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Abstract. We address the problem of robust multi-target tracking within
the application of hockey player tracking. The particle filter technique is
adopted and modified to fit into the multi-target tracking framework. A
rectification technique is employed to find the correspondence between
the video frame coordinates and the standard hockey rink coordinates
so that the system can compensate for camera motion and improve the
dynamics of the players. A global nearest neighbor data association algo-
rithm is introduced to assign boosting detections to the existing tracks
for the proposal distribution in particle filters. The mean-shift algorithm
is embedded into the particle filter framework to stabilize the trajectories
of the targets for robust tracking during mutual occlusion. Experimen-
tal results show that our system is able to automatically and robustly
track a variable number of targets and correctly maintain their identities
regardless of background clutter, camera motion and frequent mutual
occlusion between targets.

1 Introduction

Tracking multiple targets, although has its root in control theory, has been of
broad interest in many computer vision applications for decades as well. A visual-
based multi-target tracking system should be able to track a variable number
of objects in a dynamic scene and maintain the correct identities of the tar-
gets regardless of occlusions and any other visual perturbations. As it is a very
complicated and challenging problem, extensive research work has been done.
In this work, we address the problem of robust multi-target tracking within the
application of hockey player tracking.

Particle filtering was first introduced to visual tracking by Isard and Blake
in [1]. Pérez et al. [2, 3] extended the particle filter framework to track multiple
targets. Okuma et al. [4] further extended it [3] by incorporating a boosting de-
tector [5] into the particle filter for automatic initialization of a variable number
of targets. However, as their system did not have explicit mechanisms to model
mutual occlusions between targets, it loses the identities of the targets after oc-
clusions. On the other hand , various approaches have been taken to solve the
occlusion problem in tracking. Kang et al. [6] tried to resolve the ambiguity of
the locations of the targets by registering video frames from multiple cameras.
Zhao et al. [7] also rectified video frames to the predefined ground plane and
model the targets in the 3D space with a body shape model. A static camera



was used and background subtraction was applied as well in their work. Explicit
target shape modelling can help resolving the likelihood modelling and data as-
sociation problems during occlusions. The approach is often used within static
scenes [8–10]. However, in our application, camera motion makes it difficult to
separate target motion or perform background subtraction. Players with drastic
pose changes are difficult to be captured by any explicit shape models.

In order to build a tracking system that can correctly track multiple targets
regardless of camera motion and mutual occlusion, we propose four improve-
ments on the previous systems. Firstly, a rectification technique is employed to
compensate for camera motions. Secondly, a second order autoregression model
is adopted as the dynamics model. Thirdly, a global nearest neighbor data as-
sociation technique is used to correctly associate boosting detections with the
existing tracks. Finally, the mean-shift algorithm is embedded into the particle
filter framework to stabilize the trajectories of the targets for reliable motion
prediction. Although similar work [11] has been done on combining mean-shift
with particle filtering, our work is the first one that describes in detail the the-
oretical formulation of embedding mean-shift seamlessly into the particle filter
framework for multi-target tracking. Consequently, although our system per-
forms comparably to the system in [4], it significantly improves upon that system
when occlusions happen, which is the main focus of this work.

2 Filtering

Particle filtering has been a successful numerical approximation technique for
Bayesian sequential estimation with non-linear, non-Gaussian models. In our
application, the fast motion of hockey players and the color model we adopt
[12, 13] is highly non-linear and non-Gaussian. Therefore, particle filtering is the
ideal model to be the basic skeleton of our tracking system.

The basic Bayesian filtering is a recursive process in which each iteration
consists of a prediction step and a filtering step.

prediction step: p(xt|y0:t−1) =
∫

p(xt|xt−1)p(xt−1|y0:t−1)dxt−1

filtering step: p(xt|y0:t) = p(yt|xt)p(xt|y0:t−1)∫
p(yt|xt)p(xt|y0:t−1)dxt

(1)

where the process is initialized by the prior distribution p(x0|y0) = p(x0),
p(xt|xt−1) is the target dynamics model, and p(yt|xt) is the likelihood model.
Particle filtering uses a set of weighted samples {x(i)

t , w
(i)
t }Ns

i=1 to approximate the
posterior distribution in the filtering. The sample set is propagated by sampling
from a designed proposal distribution q(xt|xt−1, y0:t), which is called importance
sampling. The importance weights of the particles are updated in each iteration
as follows

w
(i)
t ∝p(yt|x(i)

t )p(x(i)
t |x(i)

t−1)

q(x(i)
t |x(i)

t−1, y0:t)
w

(i)
t−1,

Ns∑

i=1

w
(i)
t = 1. (2)

Resampling of the particles is necessary from time to time in each iteration to
avoid degeneracy of the importance weights.



