the same number x, then they both get a utility of x. However,
if one agent chooses a smaller number y than the other agent, then the agent
that chose y receives utility y + 2, and the other agent receives utility y − 2.

The Traveller’s Dilemma turns out to be solvable by iterated removal of
dominated strategies. Consider the pure strategy 100. If the other agent chooses
y ≤ 98, then the strategies 100 and 99 yield exactly the same payoff (viz y− 2).
If the other agent chooses 99, then it is clearly better to choose 99 than to
choose 100. And if the other agent chooses 100, then it is better to choose 99
(for a payoff of 99 + 2 = 101) than to choose 100 (for a payoff of 100). So 100
is dominated by 99, and can be removed from both agents’ action sets.

But in the reduced game, an identical argument results in the removal of 99;
and so on until each agent’s action set contains only a single strategy, 2. Thus
(2, 2) is the only Nash equilibrium of the Traveller’s Dilemma.

As we will see in Chapter 4, human behaviour is frequently inconsistent
with standard solution concepts. Indeed, in an experiment where expert game
theorists played the Traveller’s Dilemma for money, the best-performing strat-
egy (97) was markedly different from the unique Nash equilibrium strategy of 2
(Becker et al., 2005).
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3 Existing BGT Models
and Experimental Data

In the first four sections of this chapter, we describe four models which are per-
haps the most prominent in behavioural game theory for describing human play
of normal form games. For each model, we will first give the model’s assump-
tions and motivation. In most cases the assumptions will describe a family of
models, depending upon details of parameters and additional assumptions. We
will then give a concrete and formal definition of the specific instantiation of
the model that we evaluate. Each model definition will include the definition
of a likelihood function, which gives the probability of an individual observa-
tion given a particular setting of the model’s parameters. We fit the model’s
parameters by maximizing a closely related function (see Section 4.1).

Then, in Section 3.5, we describe the publicly-available experimental data
from BGT studies that we used.

3.1 Quantal response equilibrium

One prominent behavioural theory asserts that agents become more likely to
make errors as those errors become less costly. We refer to this property as cost-
proportional errors. This can be modeled by saying that agents are expected
utility maximizers who noisily estimate each action’s expected utility. Formally,
agent i maximizes the expected value of ûi(ai, s−i) = u(ai, s−i) + εai , where εai

is a zero-mean random variable and ui is the “true” expected utility.
A quantal response equilibrium (QRE) (McKelvey and Palfrey, 1995) is a

strategy profile s∗ where ûi(s∗) ∈ arg maxsi
û(si, s∗−i) for all agents i. Different

distributional assumptions for the εai
terms yield different equilibrium concepts.

We restrict our attention to the single-parameter logit equilibrium: a QRE where
error terms are assumed to be independent and identically distributed across
agents according to an extreme value distribution. This gives a closed form for
the action probabilities:

s∗i (ai) =
exp[λ·ui(ai, s∗−i)]∑
a′i

exp[λ·ui(a′i, s∗−i)]
, (3.1)

where λ (the precision parameter) indicates how sensitive agents are to utility
differences. As λ → ∞, logit equilibrium coincides with Nash equilibrium, so
Nash equilibrium can be viewed as a special case of logit equilibrium.
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Model Definition 1 (QRE). Let G = (N,A, u) be a normal form game, and
s∗ be a logit equilibrium of G with precision λ. Then the likelihood of an
observation (ai, G) is given by

LQRE(G, ai | λ) = s∗i (ai).

One criticism of this solution concept is that, although (3.1) is translation-
invariant, it is not scale invariant. That is, while adding some constant value
to the payoffs of a game will not change its logit equilibria, multiplying payoffs
by a positive constant will. This is problematic because utility functions do not
themselves have unique scales (Von Neumann and Morgenstern, 1944).

3.2 Level-k

Another key idea from BGT is that humans can perform only a bounded number
of iterations of strategic reasoning. The level-k model (Costa-Gomes et al., 2001;
Crawford and Iriberri, 2007) captures this idea by associating each agent i with
a level ki ∈ {0, 1, 2, . . .}, corresponding to the number of iterations of reasoning
the agent is able to perform. A level-0 agent plays randomly, choosing uniformly
at random from his possible actions. A level-k agent, for k ≥ 1, best responds
to the strategy played by level-(k − 1) agents. If a level-k agent has more than
one best response, he mixes uniformly over them.

Here we consider a particular level-k model, dubbed Lk, which assumes that
all agents belong to levels 0, 1, and 2. 3 Each agent with level k > 0 has an
associated probability εk of making an “error”, i.e., of playing an action that
is not a best response to their beliefs. However, the agents do not account for
these errors when forming their beliefs about how lower-level agents will act.

Model Definition 2 (Lk). Let G = (N,A, u) be a normal form game and
πLki,k ∈ Π(Ai) denote the distribution over actions that the Lk model predicts for
a level-k agent i ∈ N , and βLki,k ⊆ Ai denote the set of actions that level-(k+ 1)
agents believe a level-k agent i might play. Then

βLki,k =

{
Ai if k = 0
BRi(βLk−i,k−1) if k > 0

πLki,k (ai) =


|Ai|−1 if k = 0,
(1− εk)/|βLki,k | if k > 0, ai ∈ βLki,k ,
εk/(|Ai| − |βLki,k |) otherwise.

(3.2)

The likelihood of an observation (ai, G) is

LLk(G, ai | α1, α2, ε1, ε2) =
2∑
k=0

αkπ
Lk
i,k (ai),

3Costa-Gomes et al. (2001) considered a model containing both level-k agents and also
other, non-level-k agents. We study a restricted version of their model which contains level-k
agents only.
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where α0 = 1− α1 − α2.

3.3 Cognitive hierarchy

The cognitive hierarchy model (Camerer et al., 2004), like level-k, aims to model
agents with heterogeneous bounds on iterated reasoning. It differs from the
level-k model in two ways. First, agent types do not have associated error rates;
each agent best-responds perfectly to its beliefs. Second, agents best-respond
to the full distribution of lower-level types, rather than only the strategy one
level below. More formally, every agent again has an associated level m ∈
{0, 1, 2, . . .}. Let f be a probability mass function representing the distribution
of the levels in the population. Level-0 agents play (typically uniformly) at
random. Level-m agents (m ≥ 1) best respond to the strategies that would be
played in a population described by the conditional distribution f(j | j < m).

This family of models has the attractive feature that higher level (i.e., more
cognitively capable) agents always have more accurate beliefs than lower-level
agents. This is in contrast to level-k models, where the beliefs of higher-than-
average level agents get progressively less accurate, since each level thinks the
whole population is one level smaller, which becomes progressively less true for
higher levels.

