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Abstract

Performance evaluation of content-based image retrieval (CBIR) systems is an important but still unsolved problem. The reason for its
importance is that only performance evaluation allows for comparison and integration of different CBIR systems. We propose an image
retrieval system that splits the retrieval process into two stages. Users are querying the system through image description using a set of
local semantic concepts and the size of the image area to be covered by the particular concept. In Stage I of the system, only small patches
of the image are analyzed whereas in the second stage the patch information is processed and the relevant images are retrieved. In this
two-stage retrieval system, the retrieval performance, that is precision and recall, can be modeled statistically. Based on the model, we
develop closed-form expressions that allow for the prediction as well as the optimization of the retrieval performance. As shown through
experiments, the retrieval precision can be increased by up to 55% and the retrieval recall by up to 25% depending on the user query.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Since long-time performance evaluation of computer vi-
sion algorithms has been recognized as being of utmost im-
portance for the advancement of the field [1,2]. The goal of
performance evaluation or characterization here refers to the
analysis of the quality, not the speed, of a particular vision
algorithm. Usually, this goal requires the generation of large
benchmark sets with hand-labeled or synthetically produced
ground truth, a very tedious process often leading to incon-
sistent annotations. However, this effort is undertaken regu-
larly for some computer vision and pattern recognition ap-
plications such as tracking and surveillance with the PETS
workshop started in 2000 [3], document analysis with the
TREC seri1s carried out for the first time in 1992 [4], face
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recognition [5], and image flow, vehicle detection, symbol
and shape recognition [6]. Only recently, as part of TREC
2001, a video track devoted to the research in automatic seg-
mentation, indexing, and content-based retrieval of digital
video was put together [7]. In addition, the problem of per-
formance evaluation and validation was the topic of several
dedicated workshops [8–10] and discussions [11–13].

Also in the context of content-base image retrieval
(CBIR), performance evaluation of the proposed retrieval
systems is essential as argued by Smith [14], or Müller et
al. [15]. Performance evaluation is indispensable since it
allows the comparison of different systems and the analysis
of how those systems perform depending on the applica-
tion. Knowing the performance of different algorithms and
systems also permits their combination and their integra-
tion into larger and more powerful CBIR systems. Some
systems, for example, are better to coarsely limit the search
space and therefore might be used as the front-end of a
larger system. Other systems, on the other hand, might
work well on small, preprocessed subsets of the database.
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However, evaluation of content-based image retrieval sys-
tems is particularly difficult. On a complete system level, the
ultimate performance measure should be user-centric and re-
lated to user satisfaction. Obviously, such performance mea-
sures are not only difficult to define but will also vary greatly
between individual users, tasks and applications, and even
between sessions with the same user. Establishing generally
accepted ground truth in that context seems to be tedious if
not impossible due to the required amount of consistently
annotated images. Images are very complex carriers of
information. Thus, the hand-annotation of images and the
definition of benchmark sets is not only application- and
user-dependent but also often ambiguous. In addition, the
semantic gap between the user’s image understanding and
the low-level image representation of the computer compli-
cates the definition of benchmarks.

Recognizing the fact that performance evaluation is ex-
tremely important and at the same time very difficult, this
paper introduces a two-stage retrieval system which makes
performance characterization manageable. The key idea is
that the user queries the database with high-level semantic
concepts [16,17]. An immediate benefit is that for those local
semantic concepts the acquisition of large amounts of con-
sistent ground truth is feasible because the semantic content
of the concepts is less complex than that of full images. In
addition, the two-stage retrieval process allows to model the
retrieval results statistically. Based on the statistical model,
we develop closed-form equations for the prediction of re-
trieval precision and retrieval recall. In the two-stage re-
trieval system it is also possible to optimize the retrieval
performance. The performance optimization uses the results
of the performance prediction. Depending on the user query,
the optimization step resets internal parameters in order to
increase precision and/or recall of the retrieval.

In general, the intention of our system is to unburden
the user from any parameter settings or complicated query
modes. The query based on local semantic concepts is simi-
lar to the way humans describe images. Thus, with the two-
stage retrieval system the semantic gap between the image
understanding of the user and the computer decreases. Other
systems propose relevance feedback to capture the user’s
high-level query and perception subjectivity (e.g. [18,19]).
The downside of these approaches is that the user is required
to undergo possibly several rounds of feedback, and that
it is not possible to predict or optimize the retrieval qual-
ity beforehand. In our system, the performance optimization
step is transparent to the user. The retrieval performance in-
creases without requiring the user to set any parameters. In
addition, many current retrieval systems follow the query-
by-example paradigm in which the user is searching for im-
ages based on an example (for an overview of the current
state of CBIR research refer to Ref. [20]). Our system is
based on the idea that the user describes the desired image
using a set of semantic concepts.