One of the critical issues in keeping particle filtering effective is the design of
the proposal distribution. The proposal distribution should be able to shift the
particles to the regions with high likelihood if there is a big gap between the mode
of the prior distribution and the mode of likelihood distribution. The boosted
particle filter (BPF) [4] used a mixture of Gaussians model that combines both
the dynamics prior and the Adaboost detections [5]

q∗B(xt|xt−1, y0:t) = αqada(xt|yt) + (1− α)p(xt|xt−1), (3)

where α is the parameter that is dynamically updated according to the overlap
between the Gaussian distribution of boosting detection and the dynamics prior.
The issue of data association arises here. Details about how to correctly assign
boosting detections to the existing tracks will be discussed later. In addition, the
original BPF work by Okuma et al. [4] is based on the mixture of particle filter
structure (MPF) [3], which has a fixed number of particles for all the targets.
As a result, new targets have to steal particles from existing tracks and reduce
the accuracy of the approximation. The merge and split of particle clouds in the
MPF structure also cause the loss of the correct identities of the targets during
occlusions. Therefore, we adopt the boosted particle filter as the basic filtering
framework in our application. However, instead of using the MPF structure,
we use an independent particle set for each target to avoid the two inherent
disadvantages of MPF.

3 Target Dynamics Modelling

In visual tracking systems, accurate modelling of the target dynamics can im-
prove the prediction of the locations of the targets while visual support is insuffi-
cient due to occlusion. However, because of the camera motion in our application,
the image coordinate system changes over time with respect to the hockey rink
coordinates. Therefore, target motion modelling and prediction in the image
coordinates are difficult. We adopt the approach by Okuma et al. [14] to map
the locations of the targets from the image coordinates to the standard hockey
rink coordinate system which is consistent over time. Therefore, according to
the physical law of inertia, the motions of the players in hockey games are better
predicted with a constant velocity autoregressive model.

3.1 Rectification

Homography is defined by Hartley and Zisserman in [15] as an invertible mapping
h between two planes. Images recorded by cameras are 2D projections of the real
world. For any plane in the world, its images from a camera, which can pan, tilt,
zoom or even move, are exactly modelled by a homography as long as there is no
noticeable lens distortion. As the hockey players are always moving in the plane
formed by the hockey rink, their locations on the rink are in the same plane both
in the real world and the image space. Therefore, it is possible to project their
locations between the two planes.



Fig. 1. This shows a projected video frame blended with the standard hockey rink.

The work by Okuma et al. [14] is able to automatically compute the homog-
raphy between video frames and the hockey rink. Figure 1 shows how the video
frames are mapped to the standard rink with the homography. With this homog-
raphy, the hidden states of the targets are represented in the rink coordinates
and particle filtering is performed in the rink coordinates as well. Hidden states
will be mapped to the image coordinates when evaluating the likelihood of the
observation.

3.2 Autoregressive Dynamics Model

An autoregressive process is a time series modelling strategy which takes into
account the historical data to predict the current state value. In this model,
the current state xt only depends on the previous states with a deterministic
mapping function and a stochastic disturbance.

As the particle filtering process is performed in the standard rink coordinates,
the motions of the players on the rink are separated from the camera motion.
Thus, the modelling is much easier. In hockey games, because of the effect of
inertia, a constant velocity model is suitable to model the motion of the players.
It is best described by the following second order autoregressive model

xt = Axt−1 + Bxt−2 + CN (0, Σ) (4)

where {A,B, C} are the autoregression coefficients, N (0, Σ) is a Gaussian noise
with zero mean and standard deviation of 1.

4 Data Association

In a standard Bayesian filtering framework, data association is performed to
pair the observations and tracks for the evaluation of the likelihood function
p(ym

t |xn
t ). With proper estimation of segmentation and shape of the targets [10],

the observation can be assigned to tracks in a globally optimal way. However,



as we do not have an explicit shape model for the targets, the particle filter
framework in our application handles this level of data association locally in
an implicit way. Because the boosting detections are used to improve the pro-
posal distribution in particle filters as in shown in Equation 3, we perform data
association at this level to assign boosting detections to the existing tracks.

