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ABSTRACT

The design of usable haptic icons (brief informational signals de-
livered through the sense of touch) requires a tool for measuring
perceptual distances between icons that will be used together as a
set. Our experiences with one potentially powerful approach, Mul-
tidimensional Scaling (MDS) analysis of perceptual data acquired
using an efficient cluster sorting technique, raised questions relat-
ing to the methodology for data collection. In this paper, we review
key issues relating to perceptual data collection method, describe
an example data set and present its initial MDS analysis, and then
examine the impact of collection method on MDS outcome through
a secondary analysis of the data and the inherent structure of the al-
gorithm components. Our analysis suggests that an understanding
of these issues is important for the method’s effective use, but has
not exposed any major flaws with the process.
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terfaces and Presentation]: User Interfaces—Haptic I/O; H.5.2
[Information Interfaces and Presentation]: User Interfaces—
Prototyping
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1 INTRODUCTION

Using synthetic tactile feedback, we can communicate information
about the state or content of a system, or the occurrence of an event,
to a human user via cutaneous touch. Mobile devices which make
use of tactile feedback (e.g. vibrating pagers and cell phones) have
been available on the consumer market for several years. The tactile
stimulation that they generate, however, is limited in its expressive
capability; typically they make use of a single tactile element that
vibrates at a unique frequency. More recently, mobile device man-
ufacturers have been integrating tactile actuators with increased de-
grees of freedom into their products. This is possible, for instance,
by using actuators for which the vibrating frequency can be con-
trolled. The goal, inspired by the common use of audio icons in
desktop interfaces and mobile telephony [1], is to allow for the de-
sign and construction of specific and short abstract tactile messages
that can easily be interpreted by users with minimal cognitive effort
[7].

At the center of our research lies the goal of understanding
how to maximize the level of useful information content that tac-
tile/haptic feedback devices can convey. To that end, we aim to
develop a systematic analytic method to characterize the stimulus
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space of tactile feedback devices in order to inform the design of
tactile icons.

In this paper, we present our progress to date in clarifying and
validating the use of multidimensional scaling (MDS) for this pur-
pose. While it seems clear from past efforts that MDS analysis can
provide relevant and (in some sense) accurate information about the
perceived relationships among a set of test stimuli and thus guide
stimulus set design, we were not satisfied with our ability to inter-
pret and quantify these relationships, nor with our understanding of
the impact of perceptual data collection method on the MDS analy-
sis outcome.

Here, we begin by reviewing key issues relating to data col-
lection method, then proceed to examine the impact of collection
method on the MDS result via a detailed analysis of an example data
set. While an exhaustive critique will be a substantial project, the
insights presented here should aid in the wise use and accurate in-
terpretation of results provided by a potentially powerful tool. Our
analysis does not expose any major flaws with the process, and we
thus conclude that it can be a valuable tool to evaluate the expres-
sive capability of haptic devices.

2 BACKGROUND

2.1 Multidimensional Scaling

MDS comprises a set of methods that display the structure of a dis-
similarity matrix as a geometrical representation in a given number
of dimensions [9].

A dissimilarity matrix contains N ∗ (N − 1)/2 individual per-
ceived dissimilarity scores between N items of a set. MDS opti-
mization algorithms try to map the perceived dissimilarity scores
δi j between items i and j from a dissimilarity matrix onto an M-
dimension geometrical space (usually Euclidean) within which dis-
tances di j between items represent relative levels of dissimilarity:

di j ≈ f (δi j) i, j ∈ [1,2 · · · ,N] (1)

where f () is a monotonic function. On the Euclidian space, dis-
tances are calculated with

di j =

√√√√ M

∑
a=1

(xia− x ja)2 (2)

where xia and x ja are the item coordinates that the MDS algorithm
is solving for.