Camerer et al. (2004) advocate a single-parameter restriction of the cogni-
tive hierarchy model called Poisson-CH, in which the levels of agents in the
population are distributed according to a Poisson distribution.

Model Definition 3 (Poisson-CH). Let πPCHi,m ∈ Π(Ai) be the distribution
over actions predicted for an agent i with level m by the Poisson-CH model.
Let f(· | τ) be the probability mass function for a Poisson distribution with
intensity parameter τ . Then

BRτi,m(πPCH) = arg max
a′i∈Ai

m−1∑
`=0

f(` | τ)ui(a′i, π
PCH
−i,` )

is the set of best responses to the truncated Poisson distribution of lower-level
agents acting according to πPCH , and

πPCHi,m (ai) =


|Ai|−1 if m = 0,
|BRτi,m(πPCH)|−1 if m > 0, ai ∈ BRτi,m(πPCH),
0 otherwise.

For the sake of computability, we add the additional assumption that m ≤ 7 for
all agents.4 Thus the likelihood for an observation (ai, G) is

LPCH(G, ai | τ) =

∑7
m=0 f(m | τ)πPCHi,m (ai)∑7

m=0 f(m | τ)
.

4For all maximum-likelihood estimates of τ , this included 99.9% of the probability mass of
the Poisson distribution.
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Rogers et al. (2009) noted that cognitive hierarchy predictions often exhibit
cost-proportional errors (which they call the “negative frequency-payoff devia-
tion relationship”), even though the cognitive hierarchy model does not explic-
itly model this effect. This leaves open the question whether cognitive hierarchy
(and level-k) predict well only to the extent that their predictions happen to ex-
hibit cost-proportional errors, or whether bounded iterated reasoning captures
an independent phenomenon.

3.4 Generalized level-k

Stahl and Wilson (1994) propose a rich model of strategic reasoning that com-
bines elements of the QRE and level-k models; we refer to it as the generalized
level-k model (GLk). In GLk, agents have one of three levels, as in Lk. Each
agent responds to its beliefs quantally, playing actions with probability propor-
tional to the exponential of their payoffs, as in QRE. Like Lk, agents believe
that the rest of the population has the next-lower type.

Model Definition 4 (GLk). Let πGLki,k ∈ Π(Ai) denote the distribution over
actions that GLk predicts for a level-k agent playing as agent i, and βGLk−i,1 ∈
Π(A−i) denote the distribution over actions that a level-2 agent i believes that
the level-1 agents will play. Then

πGLki,0 (ai) = |Ai|−1,

πGLki,1 (ai) =
exp[λ1·ui(ai, πGlk−i,0)]∑

a′i∈Ai
exp[λ1·ui(a′i, πGlk−i,0)]

,

βGlki,1 (ai) =
exp[µ·ui(ai, πGlk−i,0)]∑

a′i∈Ai
exp[µ·ui(a′i, πGlk−i,0)]

,

πGLki,2 (ai) =
exp[λ2·ui(ai, βGlk−i,1)]∑

a′i∈Ai
exp[λ2·ui(ai, βGlk−i,1)]

.

The likelihood of an observation (ai, G) is

LGLk(G, ai | α1, α2, λ1, λ2, µ) =
2∑
k=0

αkπ
GLk
i,k (ai),

where α0 = 1− α1 − α2.
The {α1, α2} parameters represent the proportions of level-1 and level-2

agents in the population. The {λ1, λ2} parameters represent the precisions (as
in QRE) of level-1 and level-2 agents. Finally, the µ parameter represents the
level-2 agents’ belief about the level-1 agents’ precision (i.e., it is what the level-2
agents believe λ1 to be).

The main difference between GLk and Lk is in the error structure. In Lk,
higher-level agents believe that all lower-level agents best-respond perfectly,
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although in fact every agent has some probability of making an error. In con-
trast, in GLk, agents are aware of the quantal nature of the lower-level agents’
responses, and have a (possibly-incorrect) belief about the lower-level agents’
precision.

With only 3 levels of agent, it is hard to distinguish between beliefs about
proportions versus precisions of lower-level agents. The GLk model can approx-
imately represent a level-2 belief that the population contains both level-1 and
level-0 agents by a smaller value of µ, since as µ → 0 the actions that level-2
agents predict become “more random”. However, not all combinations of level-1
precision and relative proportions of level-0 and level-1 agents in the population
can be represented in this way.

3.5 Experimental data

We searched the BGT literature for large-scale sets of publicly-available data
from experiments on human play in normal-form games, and identified four
relevant studies. Such data is relatively scarce, for two reasons: studies are
difficult to conduct because they must follow human-subject protocols, and are
expensive because subjects must be paid in order to align their incentives with
a game’s payoffs.

In Rogers et al. (2009), subjects played 17 normal form games, with payoffs
denominated in pennies. In Costa-Gomes et al. (1998) subjects played 18 normal
form games, with each point of payoff worth 40 cents. However, subjects were
paid based on the outcome of only one randomly-selected game. Goeree and
Holt (2001) presented 10 games in which subjects’ behaviour was close to that
predicted by Nash equilibrium, and 10 other small variations on the same games
in which subjects’ behaviour was not well-predicted by Nash equilibrium. Half
of these games were normal form; the payoffs for each game were denominated
in pennies. Finally, in Stahl and Wilson (1994) experimental subjects played 10
normal form games, with payoffs denominated in units worth 2.5 cents.

We represent each observation of an action by an experimental subject as a
pair (ai, G), where ai is the action that the subject took when playing as player
i in game G. All games were two-player, so each single play of a game generated
two observations.
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Name Size Contents

SW94 400 Data from Stahl and Wilson (1994)
CGCB98 1296 Data from Costa-Gomes et al. (1998)
GH01 500 Data from Goeree and Holt (2001)
RPC09 1210 Data from Rogers et al. (2009)
All4 3406 Union of above 4 datasets

DS 1638 All dominance-solvable games from All4
GH01-T 200 “Treasure treatment” data from

Goeree and Holt (2001)
GH01-C 300 “Contradiction treatment” data from

Goeree and Holt (2001)

Table 3.1: Datasets and their contents.

Table 3.1 lists the datasets that we considered. We built one dataset for
each study, named by the source study.5 We combined the data from all 55
games into a fifth dataset (All4). Finally, we also placed the 1638 observations
from all the dominance-solvable games into a dataset DS; we speculated that
the Lk model would predict especially well on these games, as behaviour in
dominance-solvable games was part of the initial motivation behind the level-
k model. For the comparisons with Nash equilibrium in Section 4.2, we also
separated the data from Goeree and Holt (2001) into the “treasure treatment”
data and the “contradiction treatment” data, since these two groups of games
were specifically chosen based upon how well or poorly Nash equilibrium predicts
for them.

