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ABSTRACT 
Designers of human-computer interfaces often overlook issues of 
affect.  An example illustrating the importance of affective design 
is the frustration many of us feel when working with a poorly 
designed computing device.  Redesigning such computing 
interfaces to induce more pleasant user emotional responses 
would improve the user’s health and productivity.  Almost no 
research has been conducted to explore affective responses in 
rendered haptic interfaces.  In this paper, we describe results and 
analysis from two user studies as a starting point for future 
systematic evaluation and design of rendered physical controls.  
Specifically, we compare and contrast self-report and biometric 
measurement techniques for two common types of haptic 
interactions.  First, we explore the tactility of real textures such as 
silk, putty, and acrylic.  Second, we explore the kinesthetics of 
physical control renderings such as friction and inertia.  We focus 
on evaluation methodology, on the premise that good affect 
evaluation and analysis cycles can be a useful element of the 
interface designer’s tool palette. 
 
CR Categories: H.1.2 [User/Machine Systems]:  Human factors, 
Human information processing, Software psychology; H.5.2 
[Information Interfaces and Presentation]:  User Interfaces–Haptic 
I/O; D.2.2 [Software Engineering]:  Tools and Techniques–User 
interfaces 
 
Keywords:  affect, emotion, design, user interface, human factors 
experiment, haptics, manual controls. 

1 MOTIVATION 
Affect computing refers to computing devices that relates to, 
arises from, or deliberately influences one’s emotions [18].  
Furthermore, our affective responses always companion thought 
[26].  For example, we rarely see a “house”; instead, we see a 
handsome house, an ugly house, a pretentious house [28].  In 
terms of computer systems, we see a cool, sleek new computer, 
hear an upbeat cell phone ring tone, or feel a comfortable stylus.  
Such affective judgments are believed to be independent of, and 
temporarily precede most higher-level perceptual and cognitive 
operations.  In other words, affective responses are a ‘first level’ 
response to our environment [1].  These ‘gut’ affective responses 
then influence higher-level emotional judgements, which are more 
cognitive.  Consequently, higher-level operations vary more 
between individuals depending on personal background, age, 
gender, affiliated culture, etc. 

 

1.1 Tactile Haptic Feedback 
Obviously, a keyboard that burns or pinches its users’ fingers will 
produce strong emotional reactions.  Similarly, more subtle user 
interactions with tactile haptic feedback also combine to strongly 
influence the user’s emotional disposition and attitude.  Tactile 
components include surface texture, shape, and thermal 
conduction properties of physical computing devices such as 
media players, pointers, and cell phones.  Although these tactile 
components are frequently considered by usability designers in 
companies, they are often ignored in usability research.  

1.2 Rendered Haptic Feedback 
A less obvious and less explored area of research is the study of 
user responses to more rendered interactions with physical 
computing devices.  For example, two radio tuning knobs with 
different levels of friction & inertia may enable a user to tune the 
same radio station with equal proficiency.  However, one knob 
may produce a much more favorable affective response.  We 
conjecture that exploring users’ affective responses to tactile 
haptic feedback will help guide experimental design and 
understanding of affective design for rendered haptic feedback. 

2 SUMMARY OF AFFECT RESEARCH 
Affective and cognitive processes can occur in less than 10 ms, 
and people are often unaware of the presence of such processes 
[23].  Furthermore, Zajonc [28] states that affective responses are 
believed to be inescapable, irrevocable, implicate the self, 
difficult to verbalize, and often separable from content. 

Many terms exist to classify emotion.  Norman [14] uses the 
terms 

• Visceral:  primary, automatic, unconscious responses (e.g., 
the computer display is bright, the cell phone ring tone is 
loud, the stylus is smooth) 

 
• Behavioral:  also unconscious responses, but are slightly less 

automatic (e.g., the bright computer display causes surprise, 
the loud cell phone ring tone is annoying, the smooth stylus 
is comforting.)  We focus on behavioral re-sponses in this 
paper. 

 
• Reflective:  responses involving conscious thought and 

reflection (e.g.,  I like how clicking this button with the 
stylus causes the display brightness to increase). 

 
Generally, reflective responses are most influenced by social 

and cultural attributes, whereas visceral responses have less 
variability from person to person.  For example, a bright computer 
display will be equally bright for an office worker or a tribal 
native who has never seen a computer display before.  Of course, 
there is no hard, exact boundary between these levels of emotion.  