Dissimilarity data are always mapped with a variable degree of
error to the geometrical space, and several measures are used to
evaluate the goodness of fit. For instance, one popular method in-
troduced by Kruskal [5] and used to report goodness-of-fit factors
in this paper, consists in minimizing the stress function:

S =

√√√√∑
N
i=1 ∑

N
j=i+1( f (δi j)−di j)2

∑
N
i=1 ∑

N
j=i+1 d2

i j
(3)



Interpreting the resulting MDS plot and extracting the underly-
ing perceptual axes governing the signal space can be a frustrat-
ing task. The dimensionality of the space under investigation and
the exact meaning of its prominent axes cannot be inferred eas-
ily from any goodness-of-fit factor or from simple observation of
the MDS plot. Allowing the MDS algorithm to use a large num-
ber of dimensions will result in a geometrical representation that
is matched closely to the data, but which can be very difficult to
visualize and interpret. On the other hand, limiting the MDS algo-
rithm to a small number of dimensions might not lead to the most
exact representation of the data, but it could offer a more intuitive
view of its primary underlying structure. This is of particular im-
portance when dealing with the analysis of perceptual data, which
is known to be both very noisy and the product of an intricate sys-
tem. The mechanisms that govern human sensorial perception are
complex and it is unlikely that any MDS analysis will reveal how
they work. However, our premise, confirmed qualitatively by past
work, is that MDS analysis can still expose the salient perceptual
dimensions and provide guidelines to the design of new meaningful
and easily distinguishable artificial stimuli.

2.2 Obtaining Data for The Dissimilarity Matrix

The conventional means of acquiring dissimilarity values is to di-
rectly compare all possible pairs of stimuli in the set of interest.
Subjects are presented with each pair, then asked to rate their de-
gree of similarity. Similarity scores are then converted to dissim-
ilarity scores through a simple transformation. Unfortunately, this
paired comparison method suffers from a lack of consistency as the
number of pair-wise comparisons increases (e.g. a stimulus set of
25 requires 300 comparisons and a stimulus set of 35 requires 595
comparisons): subjects forget their grading scale, and experiment
time lengthens dramatically.

Cluster-Sorting Method: To avoid the problems mentioned
above, Ward developed a cluster-sorting technique for an experi-
ment designed to study the salient properties of the physical envi-
ronment as perceived by humans [8]. He presented a set 20 pho-
tographs representing real physical environments to a group of sub-
jects, and asked them to categorize the photographs into different
clusters according to a set of rules. The sorting task was repeated a
number of times with a different number of clusters for each trial.
Dissimilarity matrices were constructed based on the number of
times a particular pair of stimuli was sorted into the same clus-
ter. Stimulus pairs that were often grouped together received a low
dissimilarity score, whereas pairs that were never grouped together
were assigned a maximum dissimilarity score.

While Ward’s method was originally developed for visual stim-
uli, MacLean, Enriquez, Chan and others applied a similar tech-
nique to sets of haptic stimuli. Brief computer-generated haptic sig-
nals, or haptic icons, were constructed by varying parameters such
as frequency, magnitude and shape and were presented to subjects
through a force feedback knob [7] or more recently, a vibrotactile
mouse [2]. Users were asked to classify the haptic icons into dif-
ferent clusters; the sorting task was repeated five times varying the
number of clusters. Results from an MDS analysis of this type of
data has demonstrated a separation of the icons that follows intu-
ition while lending extra structural detail. In the knob-generated
data set, for example, while frequency seemed to be the salient di-
mension overall, other perceptual dimensions such as shape also
emerged from the MDS plots when only signals pertaining to a cer-
tain range of frequencies were considered.

Hollins et. al. have also made use of a group-sorting strategy to
obtain dissimilarity data for the study of the underlying perceptual
dimensions of tactile sensations [4]. However, in this case, the data
for the MDS analysis was the result of a single sorting task during
which subjects were asked to classify 17 real-life surface textures
in a minimum of 3 but maximum of 7 groups. In a second phase of

the experiment, subjects were asked to rate the textures according to
different assumed properties (e.g roughness, temperature, flatness)
and the resulting scales were mapped to the 3D MDS space ob-
tained in the first phase. Hollins et al. found that two dimensions of
the MDS space corresponded closely to a roughness-smoothness
and hardness-softness scales respectively. The third dimension
could not be related to any of the remaining scales. While valu-
able for understanding tactile perception, their perceptual data col-
lection strategy differs from ours in its implementation. Moreover,
we are more concerned with the understanding of the perception of
synthetic computer-generated tactile icons, rather than the existing
tactile properties of real objects.