5Full listings of the games and observations, as well as additional detail on experimental
protocols, are available in the source papers. A summary of the games and observations is
available at http://www.cs.ubc.ca/labs/lci/thesis/jrwright/experimental-data.pdf.

16



4 Analysis of Existing
BGT Models

We now describe the first of our contributions: we analyze the effectiveness of
each of the BGT models we have just described on each of our datasets. We
note that the papers introducing these models all performed some experimental
evaluation; however, only one of them made use of data gathered by any other
studies (Camerer et al., 2004), none of them made comparisons to any other
models other than Nash equilibrium, and none compared generalization perfor-
mance of different models. We thus believe that our evaluation of BGT models
for one-shot games is the broadest ever conducted.

4.1 Experimental setup

To evaluate a given model on a given dataset, we performed 10 rounds of 10-fold
cross-validation. Specifically, for each round, we randomly divided the dataset
into 10 parts of approximately equal size, called “folds”. For each of the 10 ways
of selecting 9 folds from the 10, we computed the maximum likelihood estimate
of the model’s parameters based on those 9 folds as described in Section 4.1.1.
We then determined the log likelihood of the remaining fold given the prediction.
We call the average of this quantity across all 10 folds the cross-validated log
likelihood.

The 10 rounds of cross-validation constitute a sample of size 10 from the
population of possible 10-fold partitions of the dataset. Equivalently, the cross-
validated log likelihoods represent a sample of size 10 from the population of
possible cross-validated log likelihoods, given the dataset. By the Central Limit
Theorem, the average of these cross-validated log likelihoods is approximately
normally distributed. As the variance of this distribution is unknown, we use
a Student’s-t distribution with 9 degrees of freedom to compute the 95% con-
fidence intervals of the average cross-validated log likelihoods (e.g., see Witten
and Frank, 2000).

We compared the predictive power of different behavioural models on a given
dataset by comparing the average cross-validated log likelihood of the dataset
under each model. We say that one model predicted significantly better than
another on a given dataset when the 95% confidence intervals for the average
cross-validated log likelihoods do not overlap.

We used Gambit (McKelvey et al., 2007) to compute QRE and to enumerate
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the Nash equilibria of games. We performed computation on the glacier cluster
of WestGrid (www.westgrid.ca), which consists of 840 computing nodes, each
with two 3.06GHz Intel Xeon 32-bit processors and either 2GB or 4GB of RAM.
In total, our study required approximately 430 CPU days of machine time,
primarily for model fitting.

4.1.1 Maximum likelihood estimation

Each model M has an associated likelihood function LM (G, ai |
#»

θ ) that gives
the likelihood of a single observation given a particular setting of the model’s
parameters

#»

θ . We assume that the observations are independent and identically
distributed. This means that the likelihood of a dataset D is simply the product
of the dataset observations:

LM (D | #»

θ ) =
∏

(ai,G)∈D

LM (G, ai |
#»

θ ).

As n grows large, the likelihood of any particular dataset of size n grows
small very quickly. To prevent underflow and numerical stability problems, we
therefore follow the standard practice of operating on log likelihoods:

LLM (D | #»

θ ) =
∑

(ai,G)∈D

logLM (G, ai |
#»

θ ).

To compute the maximum likelihood estimate of a model M ’s parameters
#»

θ for a given dataset D, we used the Nelder-Mead simplex algorithm (Nelder
and Mead, 1965) to compute

#»

θ ∗ = arg max #»
θ ′ LL

M (D | #»

θ ′). In general, the
likelihood functions of behavioural models are not guaranteed to be convex
(in fact, for some models, e.g., Poisson-CH, they can be highly non-convex or
even discontinuous). To avoid computing suboptimal local maxima, we started
each optimization from 200 quasi-random starting points within the model’s
parameter space and selected the maximum among the results.6

4.1.2 Alternatives to cross-validation

We considered two alternative evaluation techniques before settling on cross-
validation: randomly dividing the data into a training set and a test set (e.g.,
see Bishop, 2006), and bootstrapping (e.g., see Efron and Tibshirani, 1993).

In the first technique, the data are randomly divided into a training set,
on which model parameters are fit, and a test set, on which the fitted models’
performance is evaluated. With sufficiently large datasets, overly-complex mod-
els that fit noise in the data (a phenomenon known as over-fitting) are likely
to perform poorly in such an evaluation, as the test set will not contain the
same noise as the training set. However, without distributional assumptions

6We used 200 starting points as it offered a good balance between computation cost and
exhaustiveness.
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about the source population, it is not possible to assess the statistical signifi-
cance of differences in performance from a single training/test set evaluation.
Furthermore, a simple training-data/test-data scheme works best when data are
plentiful, as both the training sets and test sets need to be reasonably large in
order to get reliable evaluations.

In the second technique, K datapoints are sampled with replacement from
the original dataset of size K. Since it was sampled with replacement, this new,
equal-sized pseudo-sample may contain some of the original datapoints multiple
times, while omitting others. This process is repeated L times, where L is
some large number (often on the order of 1000). Each time a pseudo-sample is
drawn, the models to be evaluated are trained on the pseudo-sample, and then
evaluated on the original datapoints that were not selected. These evaluations
are recorded in sorted order, and by removing Lp/2 evaluations from the top
and bottom of this list, a 1− p confidence interval for the model’s performance
can be estimated. One variation on this technique first randomly divides the
data into training and test sets, draws pseudo-samples from the training set
only, and always evaluates on the same test set.

Bootstrapping has the advantage that its statistical justification is straight-
forward and requires few assumptions. However, it is also extremely expensive
in terms of computation (as the training process must be repeated L times
per dataset and model). Furthermore, it lacks statistical power ; that is, the
confidence intervals are extremely wide, and therefore models that are actually
different will fail to reject the hypothesis that they are the same.

Cross-validation has important advantages over these two techniques in our
setting. Average cross-validated log likelihoods admit of statistical analysis,
unlike evaluations from a simple training-set/test-set scheme, and the paired
t-test used to compare average cross-validated log likelihoods is more powerful
than bootstrapping. In addition, cross-validation requires much less computing
time than bootstrapping (only 100 model evaluations for 10 rounds of 10-fold
cross validation, versus L ≈ 1000 for bootstrapping). Finally, cross-validation
uses data more efficiently than a simple training-set/test-set scheme, as more of
the data can be used for training in each evaluation.7

4.2 Comparing to Nash equilibrium

It is straightforward to verify that the unmodified Nash equilibrium solution
concept does not effectively predict the behaviour of human subjects. In 82%
(45 out of 55) of the games in the All4 dataset, every Nash equilibrium assigned
probability 0 to actions that were actually taken by experimental subjects. This
means that treating Nash equilibrium as a prediction resulted in the entire
dataset having probability 0, or infinitely negative log likelihood.