The rest of the paper is organized as follows: Section 2
introduces the two-stage retrieval system and the employed

query mode. In Section 3, closed-form expressions for the
retrieval performance in the two-stage system are derived.
The performance of the system can be optimized in three
ways: in Stage II of the system (Section 4), in Stage I of the
system (Section 5) or jointly in both stages (Section 6). In
Section 7, an additional, approximate optimization method
is introduced that does not require specific database informa-
tion. The proposed methods are summarized and discussed
in Section 8.

2. Two-stage retrieval system

In the proposed retrieval system, users describe the im-
ages they are looking for by using a set of local semantic
concepts (e.g. ‘sky’, ‘water’, ‘building’, ‘rocks’, etc.) and the
size of the image area to be covered by the particular con-
cept. Thus, an exemplary query might be: “Search images
with 20–40% of ‘sky’ ”. Fig. 5 depicts exemplary retrieval
results for that query. Note that here, due to the semantic
query mode, the concept ‘sky’ corresponds to very different
occurrences of sky (e.g. clear sky, cloudy sky, overcast sky,
etc.). The interval-based query mode might seem artificial at
first sight. However, the user interval could also be mapped
to descriptors such as “very little”, “half of”, “most of”, etc.
In addition, the combination of the search for several con-
cepts in the same images leads to a powerful global image
representation that can be used for scene categorization or
retrieval as shown [21].

The technical realization of the retrieval is split into two
stages (see Fig. 1). In order to enable the use of concepts
for querying, the system provides a set of so-called concept
detectors. In Stage I of the system, the database images are
analyzed by these concept detectors. They return a binary
decision whether a particular image region contains the con-
cept (positive patch) or not (negative patch). In the current
implementation, each image is subdivided into a regular grid
of patches each comprising 1% of the image. However, the
system can be extended to arbitrary patch sizes. In Stage II,
the patch-wise information of the concept detectors is pro-
cessed according to the user interval to actually retrieve a
set of images. The performance optimization affects the se-
lection of the appropriate concept detector in Stage I and the
setting of an internal parameter, the so-called system inter-
val S = [Slow%, Sup%], in Stage II. Here, the main idea is
to internally adapt the system interval in order to compen-
sate for some of the concept detectors’ errors and to thus
optimize the system performance.

3. Performance prediction

The goal of the performance prediction is to make a fore-
cast on the performance of the retrieval depending on certain
parameters. We define the retrieval performance by preci-
sion, which is the percentage of the retrieved images that
are also relevant, and recall, which is the percentage of the
relevant images that are retrieved. In the remainder of this
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Fig. 1. Two-stage retrieval system.

section, the prerequisites and the derivations for the perfor-
mance prediction are derived separately for each stage.

3.1. Performance of the concept detectors

A valid user query consists of the concept being searched
for and a user interval U = [Ulow%, Uup%] specifying the
amount of the image to be covered by the concept. Since we
divide the image into a grid of 10 × 10 image patches, Ulow

and Uup also correspond to the number of image patches cov-
ered by the desired concept. In Stage I of the retrieval system,
there exists a multitude of detectors for various concepts.
This implies especially that there might be multiple concept
detectors for one single concept with different performance
characteristics. According to the user query, the appropriate
concept detector is selected from those detectors, the image
patches are analyzed and the classification results per patch
are passed to Stage II. This analysis stage can be performed
off-line. The performance characteristics of the concept de-
tectors are modeled by the probability p for correctly detect-
ing a positive patch (true positives) and the probability q for
correctly detecting a negative image region (true negatives).

The concept detectors are usually trained off-line. In
Section 5, we will discuss the learning of the concept de-
tectors in more detail. The goal is to have multiple concept
detectors with varying performance characteristics for each
concept. This can be obtained by using one classifier with
different confidence thresholds or by using different clas-
sifiers. In general, any classifier with known performance
characteristics can be employed such as for example the
semantic classifiers of Town and Sinclair [22] or the texture
models for automatic annotation of Picard and Minka [23].

3.2. Mathematical framework

The prerequisite for the performance prediction is that the
performance of the employed concept detector is known in

the form of the detectors’ parameters p and q. For now, we
assume the concept distribution P(NP ) to be known. This
assumption will be relaxed in Section 4.3. Precision and
recall without subscript always refer to the overall retrieval
performance.