2.3 Objectives and Organization

The strength of the cluster-sorting method lies both in its greater
speed of execution - reducing the period over which subjects must
retain a calibration - and, we hypothesize, in the more global com-
parative nature of the sorting task as compared to pairwise com-
parisons. However, we have recently observed that the method’s
global nature may also be a weakness, because it creates a com-
plex pattern of correlations among the elements of the dissimilarity
matrix. It is the need to understand the impact of this restriction on
independence on MDS outcome (which nevertheless seems to show
plausible patterns) that motivated the investigation we report here.

Our analysis is illustrated using actual data obtained from a
cluster-sorting task using a new tactile device that we have built.
Because the device differs from other displays in the way it dis-
plays tactile stimuli to the thumb tip, the resultant sensations were
novel and subjects should have no pre-existing categorizations.

In Section 3, we present our example data set, including an
overview of tactile device and experimental method. Section 4 in-
troduces our key critical questions, and in section 5 we explore each
of the question in turn with secondary analyses and discussion. Fi-
nally, we close with conclusions and recommendations.

3 DATA: HARDWARE, STIMULI AND PROCEDURE

3.1 Hardware

3.1.1 Tactile Stimulation by Lateral Skin Stretch

Applying a traveling wave of local tangential deformations against
the fingertip skin can induce the sensation of a small-scale shape
sliding on the finger [3]. During such interaction, no indentation
normal to the skin surface occurs. The moving pattern of lateral
skin stretch is perceived as a traveling feature. This illusion was
previously exploited to display truncated Braille characters to the
visually impaired with a prototype device called the Virtual Braille
Display (vbd) [6].

3.1.2 Tactile Handheld Miniature Bimodal Device

Following encouraging results obtained with the vbd, we built a
miniature version of the tactile display (TD) and integrated it into
a prototype for a mobile handheld device. The result, referred to
as the Tactile Handheld Miniature Bimodal (thmb) device (Figure
1), comprises a miniature tactile display for the thumb tip and an
LCD screen, both assembled inside a small plastic case. Because
our focus here is on the data analysis, detailed implementation in-
formation is reserved for later publication.

Typically, the thmb device’s casing is held in the left palm and
is secured in place between the thumb and the four remaining fin-
gers, similarly to how a PDA or cell phone is held (Figure 2). The
tactile display consists of a stack of eight piezoelectric benders in-
tercalated between brass rods, which protrudes slightly through a
narrow slit on the left side face of the device’s case. The user’s



Figure 1: thmb device.

(a) (b)

Figure 2: Interaction with the device: (a) overview of the thmb in-
terface and (b) close-up on the thumb against the tactile display.

thumb tip rests against the summit of the the TD. When activated,
the TD’s piezoelectric actuators induce lateral skin deformation to
the thumb tip by bending.

The amount of bending of a particular piezoelectric actuator is
controlled with a voltage applied across its electrodes. A PC host
running Linux generates the 8 control signals, one for each piezo-
actuator and sends them to interfacing electronics where they get
filtered and amplified before being applied across the piezoelectric
benders. The resulting control voltages range from ±50V and are
updated at 3125 samples/sec. They are encoded with a single byte
and therefore can only take 256 different values.

3.2 Design of the Haptic Icon Stimuli

Because each of the 8 piezo actuators can be controlled indepen-
dently, the device may be programmed to display 8-pixel anima-
tions, each pixel capable of 256 activation levels. Sets of 8 piezo
activation states can be thought of as a frame; a time series of such
frames define a given tactile stimulus, which thus varies across both
time and space. With the thmb, we wanted to explore alternative
shape configurations as well as ways to animate the stimuli over
time.