Any attempt to use Nash equilibrium for prediction must extend the solution
concept to solve two problems: ensuring that no action is assigned probability

7This efficiency comes at a cost. Since the same data is sometimes used for training and
sometimes for testing, cross-validated models can have some bias towards the sample set.
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Figure 4.1: Average ratios of initial model likelihoods to random likelihoods,
with 95% confidence intervals.

0, and dealing with multiple equilibria. We solved the first problem by adding a
parameter (ε) representing a proportion of the population that chooses actions
at random. We solved the equilibrium selection problem in two ways. The first
was to take the average over the predictions of every Nash equilibrium. This is
equivalent to having a uniform prior over the equilibria of a game. We called
the resulting model uniform Nash equilibrium with error (UNEE). Our second
solution was to nondeterministically select the Nash equilibrium that was most
consistent with the full dataset. We call the resulting model nondeterministic
Nash equilibrium with error (NNEE). Clearly this model could not be used in
practice, as it relies upon “peeking” at the full dataset. It can be understood
as a best-case scenario for Nash equilibrium in which the equilibrium-selection
problem is solved perfectly.

Figure 4.1 reports the results of the initial comparisons of UNEE, NNEE,
and our four BGT models. For each model and each dataset, we give the factor
by which the dataset is more likely according to the model’s prediction than
it would be according to a uniform random prediction. Thus, for example,
the All4 dataset is approximately 1012 times more likely according to QRE’s
prediction than it is according to a uniform random prediction.

On the GH01-T dataset, which was explicitly selected to contain games
that were well-described by Nash equilibrium, NNEE had the best prediction
performance. However, UNEE predicted significantly worse than both GLk
and QRE. As expected, both UNEE and NNEE had worse performance on the
GH01-C dataset. More surprisingly, so did the BGT models (although GLk
degraded the least, and hence predicted much better than the other models).

UNEE predicted significantly worse than every BGT model on every non-
GH01 dataset. Similarly, NNEE predicted significantly worse than GLk on
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GH01-C and the combined GH01 dataset, and predicted significantly worse
than both GLk and QRE on every non-GH01 dataset. This is unambiguous
evidence that BGT models better predict human behaviour than Nash equilib-
rium.

4.3 Comparing BGT models

Referring again to Figure 4.1, we see in most datasets that the model based
on cost-proportional errors (QRE) predicted significantly better than the two
models based on bounded iterated reasoning. Surprisingly, this was also true in
the DS dataset, even though bounded iterated reasoning was largely motivated
by observed human behaviour in dominance-solvable games.

In contrast, models based on bounded iterated reasoning (Lk and Poisson-
CH) outperformed QRE on SW94. This suggests that bounded iterated rea-
soning and cost-proportional errors capture distinct underlying phenomena. If
that were true, then one would expect that models incorporating both com-
ponents would predict better than models that incorporate only one or the
other of them. This is indeed the case, as GLk incorporates both components
and generally outperforms the single-component models. Overall, GLk was the
strongest of the BGT models. With the sole exception of NNEE in GH01-T,
GLk predicted significantly better than all models in all datasets.
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5 Deeper Analysis of BGT
Models

Based on several questions from our initial evaluation, we then performed a
deeper analysis of our four BGT models. To investigate each question, we
constructed modified models, and compared their performance to the original
models.

5.1 Poisson distributions in cognitive hierarchy

Our first question was whether it is reasonable to assume that agent levels
have a Poisson distribution in the cognitive hierarchy model. At the best-
fitting parameter values for All4, this would imply that roughly 75% of agents
are level-0, which we consider implausible. We hypothesized that a cognitive
hierarchy model assuming some other distribution would better fit the data. To
test this hypothesis, we constructed a 4-parameter cognitive hierarchy model
(CH4), in which each agent was assumed to have level m ≤ 4, but where the
distributional form was otherwise unrestricted. If CH4 consistently makes better
predictions than Poisson-CH, then we can conclude that the restriction to the
Poisson distribution was harmful.

Model Definition 5 (CH4). Analogously to Poisson-CH, we define

BRαi,m(πCH4) = arg max
a′i∈Ai

m−1∑
`=0

α`ui(a′i, π
CH4
−i,` )

as the best response to the truncated distribution of lower-level agents, with
α0 = 1− α1 − α2 − α3 − α4. This gives

πCH4
i,m (ai) =


|Ai|−1 if m = 0,
|BRαi,m(πCH4)|−1 if m > 0, ai ∈ BRαi,m(πCH4),
0 otherwise.

The likelihood of an individual observation is

LCH4(G, ai | α1, α2, α3, α4) =
4∑

m=0

αmπ
CH4
i,m (ai).
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Figure 5.1: Average likelihood ratios between CH4 and Poisson-CH models,
with 95% confidence intervals.
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ized QRE models, with 95% confidence intervals.

Figures 5.1–5.3 report the evaluations of the modified models considered in
this section, expressed as a ratio between the likelihood of the modified model
and the corresponding original model. In Figure 5.1 we can see that the All4
dataset is approximately 100 times more likely according to the CH4 model’s
prediction than it is according to Poisson-CH. CH4 predicted significantly better
than the Poisson-CH model on most datasets, and never significantly worse.
Overall, we conclude that the assumption of Poisson-distributed agent levels
was unhelpful in the cognitive hierarchy model.

Interestingly, although this question was motivated by the high proportion of
level-0 agents predicted by the Poisson-CH model, the CH4 model still predicts
that 63% of the agents are level-0. This is a substantial reduction compared to
Poisson-CH, which predicts 75%, but it is still a surprisingly large proportion.

5.2 Are higher-level agents helpful in level-k
models?

Both the generalized level-k and level-k models assume that all agents have level
k ≤ 2. Our second question was whether a richer model that allowed for higher-
level agents would have better predictive power. To explore this question, we
constructed a level-k model with k ∈ {0, 1, 2, 3, 4} (Lk4). We hypothesized that
the Lk4 model would have better predictive power than the Lk model.

Model Definition 6 (Lk4). The Lk4 model is identical to the Lk model, except
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with more levels. The likelihood function is

LLk4(G, ai | α1, α2, α3, α4, ε1, ε2, ε3, ε4) =
4∑
k=0

αkπ
Lk
i,m(ai),

where πLki,m is defined in equation (3.2).