                                                    



Visceral responses will vary the least between different people or 
groups such as office workers, teenagers, or Lithuanians; whereas, 
reflective responses will vary the most. 

Spence [20] suggests that the sense of touch is well suited to 
perception of differences in emotion.  Thus, although performance 
measures are often dominated by visual and audio feedback, 
haptic feedback can potentially play a significant role in 
influencing affective responses.  This is an additional motivation 
for our choice of haptic examples in this paper. 

For over 100 years, psychology researchers have consistently 
reported almost all affect variability to be described by three 
dimensions [16], [26].  Other researchers have since validated and 
refined these dimensions.  For example, Lang’s self-assessment 
mannequin (SAM) [12] uses the terms: 

 
• Valence (e.g., pleasantness) 
 
• Arousal (e.g., excitement) 
 
• Dominance (e.g., control or prestige) 
 

Self-report measures and biometric recordings are the primary 
methods of obtaining affective responses.  Generally, self-report 
measures are preferred for analyzing smaller, relative differences 
between stimuli.  Biometric measurements are better for absolute 
measurements.  For example, with careful, specific instructions, 
participants can be more easily guided to focus on details of a 
design (i.e., when making a rating, they can filter out many affects 
that are of little relevance to the study).  Differences between 
participants’ desired and actual interpretations of instructions is 
one of the major sources of noise in self-reported measures.  
Although biometric measures are less affected by such 
misinterpretations, they are more sensitive to the environment 
(e.g., they are difficult to use in uncontrolled environments such 
as field studies).  Learnt and biological differences will also affect 
biometric measurement validity. 

2.1 Self-Report Measures 
Likert-type scales are often used for each dimension.  Thus, a 
participant will typically be exposed to a stimulus for 5-8 seconds, 
and then be asked to rate valence, arousal, and/or dominance on a 
scale (e.g.,  1-10).  Exposure times of 5-8 seconds have been 
estimated to give participants enough time to experience the 
stimulus, without giving them time for much conscious thought 
(i.e., a ‘gut’ reaction is desired) [12].  Generally, it is believed that 
approximately half of one’s affective judgment variability is along 
the valence dimension, slightly less than half of the variability is 
along the arousal dimension, and most of the small remainder is 
along the dominance dimension.  Hundreds of studies, 
predominantly vision-based Psychology studies have used these 
scales. 

Because valence and arousal are believed to account for almost 
all affective variability, Russell et al. [19] proposed and used these 
as the basis for a two-dimensional affect grid, and also related 
more subtle, specific affective attributes (e.g., happy, sad, joy, 
excited, frustrated) to various regions of the affect grid (see 
Figure 1).  Studies measuring more subtle affective states than the 
main dimensions of valence, arousal, and dominance have had 
some, but more limited success.  For example, attempts have been 
made to map subtle affective attributes to a defined subregion of a 
2D valence & arousal (i.e., affect) grid [11]. 
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Figure 1:  The affect grid.  After exposure to a stimulus, participants 
place an ‘X’ in a box to self-evaluate their level of valence and 
arousal (based on Russell et al. [19]). 

Several caveats arise from the use of any rating scale.  Daniel 
gives an excellent summary of rating scales for measuring scenic 
beauty of forest photos [5].  Valence, arousal, and dominance 
rating scales can be standardized in a similar manner.  The two 
most common problems are: 

 
• Some participants give overly positive or negative responses 

(i.e., a within-participant average, when compared with 
others, reveals an individual bias). 

 
• Participants may use the scale differently (i.e., relative 

differences will vary across participants).  To help reduce 
this effect, experimenters often ask participants to use the full 
range of the scale for their responses. 