4.1 Linear Optimization

The assignment problem can be best represented by an assignment matrix shown
in Table 1. Each entry in the table is the cost or gain of pairing the corresponding
track and observation. In our application, the values of all the entries in the
assignment matrix are defined to be the distance between the observations and
the tracks in the rink coordinates. Assignments that are forbidden by gating are
denoted by × in the corresponding entries. Observations that are forbidden by
the gating to be associated to any track are considered as a new track in our
application.

Table 1. Example of the assignment matrix for the assignment problem.

Observations
Tracks O1 O2 O3 O4

T1 a11 a12 × ×
T2 a21 × × a24

T3 a31 × × a34

Such assignment problems stem from economic theory and auction theory as
well. The objective is to minimize the cost or maximize the gain subject to a set
of constraints. Given the assignment matrix shown in Table 1, the objective is to
find a set X = {xij}, which are binary indicators, that maximizes or minimizes
the objective function C =

∑n
i=1

∑m
j=1 aijxij subject to some linear constrains.

Linear programming was initially used to solve this problem. Later on, it was
found that the auction algorithm [16] is the most efficient method so far to reach
the optimal solution or sub-optimal one without any practical difference.

The extended auction algorithm [17] is able to solve the rectangular matrix
problems with the constraint that one observation can only be assigned to one
target while a target can have at least one observations. However, in our ap-
plication, it is very likely that some tracks do not have any observation due to
the mis-detection of the boosting detector. Therefore, even if there are some
observations within the gate of that track, it is still possible that none of the
observations belongs to the track. Hence, the constraints are formalized as

∑n
i=1 xij = 1,∀j∑m
j=1 xij ≥ 0,∀i (5)

and the solution is

xi′j =
{

1 if i′ = argi min aij

0 otherwise ∀j (6)



5 Mean-Shift Embedded Particle Filter

The motivation of embedding the mean-shift algorithm into the particle filter
framework of our tracking system is to stabilize the tracking result. It is im-
portant for the dynamics model because stabilizing trajectories improves the
accuracy of the computed velocity of targets, which is critical for improving the
prediction of the location of the targets. It is also important for the likelihood
model because accurate prediction leads sampling to more promising areas so
that the influence from background clutter and mutual occlusion will be reduced.

5.1 Color Model

We adopted the color model in [13, 4] in our application because it is success-
ful in tracking non-rigid objects with partial occlusion. The model is originally
introduced by Comaniciu et al. [18] for the mean-shift based object tracking.
The observation of the target is represented by an N -bin color histogram ex-
tracted from the region R(xt) centered at the location xt. It is denoted as
Q(xt) = {q(n;xt)}n=1,...,N , where

q(n;xt) = C
∑

k∈R(xt)
δ[b(k)− n] (7)

where δ is the Kronecker delta function, C is a normalization constant, k is
any pixel within the region R(xt). By normalizing the color histogram, Q(xt)
becomes a discrete probabilistic distribution.

The similarity between the current observation Q(xt) and the reference model
Q∗, which is constructed at the initialization step, is evaluated based on the
Bhattacharyya coefficient

d(xt,x0) =
√

1− ρ[Q(xt), Q∗], ρ[Q(xt), Q∗] =
N∑

n=1

√
q(n;xt)q∗(n;x0) (8)

In order to encode the spatial information of the observation, a multi-part
color model [13, 4] is employed, which splits the targets vertically into two parts.
The color histogram of the two parts are constructed separately and concate-
nated in parallel as a new histogram. The likelihood is then evaluated as

p(yt|xt) ∝ e−λd2(xt,x0) (9)

5.2 Mean-Shift

Mean-shift is a nonparametric statistical method that seeks the mode of a density
distribution in an iterative procedure. It was first generalized and analyzed by
Cheng in [19] and later developed by Comaniciu et al. in [20]. The objective of
the mean-shift algorithm is to iteratively shift the current location x to a new
location x′ according to the following relation

x′ =

∑M
i=1 aiw(ai)k

(∥∥ai−x
h

∥∥2
)

∑M
i=1 w(ai)k

(∥∥ai−x
h

∥∥2
) (10)



where {ai}M
i=1 are normalized points within the region R(x) around the current

location x, w(ai) is the weight associated to each pixel ai, and k(x) is a kernel
profile of kernel K that can be written in terms of a profile function k : [0,∞) →
R such that K(x) = k(‖x‖2). According to [19], the kernel profile k(x) should
be nonnegative, nonincreasing, piecewise continuous, and