As reported in Figure 5.2, the Lk4 model predicted significantly better than
the Lk model on all datasets except CGCB98, where there was no significant
difference between the two models. However, these differences were small in
every case, in spite of the fact that Lk4 has twice as many parameters as Lk.8

Overfitting does not appear to have influenced these results, as the ratios of test
to training log likelihoods were not significantly different between the Lk and
Lk4 models. This suggests that there is not a large proportion of higher-level
agents that are well-described by the level-k model.

5.3 Does payoff scaling matter?

Our third question was whether the payoffs in the different games in the dataset
were in appropriate units. The level-k and Poisson-CH models are based only
on the best-response structure of the games, and are therefore independent of
the units used for payoffs. However, both QRE and generalized level-k are
scale dependent. If the precision parameter is held fixed, then QRE will predict
differently for two identical games whose payoffs are expressed in different units.
When considering a single setting this is not a concern, because the precision
parameter can contain a factor to scale a game to appropriately-sized units.
However, when data is combined from multiple studies in which payoffs are
expressed on different scales, we might worry that the single precision parameter
is insufficient to compensate for QRE’s scale dependence.

We proposed two hypotheses to explore this question. The first was that
subjects were concerned only with relative scales of payoff differences within
individual games. To test this hypothesis, we constructed a model (NQRE)
that normalizes payoffs within a game to lie in the interval [0, 1] and then pre-
dicts based on a QRE of the normalized game. The second was that subjects
were concerned with the expected monetary value of their payoffs. To test this
hypothesis, we constructed a model (CNQRE) that normalizes payoffs to be
denominated in expected cents. If either normalized model consistently pre-
dicts significantly better than QRE, then we have evidence for its associated
hypothesis.

Model Definition 7 (NQRE). Let G = (N, a, u) be a normal form game.
Define n(G) = (N,A, v), where

vi(a) =
ui(a)−mina′∈A ui(a′)

(maxa′∈A ui(a′))− (mina′∈A ui(a′))
.

8Note that the scales on each figure differ from one another. In particular, Figure 5.2 has
a scale that ranges from 100 to 101, compared to Figure 5.1, whose scale ranges from 10−1 to
104.
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Then given a gameG and a precision λ, NQRE predicts according to s∗, where s∗

is a logit equilibrium of n(G) with precision λ. The likelihood of an observation
(ai, G) is thus

LNQRE(G, ai | λ) = LQRE(n(G), ai | λ).

Model Definition 8 (CNQRE). Let G = (N,A, u) be a normal-form game.
Define cn(G) = (N,A, v), where v is a utility function that returns the expected
monetary value of an outcome in cents. Then given a game G and a precision
λ, CNQRE predicts according to s∗, where s∗ is a logit equilibrium of cn(G)
with precision λ. The likelihood of an observation (ai, G) is thus

LCNQRE(G, ai | λ) = LQRE(cn(G), ai | λ).

Figure 5.3 reports the likelihood ratio between the modified QRE models
and QRE. Both NQRE and CNQRE performed worse than the original unnor-
malized QRE on every dataset except for SW94, where the improvement was
very small (although significant). We conclude that subjects responded to the
raw payoff numbers, not to the actual values behind those payoff numbers, and
not solely to the relative size of the payoff differences (i.e., the subjects’ reactions
to payoff numbers appear not to have been scale invariant). There are indepen-
dent reasons to find this plausible, such as the widely-studied “money illusion”
effect (Shafir et al., 1997), in which people focus on nominal rather than real
monetary values. CNQRE generally made better predictions than NQRE. This
may be due to the fact that normalizing to cents distorts the original payoff
values less than normalizing to [0, 1].

These results have some very positive implications. They suggest that pool-
ing data from multiple behavioural experiments (as in this study) is likely to
yield meaningful results, even if the precise details of the payoff protocols differ.

5.4 How useful is explicit cognitive modelling?

All of the models discussed so far make strong assumptions about the process
that agents use to choose the action to play. An alternative predictive approach
— perhaps more natural to researchers in AI than in behavioural economics —
is to predict action frequencies based on some set of features, without reference
to the underlying cognitive processes. Our fourth question was whether such a
feature-based, process-agnostic model would predict human behaviour as well
as BGT models.

To explore this question, we built a feature-based classifier. Action sets differ
between games, which complicates classifier construction. In particular, since
games in the training set may have completely different action sets than games
in the test set, it does not make sense to use actions as the labels for a classifier
based on features of the games.

Instead, we built a classifier based on logit discrete choice models (Train,
2009), in which features are associated with actions rather than with games. In
our model, DCM, we define V (ai) to be a linear combination of nine features
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Figure 5.4: Average ratios of DCM and QCH likelihoods to best BGT likelihood,
with 95% confidence intervals.

of the action: the minimum and maximum utility of playing the action; the
maximum regret of playing an action; a measure of strategic domination; four
binary features that indicate whether a level-1 (level-2,3,4) agent would play the
action in the level-k model;9 and a constant value of 1. Agents are assumed to
choose the available action that maximizes U(ai) = V (ai) + εai , where εai is a
random variable which is independent and identically distributed across agents.
For a given set of actions Ai, this implies choice probabilities given by

P(ai) =
exp[V (ai)]∑

a′i∈Ai
exp[V (a′i)]

.

Model Definition 9 (DCM). Let FDCM be the set of features defined in
Table 5.1. DCM is a discrete choice model where

V (ai) =
∑

f∈FDCM

wff(ai).

The likelihood of an observation (ai, G) is thus

LDCM (G, ai | {wf}f∈FDCM ) =
exp[V (ai)]∑

a′i∈Ai
exp[V (a′i)]

.

9The reader might wonder why we included the behavioural level-k features. The intention
was to allow iterated reasoning to play a part in agents’ reasoning without dictating its relative
importance. We also evaluated a model that used only the five non-behavioural features, which
performed worse in every dataset than DCM.
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Feature Definition

Min-utility maxa−i∈A−i ui(ai, a−i)
Max-utility mina−i∈A−i ui(ai, a−i)
Max-regret maxa−i∈A−i

r(ai, a−i), where
r(ai, a−i) =

[
maxa′i∈Ai

ui(a′i, a−i)
]
− ui(ai, a−i)

Dominated-sum
∑
a∗i∈d(ai)

∑
a−i∈A−i

u(a∗i , a−i)− u(ai, a−i)
where d(ai) = {a∗i ∈ Ai | a∗i dominates ai}.

Level-1? 1 if a level-1 agent (in level-k models) would play
this action, or 0 otherwise.

Level-2? 1 if a level-2 agent (in level-k models) would play
this action, or 0 otherwise.

Level-3? 1 if a level-3 agent (in level-k models) would play
this action, or 0 otherwise.