2.2 Biometric Measures 
Affective responses correlate with a variety of biological 
responses including changes in muscle tension, skin conduction, 
heart rate, blood pressure, and breathing rate.  Analyses of facial 
responses have been used by researchers for over 100 years (e.g.,  
Duchenne de Boulogne [6]).  More recently, Ekman and Friesen 
developed the Facial Action Coding System (FACS) where six 
affective attributes – joy, sadness, disgust, anger, surprise, and 
fear – can be manually coded from images or video [7].  However, 
direct measurement with sensors is more accurate and 
increasingly technically feasible.  For example, functional 
magnetic resonance imaging (fMRI) and use of 
electroencephalogram (EEG) sensors have been used to monitor 
brain activity variations for different affective responses [1], [10].  
Especially promising new research areas are prefrontal asymmetry 
and evoked response potentials. Although they accurately record 
affective responses, fMRI machines are very expensive and their 
magnetic fields can interfere with many force-feedback interface 
technologies.  Electromyographic (EMG) measurement of facial 
muscles is often more practical than full-head EEG or fMRI (for 
reasons of cost, ethics, and complexity).  For example, Surakka 
and Hietanen studied EMG responses to facial expressions [21]. 

For this paper, we choose an accepted technique for biometric 
measurement of valence and arousal (e.g., see Conati el al. [4] and 
Mandryk & Inkpen [13]; Picard also gives a more detailed 



discussion of biometric use [18]).  Valence was measured by 
calculating the voltage difference between two EMG electrodes 
placed on the participant’s forehead (see Figure 2).  Arousal was 
determined from skin conductance (SC) measurements. 

3 AFFECT EVALUATION CASE STUDIES 
We present two case studies of measuring affective responses to 
haptic sensations. The first employs a broad range of real tactile 
stimuli, whereas the second incorporates interaction with 
haptically rendered virtual environments. Both biometric and self-
report measures are explored.  Short response times to stimuli are 
used for both studies in an effort to focus on visceral emotional 
responses.  Such visceral responses vary the least between 
individuals (i.e., are least affected by gender, age, culture, etc.) 

Physical user interfaces typically have a variety of surface 
properties that can be used deliberately in aid of design.  For 
example, the texture, shape, and heat conduction properties of cell 
phones, portable media players, and computer mice will influence 
the user’s affective responses and affordances. 

The rendered interaction case study shows an example of 
affective responses to a rendered aspect of a user interface.  
Specifically, we measure affect in response to different possible 
knob motions that control access to items on a list (e.g., a radio 
station frequency or a combo box graphical user interface widget), 
while the user experience a variety of rendered rendered haptic 
environments  Thus, this case study relates closely to haptic 
scroll-wheel properties of a mouse used for common computer 
desktop tasks such as scrolling list boxes or windows. 

We hypothesized that the affective differences between the our 
force-feedback knob renderings would be subtle.  Compared to all 
the emotional stimuli a person experiences in their daily activities, 
the rendered knobs span a narrow range.  Getting hit by a car 
while walking in a crosswalk, for example, would be much more 
arousing than the stimuli used in our experiments.  Thus, we 
performed the tactile study as a preliminary test of the efficacy of 
the self-report and biometric measures. 

3.1 Tactile Study 

3.1.1 Participants and Apparatus 
A total of 9 people (5 male and 4 female) participated.  
Participants were right-handed and ranged in age from 24 to 33 
years (M = 26.2, SD = 2.82). 

Participants sat at a desk while electromyographic (EMG) and 
skin conductance (SC) traces were logged at 32 Hz using 
Biograph v. 2.1 software and ProComp+ biometric equipment.  
Twelve textures believed to span a range of valence and arousal 
levels were used (see Table 1).  Participants were blindfolded 
while the tactile textures were in front of them, and they were not 
blindfolded when marking self-reports. 

3.1.2 Procedure 
The experimenter described the apparatus and procedure to the 

participants.  Two EMG electrodes were then placed on the 
participant’s forehead as shown in Figure 2.  Skin conductance 
sensors were placed on the index and middle finger of the 
participant’s left hand.  After each condition, participants were 
instructed to mark the arousal and valence (i.e., preference) on a 
scale of 1 to 9 using the affect grid.  Participants were asked to try 
and use the full range of the scales.  A sample trial and one 
complete repetition of all levels were executed to familiarize the 
participants with the experiment.  EMG data was smoothed using 
a third order low-pass Butterworth filter with 0.1 Hz cutoff 
frequency.  SC data did not need to be smoothed because raw SC 
data does not  contain  the  high  frequency  components  typically  

 
Figure 2:  EMG electrode placement on the forehead, and SC 
electrode placement on the index and middle fingers of the non-
dominant (left) hand. 

seen in EMG data.  A single biometric value was manually 
calculated by subtracting the baseline voltage from the peak 
voltage for each stimuli.  Accurately and repeatedly determining a 
baseline voltage is a difficult task that makes biometric 
measurement inherently uncertain.  Arousal and valence scores 
were calculated by marking the start and end points for each 
stimulus.  Mean voltages were then calculated between these start 
and end boundaries. 