The derivations are based on the assumption that the con-
cept detectors decide independently on each patch. Thus,
the probability ptrue(k) and the probability pf alse(k) are
binomially distributed. (N = total number of patches, NP =
number of positive patches per image.)

ptrue(k) =
(

NP

k

)
pk(1 − p)NP −k , (1)

pf alse(k) =
(

N − NP

k

)
(1 − q)kqN−NP −k . (2)

If a total of i positive patches is to be retrieved, both the true
positives and the false positives add up to the total number of
detected patches. Thus, the probability to retrieve i positive
patches, given that a particular image has in fact NP true
positive patches, is

P(Nretr = i|NP ) =
i∑

j=0

ptrue(i − j)pf alse(j). (3)

Similarly, if the interval U = [Ulow%, Uup%] of positive
patches is searched for, Eq. (3) has to be summed over this
interval to obtain the probability P(Nretr ∈ U |NP ).1

P(Nretr ∈ U |NP ) =
∑
i∈U

i∑
j=0

ptrue(i − j)pf alse(j). (4)

1Since N=100 in our experiments, the percentages Ulow% and Uup%
can be treated as integers in the summations. Otherwise, a normalizing
constant would be necessary.
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If Eq. (4) is weighted with the concept distribution P(NP ),
we obtain the probability to retrieve images (not patches!)
that satisfy the query U relative to the image database:

Pretr (U) =
N∑

NP =0

P(Nretr ∈ U |NP )P (NP ). (5)

Precision and recall depend on the probabilities for relevant
images Prelevant(U) andfor true-positive images Ptrue_pos(U).
In order to obtain Ptrue_pos(U), P(Nretr ∈ U |NP ) is only
weighted with the part of the concept distribution P(NP )

that lies inside the user interval U = [Ulow%, Uup%]:
Ptrue_pos(U) =

∑
NP ∈U

P (Nretr ∈ U |NP )P (NP ). (6)

The probability that images satisfy the user query depends
on the user interval U and the concept distribution:

Prelevant (U) =
∑

NP ∈U

P (NP ). (7)

Finally, Eqs. (5)–(7) lead to a closed-form expression for
the probability of precision and the probability of recall:

Pprecision(U) = Ptrue_pos(U)

Pretrieved(U)

=
∑

NP ∈UP (Nretr ∈ U |NP )P (NP )∑N
NP =0P(Nretr ∈ U |NP )P (NP )

, (8)

Precall(U) = Ptrue_pos(U)

Prelevant (U)

=
∑

NP ∈U P (Nretr ∈ U |NP )P (NP )∑
NP ∈U P (NP )

. (9)

Thus, with Eqs. (8) and (9), precision and recall of the re-
trieval can be predicted. The expressions for precision and
recall have been validated on a database of 1073 images.
The database images have been divided into a regular grid
of 10 × 10 image patches, and the patches have been man-
ually annotated with the concepts ‘sky’, ‘water’, ‘grass’,
‘buildings’, ‘face’, and ‘car’. All simulations in the following
are based on this ground truth. Depending on the selected
detector parameter p and q, the annotations are randomly
falsified. For the exemplary query [20%, 40%] of ‘sky’
(p = 0.9, q = 0.8), the prediction is 22.7% precision and
54.5% recall. Simulation of 133 rounds leads to an average
of 22.75% precision (�=0.65%) and an average of 54.52%
recall (�=1.8%) which are close to the predicted value. The
higher standard deviation of the recall is due to the smaller
amount of images in the estimation of Prelevant (U) than in
the estimation of Pretrieved(U) (compare Eqs. (8) and (9)).

4. Performance optimization in Stage II

In the following three sections, we will introduce sev-
eral methods for performance optimization in our two-

stage retrieval system. The general goal of the performance
optimization is to increase precision and recall of the image
retrieval. As will be shown, it is possible to optimize preci-
sion and recall separately as well as jointly depending on
the user’s request. In this section, we will only introduce
methods that concern Stage II of the retrieval system. In
Section 5, we discuss the optimization potential of the con-
cept detectors in Stage I. In Section 6, it will be shown that
a joint optimization of both stages is most beneficial. For
a schematic view of the retrieval system with performance
optimization see Fig. 2.

The derivation of performance optimization for Stage II
of the retrieval system requires the introduction of an inter-
nal parameter: the system interval S=[Slow%, Sup%]. Since
the detectors’ decisions are only correct with a certain prob-
ability, the retrieval performance will vary if the system is
queried internally with a query S = [Slow%, Sup%] that dif-
fers from the user interval U = [Ulow%, Uup%]. Intuitively,
if the probability is high that the detector makes a false posi-
tive decision, it is necessary/sensible to raise the lower limit
of the user interval Ulow to Slow =Ulow +X, X > 0. The fol-
lowing will formalize this intuition and determine a system
interval S �= U for internal use that optimizes the retrieval
performance.

First, Eqs. (4)–(9) have to be extended with the internal
parameter S. From now on, the probability Pretr to retrieve
images depends only on the system query S instead of the
user interval U because the actual retrieval of the images in
the database is governed only by S.