Selection of Stimuli: Using a custom-built prototyping applica-
tion to explore the stimulus space, we generated a wide variety of
waveforms, defined as the displacement of one piezo element as a
function of time. We selected five waveforms for further investiga-
tion based on the criteria that they produced qualitatively different
tactile sensations while remaining as simple as possible. The intent
was to begin with a candidate set of canonical basic waveforms re-
ferred to in this paper as tri, roll, saw, bump and edge (Figure
3). A waveform was animated across the display using a tweening
method that consisted of playing the waveform on successive piezo
elements with a phase delay of 1 sample. The resulting animation
could then be slowed down by reducing the frame rate; or it could
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Figure 3: Five waveforms used for the experiment.

Table 1: Overall animation durations calculated from waveform and
speed parameters.

waveform wavelength duration (ms) at speed
(Fig. 3) (in samples) 1

10
1
15

1
20

tri 143 480 720 960
roll 62 221 331 442
saw 20 86 130 173
bump 16 74 110 147
edge 16 74 110 147

be played backwards, resulting in the sensation of the traveling tac-
tile pattern moving in the opposite direction.

Stimuli: The study used a 5x3x2 combination of stimulus fac-
tors, resulting in 30 total tactile animations used as stimuli. The
five waveforms mentioned above, three animation speeds, and two
amplitudes were varied to produce the patterns. Animation speeds
consisted in 1

10
th

, 1
15

th
and 1

20
th

of the maximum 3125 frames/sec
rate imposed by the hardware. Amplitude could either be full scale
(F) or half scale (H). Because some waveforms were longer than
others, the total duration of the animation (i.e., the amount of time
a stimulus was present under the user’s finger) was calculated from
the waveform and animation speed. We kept track of this duration
meta-parameter throughout the data analysis because it was a read-
ily observable characteristic of the stimuli (Table 1). Stimuli varied
in duration between 74ms and 960ms. For the purpose of the data
analysis, the stimuli were labeled according to the following index-
ing: < waveform >< amplitude >< duration >.

3.3 Experiment

3.3.1 Subjects

Ten participants (7 male) aged 19 to 31 were recruited for the ex-
periment; none had any prior experience with the thmb device or
similar displays. The participants were told to hold the device in
their left hand with their left thumb resting lightly on the tactile
display, and were allowed to take breaks as necessary.

3.3.2 Method

The participants used the method described in [7] to conduct the
cluster-sorting task, wherein a GUI displayed graphical tiles for
each stimulus which, when clicked, played the respective stimulus,
and which could be moved about and sorted into the cluster boxes.
The software was modified to present the 30 tactile stimuli used in
this experiment, and the onscreen tiles representing the stimuli were
not marked.

Each participant performed five similar cluster-sorting trials. In
the first trial, the stimuli were sorted into a user-selectable number



(from 2 to 15) of clusters. In the subsequent four trials, subjects
were required to sort the stimuli into 3, 6, 9, 12, or 15 clusters
presented in random order, with the trial containing the number of
clusters closest to the user-selected first trial clusters being elimi-
nated. For example, if the user selected 8 groups for the first trial,
their subsequent trials would consist of {3,6,12,15} groups in ran-
dom presentation order.

3.3.3 Data

A similarity matrix was calculated and converted to a dissimilar-
ity matrix in the same way described in [7]. The cluster-sorting
method assigns similarity points to a pair of stimuli each time they
are put together in the same cluster. The number of similarity points
given to a pair of stimuli placed together in a given sorting trial is
equal to the number of clusters in that trial. For instance, if two
stimuli were present in the same cluster during the trials involving
3 and 9 clusters, the pair is assigned 12 points (3 + 9). For the
first trial for which subjects get to choose the number of clusters,
the amount of points alloted is adjusted to fit the closest integer of
the set {3,6,9,12,15}. The similarity points are summed over a
subject’s trials and a simple inverse linear transform is applied to
obtain a matrix with dissimilarity scores that range from 0 to 1000.
A score of 0 indicates that the pair of stimuli always appeared in
the same cluster across all trials, whereas a score of 1000 indicates
that they were never paired.