The experimental design used a within-subject factor (tactile 
stimulus) with 12 levels and one repetition. 

 

Table 1:  12 Tactile Stimuli for Tactile Case Study 

# Label Description 
1 FUR Fox fur 
2 GEL Moist water-based gel 
3 PTY Silly putty surface 
4 SND 80 grit sandpaper 
5 ACR Acrylic sheet 
6 GLS Glass sheet 
7 BSH Brush with fine plastic tines 
8 WD Maple wooden board 
9 OIL Glass sheet covered in olive oil 
10 STK Double-sided sticky tape on an acrylic

sheet 
11 HND Hand stroked by experimenter 
12 SLK Silk 
 

3.1.3 Results 
The data were checked for fit to a normal distribution using a 

Q-Q plot.  Normality can be assumed.  Figure 3 shows means for 
the arousal and valence ratings (from the affect grid) for the 12 
stimuli listed in Table 1.   

For the self-report ratings, significant main effects for the affect 
grid ratings were found between stimulus and arousal (F(11, 88) = 
10.8, p < .001, η2 = .574), and between stimulus and valence 
(F(7.14, 57.2) = 10.6, p < .001, η2 = .571).  A Huynh-Feldt 
correction for sphericity was used because Mauchly’s test for 
sphericity yielded ε = .649 for valence.  No significant main 
effects were observed for the biometric data; although, several 
interesting trends were observed (e.g., see Figure 4).  Mean EMG 
and SC voltages for the 12 stimuli are shown in Figure 5. 



 
Figure 3:  Mean self-reported arousal and valence ratings for 12 
tactile surfaces listed in Table 1 
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Figure 4:  EMG (lower) and SC (upper) data for a participant 
touching a sheet of double-sided sticky tape, and a participant’s 
hand being touched by the experimenter.  High-frequency 
components of the raw EMG data were smoothed using a third 
order low-pass Butterworth filter with 0.1 Hz cutoff frequency; the 
presented SC data are the raw values. 

3.1.4 Analysis 
Our observation of significant self-reported rating scores, but an 
absence of significant differences in biometric values was not 
entirely unexpected.  When rating stimuli, participants were asked 
to use as much of the affect grid as possible.  Thus, use of the 
rating scale yields affect differences in the context of the tactile 
stimuli observed.  Conversely, biometric measurements represent 
affect differences in the context of all the participants’ life 
experiences and their evolutionary affective predispositions (i.e., 
affective judgements have both learnt and biological components 
[8]).  Compared to this, the 12 tactile stimuli presented span a 
relatively small affective range:     the difference between feeling  

 

 
Figure 5:  Mean biometric arousal (SC) and valence (EMG) ratings 
for 12 tactile surfaces listed in Table 1 

glass or acrylic pales in comparison to skydiving versus relaxing 
on the beach.  Nevertheless, in the context of a user interface 
environment, small effects add up.  Considering the very high 
effect sizes of η2 = .574 for arousal and η2 = .571 for valence for 
the rating data, one might expect to see significant differences in 
the biometric data if another study was performed with more 
participants, or possibly using a different algorithm for calculating 
arousal and valence scores from the raw biometric signals.  
(Cohen recommends classifying low, medium, and high effect 
sizes to be η2 = .01, η2 = .059, and η2 = .138, respectively [3].) 

Figure 3 shows arousal and valence rating differences between 
the 12 different stimuli.  Because we observed very high effect 
sizes for arousal and valence, the results in Figure 3 are strong.  
The acrylic sheet (stimulus ACR) was rated the least arousing 
stimulus (M = 2.7).  Glass (stimulus GLS), wood (stimulus WD), 
and silk (stimulus SLK) were also ranked as low arousal textures 
– M = 3.7, M = 4.4, M = 4.6, respectively.  Touching a sheet 
covered in oil (stimulus OIL) received a high arousal rating (M = 
7.3), and the lowest valence rating (M = 1.1).  It is interesting to 
note that there was strong agreement (i.e., low variance) among 
participants that touching oil was not pleasant (i.e., low valence); 
participants varied more in their rating of how strongly they 
disliked the stimulus.  Ratings of valence for the experimenter 
touching the participant’s hand had a wide variance.  Generally, 
the results in Figure 3 are what we would intuitively expect. 