Level-4? 1 if a level-4 agent (in level-k models) would play
this action, or 0 otherwise.

Const 1

Table 5.1: Features for each action ai of agent i for discrete choice models.

The results of comparing DCM to GLk are shown in Figure 5.4. Although
DCM performed somewhat better than GLk in the CGCB98, SW94, and DS
datasets, overall it made considerably worse predictions. The likelihood of the
combined All4 dataset was almost 106 times smaller according to DCM’s pre-
dictions than according to GLk’s. We thus conclude that there is solid empirical
support for the practice of explicitly modelling cognitive processes.

5.5 Does heterogeneity matter?

The generalized level-k model incorporates heterogeneity of both steps of iter-
ative reasoning and precision of quantal response. Different agent types may
have different quantal choice precisions, and higher-level agents’ beliefs about
the precisions of other levels may differ from both each other and reality. Our
final question was whether a more constrained model would predict equally well.

We constructed a model in which non-random agents were constrained to
have identical precisions. Further, the agents were constrained to have correct
beliefs about the precisions and the relative proportions of lower-level types.
This model can also be viewed as an extension of cognitive hierarchy that adds
quantal response; hence we called it quantal cognitive hierarchy, or QCH. 10 This
is similar to the Truncated QRE (TQRE) model of Rogers et al. (2009), in that

10The reader may wonder why we chose to extend cognitive hierarchy rather than a level-k
model. In our opinion, the agents’ having a true belief about the precision of lower agent
types is more consistent with the assumptions of cognitive hierarchy than with those of level-
k. We did in fact fit a restricted “quantal level-k” model as well; its performance was roughly
comparable to that of QCH.
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all agents have correct beliefs about lower-level types’ proportions and strate-
gies. It differs in that agents are homogeneous in precision, while remaining
heterogeneous in steps of reasoning, whereas different types must have different
precisions in TQRE.

Model Definition 10 (QCH). For a level-m agent i (with m > 0), let βQCH−i,m
be a vector of distributions βQCHj,m representing i’s beliefs about the play of the
other agents j, with

βQCHj,m (aj) =

∑m−1
`=0 α`π

QCH
j,` (aj)∑m−1

`=0 α`
.

Level-m agents choose actions with probability

πQCHi,m (ai) =
exp[λ·ui(ai, βQCH−i,m )]∑

a′i∈Ai
exp[λ·ui(a′i, β

QCH
−i,m )]

.

QCH assumes that all agents are level-4 or lower. The likelihood of an observa-
tion (ai, G) is thus

LQCH(G, ai | α1, α2, α3, α4, λ) =
4∑

m=0

πQCHi,m (ai).

Figure 5.4 shows the comparison between the prediction performance of QCH
and GLk. QCH actually performed somewhat better on the combined All4
dataset. Overall its performance was similar to GLk’s, never performing worse
by more than a factor of 10. This suggests that the added flexibility of GLk in
terms of heterogeneous beliefs and precisions did not add substantial predictive
power.
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6 Conclusions

6.1 Discussion

Looking at the parameter settings that the optimization procedure chooses can
give addition insight into the workings of the various models. In this section we
consider two general trends in the parameter settings of the behavioural models
that we studied.

One feature that appeared in all the fitted models was a high degree of ran-
domness. On the All4 dataset, the percentage of the population that the fitted
models predicted were behaving in a purely random fashion ranged from a high
of 84% (UNEE) to a low of 51% (QCH). Unsurprisingly, models that predicted a
lower number of random agents tended to have a better performance. Table 6.1
compares the proportion of random agents predicted (on average) by models
that had the concept of a purely-random type with the performance of those
same models on the All4 dataset.11 Note that even the best-performing model
(QCH) can do no better than to assume that half of the agents are choosing
actions completely at random! This indicates that there is still considerable
room for improvement in modelling of game behaviour.

Most models had extremely stable estimates for their parameters, with 95%
confidence intervals no longer than 0.15. GLk was a striking exception. The pa-
rameters specifying relative proportions of different level types in the population
(α1 and α2) were roughly as stable as the other models. However, the precision
parameters (λ1, λ2, and µ) had considerably higher variance, with confidence
intervals up to 1.96 wide. This is especially interesting in comparison to QCH,
whose precision parameter (λ) had a confidence interval of width 0.02. The
higher stability of QCH’s parameter estimates is matched by a higher stabil-
ity of performance. For example, on the All4 dataset, QCH had base-10 log
likelihood −156.18 ± 0.03, compared to GLk, which had base-10 log likelihood
−157.72 ± 0.20.12 The confidence interval for GLk’s performance was nearly 7
times wider than that for QCH. This indicates that QCH is a much more robust
model than GLk.

11See Table A.2 for a full listing of model parameters
12See Table A.1 for a complete listing of model log likelihoods
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Model Random agents Log likelihood

UNEE 0.84± .000 −170.19± 0.02
NNEE 0.77± .000 −165.41± 0.01
Poisson-CH 0.75± .002 −165.81± 0.06
Lk 0.71± .000 −165.64± 0.03
Lk4 0.65± .004 −165.53± 0.03
CH4 0.63± 0.03 −163.82± 0.13
GLk 0.59± 0.02 −157.72± 0.20
QCH 0.51± .003 −156.18± 0.03

Table 6.1: Average proportion of random agents and (base 10) model log like-
lihoods on the All4 dataset, for models with a fully-random type.

6.2 Conclusions and recommendations

To our knowledge, ours is the first meta-study of BGT data and models with a
focus on prediction. We explored the properties of four important models from
the BGT literature, along with various modifications of these models, by com-
paring the average cross-validated log likelihoods of the models on BGT data.
The division of data into folds was done at the level of individual observations
rather than at the level of games, which, to our knowledge, is novel.

Overall, we found that the GLk model had substantially better prediction
performance than the other models from the BGT literature that we considered.
We would thus recommend the use of GLk by researchers wanting to predict
human behaviour in games, especially if maximal accuracy is the main concern.
QCH, a conceptually simpler extension of cognitive hierarchy, performed almost
as well or better than GLk on all datasets, and had stabler parameter estimates
and performance. We recommend the use of QCH in settings for which it is
important to be able to interpret the parameters (e.g., in a Bayesian setting
where “reasonable” priors need to be determined), when it is important to be
able to vary the number of modeled types, and when stable parameter estimates
and performance are desirable.

6.3 Future work

One of the models that we constructed, DCM, takes a feature-based, non-
behavioural approach. With the particular set of features that we chose, DCM
substantially underperformed GLk. However, with the right set of features, a
discrete choice model might well have better performance. Devising such fea-
tures is one possible direction for future work.