3.3.4 Results

Dissimilarity matrices from all subjects were combined to create an
average dissimilarity matrix (shown in Table 2) and the data was
submitted to a 2D MDS analysis using SPSSTM 13.0 (Euclidean
distance algorithm with ordinal/untied data 1). Figure 4 depicts the
stimuli’s resulting spatial arrangement, upon which three groupings
have been manually overlaid by the authors. Orientation of the
graph and its axes returned by SPSSTM are irrelevant since MDS
analysis is only concerned with the relative positions of the stimuli
in space, rather than their absolute positions. Therefore, the plot
has been rotated for clarity. Five lab colleagues uninvolved in the
project were also provided with the plot without stimulus labels and
asked to group the stimuli into as many natural clusters as desired
based on spatial layout; similar configurations resulted in all cases.
MDS plots in 3D were also generated but no extra structural infor-
mation could be extrapolated.

To consider sensitivity of results to MDS algorithm, the indi-
vidual subject matrices were also run through a replicated MDS
(RMDS) algorithm. The resulting plots and goodness-of-fit stress
factors for the the non-metric RMDS analysis were similar (but not
identical) to the ones reported in this paper.

Subjects assigned labels to the different sorting boxes based on
what we have reduced to four essential categories: duration (e.g.
quick, very long, slow, short, fast), magnitude (e.g. moderate,
weak, medium, strong), multiplicity (e.g. single, double, multi-
ple, one, two) and description (e.g. rhythmic, beat(s), thud, heart
beat, broken, vibes, sensation). While not immediately analyzable,
these categories may lend insight into the perceptual dimensions
subjects used in their classifications.

3.3.5 Preliminary Discussion

A few features are evident through inspection of Figure 4. The stim-
uli seem clustered naturally in three major groups ranged along the
x-axis, with the shorter bump, saw and edge signals to the left, roll

1Ordinal/untied refers to data embodying rank information where ele-
ments with identical scores are free to be decoupled into successive rank
positions.
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Figure 4: Ordinal untied MDS plot from the average dissimilarity
matrix obtained with the cluster-sorting experiment (stress = 0.083).
Signal durations (from Table 1) have been rounded to the nearest
multiple of 10ms for clarity.

in the middle and tri to the right. There thus seems to be some in-
fluence of either pattern and/or overall duration on the major group-
ing; however, a duration argument may be at odds with the longer
groups’ internal structure. For the tri and roll groups, duration
(221-960ms) increases on the y-axis, while for the bump/saw/edge
cluster, overall duration seems roughly aligned horizontally. One
of the longest roll stimuli is associated with the tri cluster.

Neither amplitude nor duration visibly affect the tri stimuli;
whereas both the roll and bump/saw/edge clusters seem strongly
differentiated by amplitude (on the y-axis) and slightly by duration
(on the x-axis).

The confounding of the relatively brief saw, edge and bump
stimuli is at least partially due to electromechanical filtering of the
hardware; wave shape detail at these durations was later confirmed
to be beyond the device’s temporal display resolution.

While interesting and clearly meaningful at some level, the com-
plex structure of these results immediately raised questions. For
example: what is the actual perceptual amplitude of the differences
found between these signals – can it be quantified? The y-axis
seems to be interpreted as amplitude for the shorter signals, and
as duration for another cluster which happens to contain the longest
signals. Is this dimension perceptually contiguous, or is it used
independently by each cluster? These uncertainties lead to closer
examination of the data collection technique, and the more detailed
analysis that follows.