The upper section of Figure 4 shows example biometric 
measurements of arousal, and the lower section Figure 4 shows 
example biometric measurements of valence.  At about 403 
seconds into the trial, an increase in skin conductance (SC) occurs 
when a participant’s hand is touched by the experimenter (starting 
at 400 seconds into the trial), suggesting an increased level of 
participant arousal.  Skin conductance measurements typically 
have a 2-3 second lag, and this is exactly what we observe in 
Figure 4.  A less pronounced increase in SC was also observed 
when the participant touched double-sided sticky tape.  The EMG 
D – C curve is slightly positive for hand stroking case – indicating 
a slightly positive valence (i.e., preference) for their hand being 
touched.  Conversely, a very strong preference reaction was 



observed when the participant touched double-sided sticky tape.  
The EMG D – C curve dips sharply – indicating a strong negative 
valence (i.e., dislike) for the sticky tape. 

The self-report rating and biometric results also illustrate the 
point that with rating scales, most subjectivity is from the 
participant’s ability to rate the stimuli.  Conversely, with 
biometric data, most subjectivity is from the experimenter’s 
calculation of arousal and valence scores.  For example, there is 
approximately a 2 second lag between the time a participant 
becomes aroused, and their skin conductance becomes elevated.  
Where to start and stop recording voltages values for a particular 
stimuli, and normalization of stimuli are non-trivial problems. 

The error bars of the biometric voltages in Figure 5 are very 
large.  Consequently, we can not draw meaningful relationships 
between these bar charts and the self-reports in Figure 3.  These 
biometric voltages are given primarily for completeness.  They 
may also suggest the amount of power (e.g., number of subjects) 
needed for more meaningful future studies involving such 
biometric measurements. 

3.2 Rendered Interaction Study 
The purpose of the rendered interaction experiment was to 
measure affect as a function of a range of rendered haptic 
environments.  Users felt rendered damping, inertia, and detent 
knob environments with and without the context of a graphical 
scrolling task.  We conjectured that the differences in emotional 
responses between the haptic renderings used for this interaction 
study would be subtle and difficult to record compared to the 
previous tactile textures of the tactile study. 

3.2.1 Participants and Apparatus 
A total of 15 right-handed people (9 male and 6 female) 
participated in this experiment; ages ranged from 24 to 27 years 
(M = 24.7, SD = 1.18). 

Figure 6 illustrates the experimental setup.  Participants sat at a 
desk approximately 50 cm away from a computer display 
measuring 36 cm wide by 29 cm high, and used their right hand to 
interact with a force-feedback haptic knob anchored to the desk.  
Noise canceling headphones were worn to block sounds from the 
force-feedback dev ice.  Visual distractions were reduced by 
seating the participants at a desk facing a corner of the room. 
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Figure 6:  Experimental apparatus 

 
Our custom built force-feedback knob is illustrated in Figure 6.  

Torques were supplied using a Maxon RE40 DC motor, and 
position was measured using a MicroE optical encoder operating 
at 320 000 counts / revolution.  A 5000 Hz haptic update loop was 
coded in C++ using the Real-Time Platform Middleware (RTPM) 
[17].  OpenGL was used to code the graphical display.  The 
graphical client got the knob position from the haptics server to 
keep a 60 Hz graphical update rate.  We custom built this setup 
because haptic knob systems capable of rendering such dynamic 
effects are not yet commercially available. 

Three haptic models were used as illustrated in Table 2 with 
parameter values ai, b, and m.  To improve stability, velocities 
were low-pass filtered using a tenth order Butterworth filter at a 
400 Hz cutoff frequency.  Inertia was modeled using a spring & 
damper virtual coupling to a simulated mass [2]. 

Table 2:  Force-feedback models used 

Model Torque Component  
Detents ( )θτ ⋅⋅= 21 aSina  (1) 

Viscous 
Damping θτ D⋅= b  (2) 

Inertia  θτ DD⋅= m  (3) 

 
Figure 7 illustrates the graphical display.  An almost black 

background was used (the background had a touch of blue to 
reduce participant eye strain).  A red target value was shown to 
the left or right of a cyan counter value.  Rotating the knob 
counterclockwise / clockwise would decrement / increment the 
counter value by 1 unit, respectively.  The target value appeared 
to the left / right of the counter if the target was less / more than 
the counter, respectively.  If the counter equaled the target, the 
target would appear on both sides of the counter. 