Pretr (S) =
N∑

NP =0

P(Nretr ∈ S|NP )P (NP ), (10)

where

P(Nretr ∈ S|NP ) =
∑
i∈S

i∑
j=0

ptrue(i − j)pf alse(j). (11)

The probability for true-positive images Ptrue_pos depends
on both S and U. The retrieval is performed according to
the system interval S, but is evaluated according to the user
interval U:

Ptrue_pos(U, S) =
∑

NP ∈U

P (Nretr ∈ S|NP )P (NP ). (12)

Eq. (7) remains valid because only the user interval U
decides whether an image is relevant for the retrieval. In
summary, the probabilities for retrieval precision and recall
become (compare Eqs. (8) and (9)):

Pprecision(U, S) =
∑

NP ∈U P (Nretr ∈ S|NP )P (NP )∑N
NP =0 P(Nretr ∈ S|NP )P (NP )

, (13)

Precall(U, S) =
∑

NP ∈U P (Nretr ∈ S|NP )P (NP )∑Uup

NP =Ulow
P (NP )

. (14)



ARTICLE IN PRESS
J. Vogel, B. Schiele / Pattern Recognition ( ) – 5

Stage I

Stage II

Input to Retrieval System

Concept Detector
(precision/recall)

User Interval
[Ulow%,Uup%]

Retrieval System

Retrieval Results

Image Analysis

Image Database

Image Retrieval

Set of concept
detectors

User Query

‘concept’
User Interval
[Ulow%,Uup%]

sky grass foil. build

Query Optimization

Interval
Optimization

Detector
Selection

System Interval
[Slow%,Sup%]

Search for
Image Content

Fig. 2. Two-stage retrieval system with query optimization.
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These two equations are a closed-form expression for re-
trieval precision and recall when a user interval is given and
the system is queried internally using S. In Section 4.1, an
algorithm is presented that maximizes Eqs. (13) and (14)
recursively and returns the optimal system interval S.

Fig. 3 illustrates the influence of the system interval S.
The tested query is “Find images with 10–30% ‘sky’ ”. The
five curves correspond to five different sets for p and q as
indicated in the legend of the figure. As before the manual
annotations were randomly falsified depending on p and q.
From left to right Slow and Sup are varied in the follow-
ing way: S = [Slow%, Sup%]∈{[18%, 22%], [14%, 26%],
[10%, 30%], [6%, 34%], [2%, 38%]} while the user inter-
val is U=[10%, 30%] in all cases. As expected, the precision
is very high when the system interval is narrow whereas the
recall is low. By increasing the width of the system interval,
the recall can be increased at the cost of the precision. The

decrease of the precision is much faster for smaller values of
p and q. This behavior is due to the fact that the user interval
covers only about 20% of the image. Thus, the probability for
the detection of false positives is much higher than the prob-
ability for the detection of false negatives. As a result, many
of the retrieved images are not relevant and the precision
drops.

4.1. Optimization algorithm

Eqs. (13) and (14) are closed-form expressions for preci-
sion and recall depending on the user interval and the system
interval. This implies that the equations can be evaluated
prior to retrieval making it possible to optimize the expected
performance prior to retrieval. Because the equations do not
allow us to find a closed-form expression for the system in-
terval S = [Slow%, Sup%] as a function of user interval and
desired performance, we use a recursive algorithm for ob-
taining the system interval that optimizes the retrieval per-
formance. The algorithm allows to choose an optimization
constraint: maximum recall, maximum precision, or joint
maximization of precision and recall. It is also possible to
indicate a minimum value for precision and recall.

The algorithm proceeds in two steps. In the first step, a
set of system intervals is generated that are most probably
of interest to the user. Starting from the user interval U =
[Ulow%, Uup%], precision and recall of that point and its
four neighbors [Ulow% ± 1%, Uup% ± 1%] are calculated
and stored in a hash table. Recursively, those of the four
neighbors that improve the current performance are used as a
starting point and the hash table is updated. Fig. 4 depicts the
complete search space, that is the precision-recall pairs for
all possible system intervals, for the query U =[20%, 40%]
of ‘sky’ and the detector parameters p = 0.9 and q = 0.8.
Each point in the graph corresponds to a different set of
system queries S=[Slow%, Sup%]. Note that two points that
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Fig. 4. Predicted search space for [20%, 40%] of ‘sky’, p = 0.9, q = 0.8.

are close to each other in the plot do not necessarily have
similar system queries.

In the second step, the algorithm selects the point in
the search space that meets the users’ constraints. The two
gray lines in Fig. 4 identify the desired minimum perfor-
mance of 50%. The predicted performance of the user in-
terval is marked by a black circle while the possible solu-
tions are marked by gray circles. From left to right these
are: “Maximum Precision”, “Joint Optimization (of Preci-
sion and Recall)” and “Maximum Recall”.

4.2. Results: Stage II performance optimization

Fig. 5 shows the retrieval results corresponding to the
query [20%, 40%] of ‘sky’ (p = 0.9, q = 0.8). The user se-
lected the joint optimization of precision and recall. Note
the difference to most other retrieval systems. Since here
the concept ‘sky’ is searched for, the retrieved images are
very diverse but perfectly satisfy the user query. Only the
first 12 retrieved images are displayed. On top of the display
some statistics are summarized: the precision was predicted
to increase from 22.7% to 80.9%. The actual retrieval re-
sulted in a precision of 80.2%. The recall was predicted to
increase from 54.5% to 80.8%. In the actual retrieval, the re-
call reached 83.2%. Thus, for this particular query, the preci-
sion could be improved by 58% and the recall by 25%. The
bars visualize the relationship between non-relevant (dark
gray), relevant (medium gray, left of the non-relevants) and
retrieved (light gray) images. The length of the bars corre-
spond to the amount of images.