∫∞
0

k(r)dr < ∞.
The theory guarantees that the mean-shift offset at location x is in the op-

posite direction of the gradient direction of the convolution surface

C(x) =
M∑

i=1

G(ai − x)w(ai) (11)

where kernel G is called the shadow of kernel K and profile k(x) is proportional
to the derivative of profile g(x)

In order to utilize mean-shift to analyze a discrete density distribution, i.e.,
the color histogram, an isotropic kernel G with a convex and monotonically
decreasing kernel profile g(x) is superimposed onto the candidate region R(xt)
to construct such a convolution surface. Therefore, the new color model can be
rewritten as

q(n;xt) = Ch

Mh∑

i=1

g

(∥∥∥∥
ai − xt

h

∥∥∥∥
2
)

δ[b(ai)− n] (12)

where Ch is also a normalization constant that depends on h, and h is the
bandwidth that determines the scale of the target candidate. It should be noted
that in our application, scale of the targets is separated from the state space
of the targets and smoothly updated, on per particle basis, using the adaptive
scaling strategy in [12]. The weight in the mean-shift update for the color feature
is shown below.

w(ai) =
N∑

n=1

√
q∗(n;x0)
q(n;x)

δ[b(ai)− n]. (13)

The Epanechnikov profile [12] is chosen to be the kernel profile of kernel G
in our application. Because it is linear, the kernel K becomes a constant and the
kernel term in Equation 13 can be omitted.

5.3 Mean-Shift Embedded Particle Filter

Applying the mean-shift algorithm directly to the tracking output only gives one
deterministic offset at each step. It might not be able to capture the true location
of the targets due to background clutter or mutual occlusion between targets in
the image. Embedding it into the particle filter framework brings uncertainty
to the deterministic method so that the statistical property can improve the
robustness of the algorithm. In our application, the mean-shift operation biases
all the particles right after the sampling from the mixture of Gaussians proposal
distribution and before the resampling step in the particle filter framework.
Although similar work [11] has been done for tracking, it was only for single



target and the proper way of updating the particle weights after the mean-shift
bias was not addressed clearly.

However, embedding the mean-shift algorithm seamlessly into the particle fil-
ter framework without introducing bias is non-trivial. Directly biasing sampled
particles from the old proposal distribution will change the overall posterior
distribution. This makes updating the weight of the particles without bias ex-
tremely difficult. Although the mean-shift bias is a deterministic mapping so
that it can be seen as a change of variable, it is not applicable in practice. On
one hand, because the mean-shift bias is a multiple to one mapping, it is not
invertible. On the other hand, because it is difficult to write the mean-shift bias
in an analytical expression for differentiation even in a piecewise manner, it is
difficult to compute the Jacobian matrix in the variable change.

We take an alternative approach in our application. Mean-shift biases the
samples {x̂(i)

t }i=1,...,N that are propagated by the old proposal distribution to
a new particle set {x̃(i)

t }i=1,...,N . We denote mean-shift searching with function
ϕ(·) such that x̃t = ϕ(x̂t). Finally, a Gaussian distribution is superimposed on
the biased particles to sample new particles. Therefore, the mean-shift bias with a
superimposed Gaussian distribution combined with the old proposal distribution
can be considered as a new proposal distribution q̆(xt|xt−1,yt). For the new
proposal distribution, the weight is updated as follows:

w̆
(i)
t ∝p(yt|x̆(i)

t )p(x̆(i)
t |x(i)

t−1)

q̆(x̆(i)
t |x(i)

t−1,yt)
w

(i)
t−1 (14)

where q̆(x̆(i)
t |x(i)

t−1,yt) = N (x̆(i)
t |x̃(i)

t , Σ). Here, Σ is a diagonal 2×2 matrix and
the value of the two entries are chosen to be the same, which is 0.3, in our
application. Note that we use a sample x̆(i)

t instead of the biased particle x̃(i)
t .

This ensures that the sequential importance sampler remains unbiased and valid.
The following pseudo-code depicts the overall structure of our tracking sys-

tem, which includes all the contributions in our work.

– Initialization: t = 0
• Map boosting detections to the rink coordinates to get {xk,0}k=1,...,M0 .
• Create particle set {x(i)

k,0,
1
N }N

i=1 by sampling from p(xk,0).
– For t = 1, ..., T ,

1. Targets addition and removal
• Remove targets with large particle set variance.
• Map boosting detections from the video frame to the rink.
• Data association

∗ Create a particle set for each new target.
∗ Associate boosting detections to the existing tracks to construct

Gaussian mixture proposal distribution q(xk,t|xk,t−1, zk,t), where
zk,t is boosting detection.