 

 
Figure 7:  Screen capture of the graphical display 

3.2.2 Procedure 
The experimental design used two within-subject factors 
(feedback and knob stimulus) with two repetitions. 

The feedback factor had 2 levels:  
 
• Freeform exploration: approximately 5 s freeform 

exploration of different knob models followed by 10 s to 
record their valence rating followed by a 4 s rest before the 
next condition. 

 
• Target finding:  a timed target task taking approximately 5 s 

(see Figure 7) where the participants rotated the knob until 
they matched the counter value to the target value.  The same 
10 s rating time and 4 s rest time allowances as the freeform 
exploration task were then given.  Task completion times 
were measured to enable performance comparisons. 

 
Because the target finding task might have influenced the way 

participants performed the freeform exploration task, all 
participants performed the freeform exploration task first, then the 
target finding task. 



The knob stimulus factor had 7 levels of damping, inertia and 
detents as shown in Table 3 (refer to Equations 1, 2, and 3 for 
coefficient meanings). 

 

Table 3:  7  Stimuli for Rendered Interaction Case Study 

# Label b m a1, a2 Description 
1 NON 0 0 0, 0 No force feedback (control) 
2 FR1 15 0 0, 0 Small viscous friction 
3 FR2 30 0 0, 0 Large viscous friction 
4 MS1 0 0.4 0, 0 Small inertia 
5 MS2 0 2.5 0, 0 Large inertia 
6 DT1 0 0 80, 2π 1 detent / graphic list item 
7 DT2 0 0 80, 60 High frequency detents 

[Units:  b = volts / rad/s; m = volts / rad/s2; ai
 = volts / rad] 

 
The experimenter described the apparatus and procedure to the 

participants.  After each condition, participants were instructed to 
mark the valence (i.e., preference) on a scale of 1 to 9.  A sample 
trial and two complete repetitions of all levels were executed to 
familiarize the participants with the experiment.  Unlike the first 
study, we only asked participants to rate valence (not arousal) 
because pilot studies suggested that participants had difficulty 
assigning different arousal ratings to the 7 different stimuli.  
Biometrics were measured using the same procedure as study 1. 

3.2.3 Results 
As in the first study, the data were checked for normality using a 
Q-Q plot.  Normality can be assumed.  Figure 8 shows mean self-
reported valence ratings of the 7 stimuli listed in Table 3. 

We observed significant main effects for task (i.e., freeform 
exploration or target finding) (F(1, 14) = 5.75, p < .031, η2 = 
.291) and stimulus (F(4.48, 46.5) = 5.79, p < .001, η2 = .293) as 
well as a significant interaction between task and stimulus 
(F(2.92, 40.8) = 4.89, p < .006, η2 = .259).  Huynh-Feldt 
corrections for sphericity were used for the task main effect and 
the task x stimulus interaction because Mauchly’s test for 
sphericity yielded ε = .746 and ε = .628, respectively.  
Furthermore, the final repetition of 7 stimuli was used to calculate 
all statistics except for reliability statistics where inter-repetition 
consistency was explored. 

No significant main effects were found for the biometric data.  
Although, promising trends were found as in the first experiment. 

Reliability analyses of the results were tested (i.e., how likely 
we would see the same effects for the valence self-report ratings).  
Cronbach alpha tests for reliability were performed between the 
1st, 2nd, and 3rd repetitions.  For the freeform exploration task, 
stimuli FR2, MS1, and MS2 had low Cronbach alpha scores of α 
= .61, α = .59, α = .57.  The other stimuli were all above the 
recommended value of α > .70 [15].  For the target finding task, 
stimulus FR1 had a low Cronbach alpha score of α = .64.  The 
other stimuli were all above the recommended value of α > .70.  
These reliability scores (i.e., Cronbach alpha values) suggest an 
acceptable chance of repeating the observed results for the 
purposes of this paper.  However, replicating the study with more 
participants (e.g., 100) would be advisable before making knob 
interaction design decisions. 