Fig. 6 visualizes some optimization results for the
optimization constraint “maximize recall with precision
> 50%” for the queries [10%, 30%] ‘grass’ (p = q = 0.9),
[30%, 50%] ‘grass’ (p = q = 0.8), and [10%, 30%] ‘build-
ings’ (p = q = 0.9). The retrieval using the user interval
is marked in black whereas optimized retrieval is marked
in gray with the arrows pointing from the non-optimized

to the optimized case. The optimized system intervals are
S = [17%, 58%] for query 1, S = [37%, 56%] for query 2
and S = [15%, 42%] for query 3. They are clearly different
from the user intervals. Fig. 6 shows that the optimization
constraints have been met. The precision increased signifi-
cantly at all three queries.

In summary, the experiments of the Stage II performance
optimization have two main results. First, depending on the
user query, a gain of up to 60% in precision and up to 25%
in recall can be reached. These results are obtained by prob-
abilistic analysis and the resetting of an internal parameter,
the system interval. The performance gain did not require
the use of better classifiers. Second, the experiments show
that the predicted value of the performance is closely met
by the true retrieval performance.

4.3. Approximate performance optimization

Up to now, the assumption was that the concept distri-
bution P(NP ) is known. Thus, the results of the previous
sections were obtained with the complete knowledge about
the concept distribution used in Eqs. (13) and (14). Fig. 7a
shows the concept distribution P(NP ) of the concept ‘sky’.
However, it is not realistic to have the entire distribution at
hand. So the dependency of the performance prediction and
the performance optimization was tested using two approx-
imate distributions. In the first test, the actual distribution
of the concepts was completely neglected. Instead, it was
assumed that the number of patches per image containing
the particular concept, that is the positive patches, are uni-
formly distributed: Punif orm(NP )= 1/(N + 1) , where N is
the maximum number of positive patches. The distribution
is depicted in Fig. 7b.

In the second test, it was assumed that the a priori prob-
ability is available if a particular concept is present in an
image or not. That leads to a two-class frequency distribu-
tion. Class A is the number of images that do not contain the



ARTICLE IN PRESS
J. Vogel, B. Schiele / Pattern Recognition ( ) – 7

Fig. 5. Retrieval results for [20%, 40%] of ‘sky’, p = 0.9, q = 0.8.
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concept at all. Class B is the number of images that do con-
tain one or more patches of the desired concept. The uniform
distribution of the previous paragraph has been weighted
with the two-class distribution. That is, Ptwo_class(0) con-
tains the information of class A and the information of
class B has been divided equally to Ptwo_class(NP ), with
NP = 1, . . . , 100 (see Fig. 7c).

Both precision and recall are functions of the desired
concept, of the detectors’ performance specified by p
and q and of the user interval U = [Ulow%, Uup%]. In
the experiments, the parameters were varied as follows:
concept ∈ {‘grass’, ‘sky’, ‘buildings’, ‘water’}, p = q ∈
{0.95, 0.90, 0.85, 0.80, 0.75, 0.70}, U∈{[10%, 30%], [20%,

40%], [30%, 50%], [40%, 60%], [50%, 90%]}. Table 1
shows the results of some exemplary queries. The perfor-
mance optimization based on the two approximate distribu-
tions is compared to the benchmark optimization results that
have been generated with the complete distribution. The goal
is to jointly maximize precision and recall. Table 1 shows
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Table 1
Uniform/two-class vs. complete distribution: joint optimization of precision and recall

User interval Employed distribution System interval (%) Prediction Retrieval mean

Precision (%) Recall (%) Precision (%) Recall (%)

‘Sky’ Complete [18%, 35%] 85.4 88.9 85.2 88.9
[10%, 30%] Uniform [18%, 34%] 85.5 86.4 86.9 86.3
p = q = 0.90 Two-class [18%, 34%] 82.8 86.4 86.7 86.6

‘Water’ Complete [29%, 44%] 78.6 80.8 78.7 81.2
[20%, 40%] Uniform [28%, 43%] 77.8 84.6 76.6 83.6
p = q = 0.85 Two-class [29%, 43%] 79.6 81.7 79.8 79.1

‘Sky’ Complete [31%, 47%] 62.9 74.6 62.9 74.6
[10%, 30%] Uniform [28%, 43%] 64.0 81.0 53.6 81.3
p = q = 0.75 Two-class [31%, 46%] 49.4 71.9 64.1 71.8