2. For all particles in each track
• Importance sampling



∗ For all particles in each track, sample x̂(i)
k,t∼q(xk,t|x(i)

k,t−1, zk,t).
• Mean-shift biasing

∗ Bias the particles as x̃(i)
k,t = ϕ(x̂(i)

k,t).

∗ Sample x̆(i)
k,t∼q̆(xk,t|x̃(i)

k,t)
• Weight update

∗ Update weights w̆
(i)
k,t according to Equation 14 and normalize.

3. Deterministic resampling
• For each track, resample particles to get new sample set {x(i)

k,t,
1
N }N

i=1.
4. Output

• For each track, E(xk,t) =
∑N

i=1 w
(i)
k,tx

(i)
k,t

6 Experimental Results

Figure 2 shows the comparison between the tracking results of the system in [4]
and our system. Subfigure (a) is the key frame in the same tracking sequence
that shows the overall view of the tracking results. Subfigures (b-e) and (f-i) are
the close-up views of the rectangular region labelled in (a). Each player has a
unique color box assigned to it. The color of the same player may not necessarily
the same across results of the two systems. According to the results, we can see
from Subfigures (b-e) that the trackers merge together when they get close and
a new track is created when they split. Meanwhile, our system can maintain
correct identities during occlusion.

Subfigures (j-u) in Figure 2 shows the particle representation of the track-
ing results of our system. In the pseudo-code in Section 5.3, the evolution of
particle sets in each iteration of propagation can be divided into three steps: be-
fore the mean-shift bias, after the bias, and after the deterministic resampling.
The last three rows in the figure compare the difference between the particle
sets after each step. Generally, the mean-shift algorithm moves particles from
different locations around the target to locations in the neighborhood that are
most similar to the reference model in the color space. Therefore, particle sets
appear more condensed after the mean-shift bias. The difference between Sub-
figure (p) and (q) in Figure 2 indicates that mean-shift might move particles
to some other targets because of the similarity between the two targets in the
color space. However, such particles will be assigned low weights because of the
regularization of the dynamics model. As a result, those particles will have much
fewer or no children after the resampling stage. For the same reason, particles
that are biased to regions without any target, as are shown in Subfigure (n)
and (o), will be penalized as well. In summary, both the mean-shift algorithm
and the dynamics model penalize erroneous particle hypotheses and improve the
robustness of the overall tracking system.

Figure 3 shows more tracking results from three different sequences. All of
them are able to correctly maintain the identities of the players regardless of
partial of complete occlusions.



(a) Frame 1

(b) Frame 30 (c) Frame 39 (d) Frame 50 (e) Frame 58

(f) Frame 30 (g) Frame 39 (h) Frame 50 (i) Frame 58

(j) Frame 30 (k) Frame 39 (l) Frame 50 (m) Frame 58

(n) Frame 30 (o) Frame 39 (p) Frame 50 (q) Frame 58

(r) Frame 30 (s) Frame 39 (t) Frame 50 (u) Frame 58

Fig. 2. Each row is a close-up view of the rectangular region in (a). Subfigures (b-e)
show the tracking results of the system in [4]. Subfigures (f-i) show the tracking results
of our system. Subfigures (j-u) show the particle representation of each target during
the tracking process. Different targets are labelled with rectangles of different colors.



(a) Frame 79 (b) Frame 83 (c) Frame 88 (d) Frame 98

(e) Frame 28 (f) Frame 34 (g) Frame 42 (h) Frame 59

(i) Frame 8 (j) Frame 12 (k) Frame 14 (l) Frame 20

Fig. 3. Each row in the figure shows the tracking results of three different sequences
where the top one is the same sequence as the one shown in Figure 2.

7 Conclusions

In this paper, we devote our endeavors to building a tracking system that is
able to robustly track multiple targets and correctly maintain their identities
regardless of background clutter, camera motions and mutual occlusion between
targets.

The new particle filter framework is more suitable for tracking a variable num-
ber of targets. The rectification technique compensates for the camera motion
and make the motion of targets easier to predict by the second order autore-
gression model. The linear optimization algorithm achieves the global optimal
solution to correctly assign boosting detections to the existing tracks. Finally,
the mean-shift embedded particle filter is able to stabilize the trajectory of the
targets and improve the dynamics model prediction. It biases particles to new
locations with high likelihood so that the variance of particle sets decreases sig-
nificantly.
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