For practical reasons, favourable affect ratings are often of 
secondary concern to performance ratings.  Consequently, we 
explore relationships between affect and performance for the 
target finding task.  A significant main effect for stimulus was 
observed (F(4.78, 66.9) = 5.68, p < .001, η2 = .288).  Huynh-Feldt 
corrections for sphericity were used for the stimulus factor 
because Mauchly’s test for sphericity yielded ε = .797. 

 
Figure 8:  Mean self-reported valence ratings for the 
freeform exploration and target finding tasks 

 
Significant differences between freeform exploration and target 

finding tasks were also found for the NON, F(1, 14) = 15.68, p < 
.001, MS1, F(1, 14) = 5.02, p < .042, and DT1, F(1, 14) = 14.91, p 
< .002 conditions. 

 

 
Figure 9:  Mean times of target acquisition times for each 
stimulus in the target finding task  

3.2.4 Analysis 
As one might expect, giving participants a context in which to 
evaluate the stimuli occasionally changed their valence ratings.  
For example, comparing the freeform exploration and target 
finding tasks, there was a significant decrease in valence ratings 
for the knob with lots of inertia (stimulus MS2), and a significant 
increase in valence for the detent knob (one detent per counter 
number increase / decrease – (stimulus DT1), and the knob with a 
small amount of inertia (stimulus MS1). 

Looking at the performance data in Figure 9, we can see 
significant acquisition time differences between knobs with 
simulated viscous friction (stimulus FR2) and a knobs with 



simulated inertia (stimulus MS1).  The larger variance for friction 
stimulus FR2 vs. stimulus FR1 might be explained by variance in 
physical strength of participants (i.e.,  a physically strong or weak 
participant should be able to turn a knob with modest amounts of 
friction with similar ease).  Similarly, during post-experiment 
discussions, several participants remarked that the larger amount 
of inertia in stimulus MS2 vs. stimulus MS1 made fine-tuning 
more difficult at the start and end of the target finding task (e.g., 
they felt that they were overshooting).  Stimulus NON had less 
friction and inertia than the other stimuli, but there was very large 
variance between participant times and inconclusive performance 
differences.  This supports the notion that there is a ‘sweet-spot’ 
amount of friction and inertia, when positioning performance is at 
stake. 

There is a general trend that knobs that aided a participant’s 
target finding performance corresponded to higher valence 
ratings.  However, a more interesting result is the relatively larger 
valence differences (see Figure 8) between small and large 
friction levels (stimuli FR1 & FR2), and between small and large 
inertia levels (stimuli MS1 & MS2), compared to the performance 
differences (see Figure 9).  In other words, we observed cases 
where participants tended to prefer one stimulus over another 
stimulus even though there were minimal performance reasons to 
make such a preference rating. 

4 CONCLUSIONS AND FUTURE WORK 
We have demonstrated the use of self-report and biofeedback 
affective measurement tools for analyzing both tactile and 
rendered physical user interface components – surface texture and 
rotary knob movement, respectively.  Because the chosen case 
studies represented relatively subtle differences in affect, self-
reported measures tended to produce better results than the 
biometric measures.  Significant differences in valence and 
arousal levels were observed for different textures.  For several 
rotary knob movements, significantly different ratings of valence 
were observed for knob movements that helped users perform a 
simple list scrolling task.  Additionally, participants gave knob 
movements that improved task performance significantly higher 
valence scores.  As one would expect, affect rating reliability 
improved when participants focused on a particular context.  The 
less intuitive result of finding different affect ratings between 
different knob movements and different textures regardless of 
context was also shown.  (i.e.,  list scrolling). 

Different applications than our two case-studies will 
undoubtedly require use of different tactile and rendered 
parameters than those presented in our experiments.  Thus, our 
primary contribution is not the specific haptic parameters used in 
each case-study, but the documentation of typical relative 
differences for tactile and rendered haptic parameters using 
accepted self-report and biometric measures. 

Future work will include additional self-reported affect studies 
with a greater variety of haptic interfaces and contexts.  For 
particularly interesting small subsets of interfaces and contexts, 
biometric studies with more participants and repetitions will be 
used to explore more absolute affect ratings and individual 
differences.  Other more expressive user study contexts, such as 
moving a graphical object on a computer screen, could also yield 
interesting results.  Furthermore, more subtle study of weightings 
between affect versus performance and cost could help motivate 
more rapid adoption of appropriate affective interfaces into 
commercial products. 
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