‘Grass’ Complete [41%, 53%] 50.0 67.1 51.2 67.4
[30%, 50%] Uniform [39%, 51%] 62.8 77.7 38.4 73.4
p = q = 0.75 Two-class [40%, 51%] 63.1 73.7 45.1 66.9

that the system intervals are always close to the reference re-
sult based on the full distribution. That is Slow and Sup differ
by only 1% or 2% from the reference. Accordingly, the re-
sults of the actual retrieval are similarly close to the reference
retrieval. The performance prediction based on the approxi-
mate distributions differs from the actual retrieval, especially
when the detectors’ performance specifiers p and q are small.
The prediction of the precision is more sensitive to approxi-
mations in the concept distribution than the prediction of the
recall. Partly, the difference between prediction and actual
retrieval exceeds 20%. Although the performance prediction
based on the approximate distribution is not always correct,
the results of the actual retrieval are close to the reference
results. The reason is that the optimized system intervals are
very close to the reference. The correctly estimated system
intervals thus lead to a certain robustness with respect to the
prediction. Over all 120 experiments, the optimized system
interval, and thus the actual retrieval, are slightly better for
the two-class distribution than for the uniform distribution.

It can be concluded that the optimized system intervals
are so close to the benchmark that the actual retrieval re-
sults nearly reach the reference values. This is the case even
though the performance prediction based on the approxi-

mate concept distributions is worse than in the reference
cases. Also, often the difference between the reference val-
ues and the retrieval based on the approximate distributions
is smaller than the standard deviation of the retrieval. In the
case that the true distribution is sparse, the two-class distri-
bution produces better system intervals. The outcome of ex-
periments for other user constraints, such as the maximiza-
tion of only the recall, is comparable.

5. Performance optimization in Stage I

The performance optimization can be extended to Stage I
of the retrieval system. Since this corresponds to the concept
detectors, the first part of this section covers the training of
the concept detectors and the second part the optimization
depending on these detectors. It is desirable to have multiple
detectors per concept with varying detector performance.
Having several detectors per concept, during performance
optimization the optimal one of this set can be selected. For
training concept detectors with varying performance charac-
teristics, we use AutoClass [24], an unsupervised Bayesian
classification system that includes the search for the optimal
number of classes.
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5.1. Training of the concept detectors

The training of the concept detectors is performed off-
line. For this purpose, 4000 patches hand-labeled with ‘sky’,
‘water’, ‘grass’ and ‘buildings’ are used. Therefore, the
classes can be very diverse. For example, a ‘sky’-patch
might comprise cloudy, rainy or sunny sky regions as well
as sky regions during sunset. The patches are represented
by 43-bin RGB-color histograms (col64), 43-bin histograms
of third-order MR-SAR texture features (tex64) [25] and
(2 × 43)-bin histograms (coltex128) that are combined of
the 43-bin RGB-color histogram and the 43-bin texture
histograms.

Depending on the feature set, AutoClass finds between
100 and 130 clusters in the data. In a supervised manner
it can be determined which of the concept classes are rep-
resented by which cluster. Each cluster contains multiple
classes resulting in different class probabilities for each clus-
ter. Depending on the feature set, the highest class proba-
bility in each cluster ranges from 0.25 to 1. The availability
of the class probabilities for each cluster provides us with
three methods to obtain multiple classifiers. Firstly, in or-
der to improve the precision of the concept detectors, only
clusters with a class probability higher than a certain thresh-
old are accepted. Obviously, this leads to a loss in recall.
However, precision and recall of the concept detectors can
thus be precisely controlled. Secondly, the classification us-
ing one feature set often performs much better for one class
than for another. Thus, it is advantageous to use several fea-
ture sets. Thirdly, the classifications of two feature sets can
be combined by means of the cluster precision: all cases are
classified twice and the vote of the cluster with the higher
precision counts.

The performance of various ‘sky’- and ‘grass’-detectors
for different feature sets and feature combinations is shown
in Fig. 8. As expected, the feature sets and combinations per-
form differently for different classes. For the ‘sky’-detector,
the color feature is not discriminant which lies in the fact,
that the ‘sky’ class is very diverse in color. For the ‘grass’-
detector, the texture feature fails. This indicates that the
employed texture feature catches primarily the structure on
small scale and not the larger scale structure that exists in
grass patches. The combination of two classifications as de-
scribed above leads to an improvement in performance. In
summary, the “tex64 + coltex128”-detector performs best
for ‘sky’-patches, whereas ‘grass’-patches are detected best
with the “col64 + coltex128”-detector.

5.2. Results: Stage I performance optimization

Using the envelopes of the curves in Fig. 8, 13 discrete
{Precisiondet , Recalldet } pairs that correspond to differ-
ent concept detectors can be obtained. In order to iden-
tify the optimal concept detector for a given user query,
Eqs. (8) and (9) are evaluated for each of these detector
{Precisiondet , Recalldet } pairs.
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Fig. 8. Precisiondet vs. Recalldet of various detectors. (a) Various ‘sky’
detectors; (b) various ‘grass’ detectors.
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Fig. 9. Retrieval optimization in Stage I: predicted retrieval precision and
recall with various ‘grass’-detectors.