Another potential direction for future work is to apply these models to pre-
diction problems in multiagent systems, such as bargaining agents or empirical
mechanism design. This is distinct from existing work in economics that applies
behavioural models to explain observed anomalies (e.g., Crawford and Iriberri
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(2007), who use a level-k model that has been extended to Bayesian games to
explain higher-than-equilibrium bidding in auctions).

A remaining open problem is to evaluate models that have been extended to
account for learning and non-initial play, including repeated-game and extensive-
form game settings.

32



Bibliography

Altman, A., Bercovici-Boden, A., and Tennenholtz, M. (2006). Learning in one-
shot strategic form games. In Fürnkranz, J., Scheffer, T., and Spiliopoulou,
M., editors, ECML, volume 4212 of Lecture Notes in Computer Science, pages
6–17. Springer.

Basu, K. and Weibull, J. (1991). Strategy subsets closed under rational behavior.
Economics Letters, 36(2):141–146.

Becker, T., Carter, M., and Naeve, J. (2005). Experts playing the traveler’s
dilemma. Diskussionspapiere aus dem Institut für Volkswirtschaftslehre der
Universität Hohenheim 252/2005, Department of Economics, University of
Hohenheim, Germany.

Benisch, M., Davis, G., and Sandholm, T. (2006). Algorithms for rationaliz-
ability and CURB sets. In Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI-06), pages 598–604. AAAI Press.

Bishop, C. (2006). Pattern recognition and machine learning. Springer.

Camerer, C., Ho, T., and Chong, J. (2004). A cognitive hierarchy model of
games. Quarterly Journal of Economics, 119(3):861–898.

Camerer, C. F. (2003). Behavioral Game Theory: Experiments in Strategic
Interaction. Princeton University Press.

Capra, M., Goeree, J., Gomez, R., and Holt, C. (1999). Anomalous behavior in
a traveler’s dilemma? American Economic Review, 89(3):678–690.

Conitzer, V. and Sandholm, T. (2005). A generalized strategy eliminability
criterion and computational methods for applying it. In Proceedings of the
20th National Conference on Artificial Intelligence (AAAI-05), pages 483–
488. AAAI Press.

Costa-Gomes, M., Crawford, V., and Broseta, B. (1998). Cognition and behavior
in normal-form games: an experimental study. Discussion paper 98-22, UCSD.

Costa-Gomes, M., Crawford, V., and Broseta, B. (2001). Cognition and behavior
in normal-form games: An experimental study. Econometrica, 69(5):1193–
1235.

33



Crawford, V. and Iriberri, N. (2007). Level-k auctions: Can a nonequilibrium
model of strategic thinking explain the winner’s curse and overbidding in
private-value auctions? Econometrica, 75(6):1721–1770.

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chap-
man & Hall.

Goeree, J. K. and Holt, C. A. (2001). Ten little treasures of game theory and
ten intuitive contradictions. American Economic Review, 91(5):1402–1422.

Halpern, J. Y. and Pass, R. (2009). Iterated regret minimization: a new solu-
tion concept. In Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), pages 153–158. Morgan Kaufmann.

Harless, D. W. and Camerer, C. F. (1994). The predictive utility of generalized
expected utility theories. Econometrica, 62(6):1251–1289.

Harless, D. W. and Camerer, C. F. (1995). An error rate analysis of experimental
data testing nash refinements. European Economic Review, 39(3):649–660.

Hyafil, N. and Boutilier, C. (2006). Regret-based incremental partial revelation
mechanisms. In Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI-06), pages 672–678. AAAI Press.

McKelvey, R., McLennan, A., and Turocy, T. (2007). Gambit: Software tools
for game theory, version 0.2007. 01.30.

McKelvey, R. and Palfrey, T. (1992). An experimental study of the centipede
game. Econometrica, 60(4):803–836.

McKelvey, R. and Palfrey, T. (1995). Quantal response equilibria for normal
form games. Games and Economic Behavior, 10(1):6–38.

Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the
National Academy of Sciences of the United States of America, 36(1):48–49.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization.
Computer Journal, 7(4):308–313.

Rogers, B. W., Palfrey, T. R., and Camerer, C. F. (2009). Heterogeneous quantal
response equilibrium and cognitive hierarchies. Journal of Economic Theory,
144(4):1440–1467.

Shafir, E., Diamond, P., and Tversky, A. (1997). Money illusion. Quarterly
Journal of Economics, 112(2):341–374.

Stahl, D. and Wilson, P. (1994). Experimental evidence on players’ models of
other players. Journal of Economic Behavior and Organization, 25(3):309–
327.

34



Stahl, D. and Wilson, P. (1995). On players’ models of other players: Theory
and experimental evidence. Games and Economic Behavior, 10(1):218–254.

Tennenholtz, M. (2002). Competitive safety analysis: Robust decision-making in
multi-agent systems. Journal of Artificial Intelligence Research, 17:363–378.

Train, K. (2009). Discrete Choice Methods with Simulation. Cambridge Univer-
sity Press.

Von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic
Behavior. Princeton University Press.

Wellman, M., Greenwald, A., and Stone, P. (2007). Autonomous Bidding
Agents: Strategies and Lessons from the Trading Agent Competition. MIT
Press.

Witten, I. H. and Frank, E. (2000). Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann.

35



A Experimental Results

This appendix contains two tables. The first, Table A.1, presents the raw aver-
age log likelihoods that the figures in Chapter 4 and Chapter 5 are based upon.
There is no entry for CNQRE in the RPC09 and GH01 datasets, since these
datasets’ games were already denominated in cents, and therefore the QRE and
CNQRE predictions coincide.

The second, Table A.2, gives the average maximum likelihood parameter
estimates for each model and dataset combination.
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ALL4 SW94 CGCB98 GH01 RPC09 DS

