SPUDD

Stochastic Planning using Decision Diagrams

Motivation

- **MDPs**
 - Markov Decision Processes
 - Assumptions:
 - MDPs: Markovian processes
 - Finite set of states, actions, and rewards
 - Actions induce state transitions
 - Real-valued reward function

- **ADDs**
 - Algebraic Decision Diagrams
 - What are they?
 - Generalization of Bryant's Library Decision Diagrams (ADDs)
 - Represent real-valued boolean functions
 - Other dynamic programming algorithms
 - Space/Time optimizations
 - Dynamic Variable Re-ordering

SPUDD Algorithm

1. **Value Iteration**
 - Sum out all
 - Set V_0 (the 0-stage to go value function)

2. **Set V_{n+1} (the n-stage to go value function)**
 - $V_{n+1} = \beta \sum_a P(s,a,t) V(t)$

3. **Repeat until $\| V_{n+1} - V_n \| < \epsilon (1 - \beta)$**

4. **Do this for each action**
 - Assign to terminal nodes actions which contributed in the maximization

Results

- **Space Savings**
 - From using ADDs
 - Tree nodes/ADD nodes

- **Running Time**
 - SPUDD

Future Work

- ASPUDD: Application methods using ADDs
- Dynamic Variable Re-ordering
- Space/Time optimizations
- Other dynamic programming algorithms

SPUDD on the Web

- Run SPUDD on your own data
- Browse problem examples