In Fig. 9 and in Table 2 (middle column), the result of the
Stage I performance optimization is summarized. The dia-
gram shows the influence of the detectors on the retrieval
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Table 2
Best concept detectors for various ‘grass’ queries after optimization in
Stage I (middle column) and joint interleaved optimization (right column)

Query ‘grass’ Optimization Joint interleaved
only in Stage I optimization

Precisiondet Recalldet Precisiondet Recalldet

(%) (%) (%) (%)

[10%, 30%] 94 72 98 61
[20%, 40%] 94 72 94 72
[40%, 60%] 88 85 94 72
[50%, 90%] 88 83 85 89

performance of a set of ‘grass’ queries. Fig. 9 shows the
predicted overall retrieval performance for each of the four
queries and for each of the 13 ‘grass’-detectors. The points
that belong to the same query but different detectors form an
ellipsoidal curve. Points in the lower left-hand corner cor-
respond to the detector with the highest precision, whereas
the points in the lower right-hand corner correspond to de-
tectors with low recall. The circles mark the best overall
retrieval performance for each query. The corresponding de-
tectors’ performances are listed in the middle column of
Table 2. Note that the best detector is different for each
query: for example, the query [10%, 30%] ‘grass’will be ex-
ecuted best with the {Precisiondet =94%, Recalldet =72%}-
‘grass’-detector and the query [50%, 90%] ‘grass’ with the
{Precisiondet =88%, Recalldet =83%}-‘grass’-detector. This
supports our intuition that the retrieval performance can
be improved by providing multiple detectors for the same
concept.

6. Joint two-stage performance optimization

There are two methods to combine the optimization stages
in the two-stage retrieval system:

• Serial combination determine the best concept detector in
Stage I as done in the middle column of Table 2. With the
performance characteristics of that detector carry out the
Stage II optimization in order to find the optimum system
interval.

• Interleaved combination carry out the Stage II optimiza-
tion for all detectors that are available for the requested
concept in Stage I. Depending on the results, select the
optimum system interval S and the optimum concept de-
tector for the retrieval.

Fig. 10 corresponds to Fig. 9 after the second-stage perfor-
mance optimization was carried out. The exemplary queries
are the same as in Section 5.2. The optimization constraint
is “joint optimization of precision and recall”. The retrieval
performance in Fig. 10 has improved substantially compared
to Fig. 9. The circles mark the best overall retrieval perfor-
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Fig. 10. Joint retrieval optimization in Stages I and II: predicted retrieval
precision and recall with various ‘grass’-detectors.

Table 3
Comparison of serial vs. interleaved combination of optimization stages

Query ‘grass’ Serial combination Interleaved combination

Precision Recall Precision Recall
(%) (%) (%) (%)

[10%, 30%] 86 90 88 91
[20%, 40%] 77 79 77 79
[40%, 60%] 70 85 71 85
[50%, 90%] 85 87 89 89

mance for each query. The concept detectors corresponding
to these best retrieval performances are listed in the right col-
umn of Table 2. These results correspond to an interleaved
combination of the optimization stages.

For the serial combination of the optimization stages,
the detectors of Table 2 (middle column) are used and the
Stage II optimization is carried out. The first observation is
that for most queries the detector in the middle column of
Table 2 is not the same detector as in the right column. Thus,
the performance of the overall retrieval will also differ. The
overall retrieval performance for serial and for interleaved
combination is analyzed in Table 3. As anticipated, the table
shows that in all cases the interleaved combination of the
optimization stages results in a better retrieval performance
of 1–4% increase in precision and 1–3% increase in recall.
Obviously, the interleaved combination is computationally
more demanding than the serial combination because in the
interleaved combination, the optimization algorithm in Stage
II has to be evaluated for each detector present for a partic-
ular concept. In the case that the application is time critical,
it might thus be advantageous to decide for the serial com-
bination despite the lower performance gain.
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7. Performance optimization by query mapping

Up to now, the user interval was mapped to an internal
system interval in order to compensate for the wrong deci-
sions of the concept detectors depending on the user inter-
val, the detectors’ parameters, and the concept distribution.
However, the concept distribution is usually not fully avail-
able. Therefore, it needs to be estimated or approximated as
shown in Section 4.3. Another approach is to only compen-
sate for the probabilistic errors of the concept detectors.

Generally, the decision of a concept detector on a partic-
ular patch is only correct with the probabilities p and q. For
that reason, the decision on the complete image is also in-
fluenced by those two parameters. The influence of p on the
decision per image is larger when the user is looking for im-
ages covered with the concept by more than 50% and vice
versa. In Section 3.2, the behavior of the concept detectors
was modeled binomially.