Random −404.24 −43.94 −112.34 −115.06 −132.90 −192.72
UNEE −170.19± 0.02 −18.56± 0.01 −48.80± 0.01 −44.93± 0.01 −55.83± 0.02 −79.00± 0.01
NNEE −165.41± 0.01 −17.50± 0.01 −48.80± 0.01 −40.49± 0.02 −55.29± 0.01 −78.26± 0.01
Lk −165.64± 0.03 −13.23± 0.03 −48.36± 0.02 −45.28± 0.02 −55.65± 0.02 −76.20± 0.02
Poisson-CH −165.81± 0.06 −13.32± 0.12 −48.38± 0.02 −45.28± 0.01 −54.40± .001 −76.93± 0.01
QRE −163.02± 0.03 −14.54± 0.02 −47.94± .000 −43.31± .003 −52.59± 0.03 −73.49± 0.01
GLk −157.72± 0.20 −12.50± 0.03 −47.88± 0.02 −38.02± 0.03 −51.78± 0.16 −72.94± 0.06
CH4 −163.82± 0.13 −13.48± 0.16 −48.38± 0.02 −45.13± 0.02 −51.49± 0.07 −75.87± 0.15
Lk4 −165.53± 0.03 −12.80± 0.03 −48.41± 0.04 −44.60± 0.06 −55.50± 0.04 −75.96± 0.03
NQRE −166.62± 0.02 −14.48± 0.02 −48.09± 0.01 −45.10± 0.11 −54.14± 0.02 −79.65± 0.02
CNQRE −166.22± .000 −14.54± 0.02 −47.95± .000 - - −77.80± .000
DCM −163.67± 0.06 −12.33± 0.03 −46.91± 0.05 −42.05± 0.07 −52.33± 0.06 −72.18± 0.08
QCH −156.18± 0.03 −13.22± 0.07 −47.87± 0.02 −37.96± 0.03 −51.63± 0.09 −72.52± 0.02

Table A.1: Average (base 10) log likelihoods, with 95% confidence intervals
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ALL4 SW94 CGCB98 GH01 RPC09 DS

UNEE ε 0.84± .000 0.66± .000 1.00± .000 0.72± .000 0.61± .000 0.84± .000

NNEE ε 0.77± .000 0.55± .000 1.00± .000 0.59± .000 0.69± .000 0.82± .000

Lk α1 0.21± .000 0.57± 0.01 0.10± .000 0.19± .000 0.21± .000 0.20± .000
α2 0.08± .000 0.40± .002 0.04± .000 0.06± .000 0.39± .000 0.29± .000
ε1 0.000± .000 0.05± 0.01 0.000± .000 0.000± .000 0.000± .000 0.000± .000
ε2 0.000± .000 0.13± .002 0.000± .000 0.000± .000 0.53± .001 0.36± .001

Poisson-CH τ 0.29± .002 1.40± 0.02 0.12± .000 0.27± .000 0.54± .000 0.29± .001

QRE λ 0.03± .000 0.09± .000 0.02± 0.00 0.03± 0.00 0.10± .001 0.03± .000

GLk α1 0.22± 0.01 0.71± .000 0.89± 0.04 0.32± .000 0.17± 0.07 0.22± .003
α2 0.19± 0.01 0.29± .000 0.02± .001 0.33± .000 0.51± 0.05 0.51± 0.03
λ1 2.60± 0.54 0.20± .000 0.02± .001 1.26± 0.01 3.76± 0.63 5.49± 0.65
λ2 2.49± 0.43 5.04± 0.61 6.50± 0.96 2.35± .001 1.25± 0.42 0.22± 0.13
µ 0.06± .000 4.29± 0.75 6.49± 0.48 1.45± .000 0.06± 0.01 0.20± 0.02

CH4 α1 0.07± .003 0.38± 0.02 0.02± 0.01 0.02± .000 0.09± .004 0.07± .003
α2 0.08± 0.01 0.19± 0.01 0.03± .005 0.01± .000 0.15± .005 0.04± 0.01
α3 0.14± 0.01 0.11± 0.01 0.03± .003 0.10± .001 0.12± .003 0.17± 0.01
α4 0.07± .004 0.11± 0.01 0.03± .005 0.13± .001 0.14± .004 0.06± 0.01

Lk4 α1 0.20± .000 0.51± .001 0.12± .001 0.10± .003 0.19± .000 0.18± .000
α2 0.06± .000 0.35± .002 0.02± .001 0.10± .001 0.14± .004 0.10± .001
α3 0.002± .001 0.13± .002 0.02± .003 0.30± .003 0.13± .004 0.003± .002
α4 0.08± .002 0.02± .002 0.02± .004 0.50± .001 0.31± .002 0.34± .003
ε1 0.001± .000 0.001± .001 0.003± .000 0.18± 0.01 0.000± .000 0.001± .000
ε2 0.004± .001 0.16± .003 0.20± 0.03 0.001± .001 0.46± 0.01 0.01± .001
ε3 0.70± 0.05 0.01± 0.01 0.44± 0.07 0.84± .004 0.95± 0.01 0.51± 0.07
ε4 0.31± 0.01 0.44± 0.06 0.41± 0.07 1.00± .000 0.47± .002 0.55± .002

(Continues on next page)

Table A.2: Average (base 10) model parameter estimates, with 95% confidence intervals
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(Continued from previous page)

ALL4 SW94 CGCB98 GH01 RPC09 DS

NQRE λ 2.74± .001 9.11± 0.01 1.23± .003 6.10± 0.02 2.90± .002 2.57± .002

CNQRE λ 0.01± 0.00 0.23± .001 0.01± 0.00 - - 0.01± 0.00

DCM wConst −0.30± 0.19 −0.75± 0.22 0.31± 0.08 −0.71± 0.73 −0.21± 0.06 0.29± 0.27
wMin-utility −0.000± .000 −0.002± .000 −0.01± .000 −0.004± .000 0.05± .000 0.03± .001
wMax-utility −0.003± .000 0.02± .000 0.04± .000 −0.002± .000 0.01± .000 0.02± .001
wMax-regret −0.01± .000 −0.02± .000 0.005± .000 −0.02± .000 0.01± .000 −0.01± .000
wDominated-sum 0.000± .000 −0.06± .001 −0.01± .000 0.000± .000 −0.01± .000 0.000± .000
wLevel-1? 0.35± .003 0.45± 0.02 −0.51± .000 −0.87± 0.05 0.33± .001 −0.59± 0.03
wLevel-2? 0.32± .002 1.23± 0.01 0.19± .000 1.71± 0.03 0.31± .001 0.14± 0.01
wLevel-3? 0.03± .002 0.33± 0.01 −0.42± 0.10 0.47± 0.02 −0.11± .000 0.38± 0.01
wLevel-4? 0.20± .002 0.45± 0.01 0.02± 0.10 0.25± 0.02 −0.01± .001 −0.43± 0.01

QCH α1 0.09± .002 0.29± 0.04 0.84± 0.04 0.13± .000 0.10± .002 0.09± .000
α2 0.16± .001 0.34± 0.04 0.08± 0.04 0.16± .000 0.16± 0.01 0.27± .000
α3 0.13± .000 0.14± 0.01 0.03± 0.01 0.22± .000 0.13± 0.01 0.03± .000
α4 0.12± .000 0.11± 0.01 0.04± 0.01 0.22± .000 0.15± .004 0.12± .000
λ 3.39± 0.01 0.40± 0.04 0.02± .000 2.11± .002 8.67± 0.46 4.09± .005

Table A.2: Average (base 10) model parameter estimates, with 95% confidence intervals