The expected value of a binomially-distributed random
variable with parameters n and p is E(Xn) = pn. Con-
sequently, the expected values for retrieving true-positive
patches (Eq. (1)) and for retrieving false-positive patches
(Eq. (2)) are

E{Xtrue,retrieved} = pNP , (15)

E{Xf alse,retrieved} = (1 − q)(N − NP ) (16)

and the expected amount of positive patches that are re-
trieved out of NP indeed positive ones is

E{Xretrieved |Np} = pNP + (1 − q)(N − NP ). (17)

We can use Eq. (17) to obtain a mapping from a user interval
U=[Ulow%, Uup%] to a system interval S=[Slow%, Sup%].
Assuming that there are NP = Ulow% of a concept in an
image, Eq. (17) returns the percentage of image area that
is expected to be retrieved if the detector performs with
the parameters p and q. This expected value can be used
as new lower limit for the system interval Slow because it
compensates for the errors of the concept detector. The new
Slow takes into account that, on average and independent of
the concept distribution, the detectors make wrong decisions.
The reasoning for Sup is analogous.

Slow = pUlow + (1 − q)(N − Ulow), (18)

Sup = pUup + (1 − q)(N − Uup). (19)

Implicitly, Eqs. (18) and (19) are based on the assumption
that the concepts are uniformly distributed. Nonetheless,
even with this strong assumption, the performance gain is
immense (see Fig. 11). For the exemplary query [10%, 30%]
‘sky’ and p = q = 0.90, the mapped system interval is
S = [18%, 34%] and on average the precision is increased
from 41% to 87% and the recall from 77% to 87%. The
“optimal” system interval is S = [18%, 35%] and the one
obtained with the uniform distribution is S = [18%, 34%].
This shows that the system queries are very similar. It also
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demonstrates the above mentioned assumption. In Fig. 11,
the retrieval results of the optimization by query mapping
and by using the full concept distribution as a reference are
plotted.

The query [20%, 40%] ‘water’ and p=q =0.85 leads to a
mapped system interval S = [29%, 43%] and to an average
increase in precision from 27% to 80%. With the complete
distribution the optimized query is S = [29%, 44%] and
with the uniform distribution S = [28%, 43%]. The recall
decreases in this case on average from 86% to 78%. This
example demonstrates the limitations of the query-mapping
approach. With the mapping of the user interval to a system
interval, precision and recall can be maximized only jointly.
This can also lead to a decrease of one of the values. With
the algorithms that were presented in Sections 4.1 and 4.3,
precision and recall can also be optimized separately which
is in many situations more desirable.

8. Discussion and conclusion

In this paper, we introduced a two-stage image retrieval
system that allows us to predict as well as to optimize the
retrieval performance. In particular, we developed closed-
form equations for retrieval precision and retrieval recall
that are based on a statistical model of the retrieval process.
With the closed-form expressions for precision and recall,
the performance of the system can be predicted as well as
optimized by adapting an internal parameter according to a
set of optimization constraints.

The four prediction and optimization methods are com-
pared in Table 4. The best results for both performance pre-
diction and optimization are achieved if the complete con-
cept distribution is available. In that case, the performance
can be optimized for maximum precision as well as for
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Table 4
Comparison of the methods for performance prediction and optimization

Optimization precision and recall Optimization recall

Estimated system interval Prediction Estimated system interval Prediction

Complete distribution ++ ++ ++ ++
Two-class distribution + Precision: − + Precision: −

Recall: + Recall: +
Uniform distribution + Precision: − ∅ Precision: −

Recall: + Recall: +
Query mapping + NA NA NA

maximum recall and for joint maximization of precision and
recall. The predicted performance is always close to the ac-
tual one and the determined system interval is indeed opti-
mal. Note that the system interval is the performance mea-
sure for the quality of the optimization. Since the complete
concept distribution may not be available, the two-class and
the uniform distribution have been evaluated for the per-
formance prediction and optimization. Here, again the opti-
mization is possible for all goals: maximum precision, maxi-
mum recall, or joint maximization of precision and recall. In
nearly all cases the optimized system intervals are so close
to the benchmark that the actual retrieval results are similar
to the reference values. The performance prediction, how-
ever, is not as good as before, because, in particular, the pre-
cision prediction degrades. The prediction is slightly more
reliable for the two-class distribution than for the uniform
distribution since more information is available. In the fourth
method, the system interval is obtained through a mapping
that depends solely on the detectors’ performance values.
For that reason, a performance prediction is not possible,
hindering for example the optimization for maximum recall.
Even though absolutely no information about the concept
distribution is used, the optimized system interval for joint
optimization of precision and recall is as good as with the
uniform distribution.

Being able to predict the retrieval performance opens
up the possibility of combining our system with other re-
trieval systems. In particular, the vocabulary-based retrieval
is suited as a pre-filtering system to reduce the retrieval
search space. For these kinds of applications, a high recall is
desirable. The proposed performance optimization method
in combination with the “maximum recall”-optimization
constraint ensures high recall even for a required minimum
precision.
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