4 GUIDING QUESTIONS

The cluster-sorting method for collecting perceived dissimilarity
data is a framework that drastically decreases the time required to
obtain a dissimilarity matrix from a large set of stimuli. Rather
than requiring subjects to gradually construct a personal dissimilar-
ity scale through successive direct comparisons between all possi-
ble pairs of stimuli – to give an order of magnitude, the experiment
reported in section 3.3 would have required 435 direct comparisons
– it provides them with an implicit reference scale that facilitates
consistency in their answers. On the other hand, the resulting dis-
similarity matrix is the outcome of a process with strong structural
constraints where, at the same time, there may exist multiple group-
ing strategies which would express the same degree of dissimilar-

ity. Our curiosity about how the resulting interdependence in the
dissimilarity matrix might impact the MDS outcome included these
questions:

Q1 When applying the cluster-sorting technique, what assump-
tions are made concerning the structure of the collected data?

Q2 How does a dissimilarity matrix obtained from the cluster-
sorting technique differ from a dissimilarity matrix con-
structed from a set of classic pairwise comparisons?

Q3 Does data obtained via the cluster-sorting technique preserve
the structural information about the stimulus space at every
level (for each sub-space)? Similarly, if one perceptual di-
mension is far more prominent than the others, will the other
minor dimensions still be represented accurately in the dis-
similarity matrix?

Q4 How is noise in the data-gathering process reflected in the dis-
similarity matrix obtained with the cluster-sorting method?

In the following section, we examine each of these questions
with further discussion and where possible, analysis of the cluster-
sorting technique itself, data collected with it, or both.

5 ANALYSIS OF CLUSTER-SORTING METHOD

5.1 Assumptions on the Nature of the Dissimilarity Data Col-
lected

MDS algorithms differ by assumptions made regarding input data
distributions. Therefore, it is important to clarify relevant attributes
of the data obtained with cluster-sorting technique. MDS algo-
rithms are either metric or non-metric. Metric algorithms try to map
the stimuli in a Euclidean space by keeping the distances between
the stimuli as much like their corresponding dissimilarity scores as
possible. Non-metric algorithms focus more on preserving the rank
of the dissimilarity scores.

Therefore, by applying a metric algorithm to the data obtained
from the cluster-sorting method, we formulate the assumption that
the connection strength between two stimuli grouped together is
linearly dependent on the number of clusters present. For instance,
an association between two stimuli grouped in a sorting trial with
15 clusters is considered to be 5 times more powerful than a associ-
ation between any other two stimuli grouped in a sorting trial with
3 clusters. While both Ward and MacLean obtained positive results
when they applied a metric MDS analysis to their data, it is hard to
demonstrate that a metric assumption is justified at all times.

On the other hand, the data in the dissimilarity matrix can also
be considered to be non-metric. In this case, it is is assumed that
summing the similarity points that accrue over successive sorting
trials does not destroy the monotonicity of the data. This weaker
assumption relaxes the constraints on the MDS analysis. However,
an MDS analysis now results in a graphical representation that can
only give an idea of the extent to which stimuli differ, without pro-
viding as much quantitative meaning to the graphical inter-stimuli
distances.

Results reported in 3.3.4 are produced with a nonmetric analy-
sis on the assumption that the data is ordinal. We also considered
results generated with different metric MDS algorithms (including
the INDSCAL algorithm). The MDS metric plots shared some sim-
ilar features with their nonmetric counterparts, such as proximity in
space of all the tri stimuli. However, the plots did not exhibit
any clear visual clustering of the stimuli into the 3 major groups
described in the discussion section 3.3.5 and the stimuli appeared
to be more continuously spread out across the perceptual space,
making it harder to interpret the results. Without invalidating any
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Figure 5: Number of possible combinations to obtain a single dis-
similarity score with a cluster-set of {3,6,9,12,15}.

metric analysis of the data, our results indicate that perceptual data
obtained using the cluster-sorting technique seems best assumed to
be ordinal.

5.2 Dissimilarity Matrix Properties

A matrix obtained from a set of classic pair-wise comparisons con-
tains score-elements that are independent of each other. Each dis-
similarity score reflects a dissimilarity intensity that is in relation to
the others, but changing one score element won’t affect the other
elements of the matrix. On the other hand, a dissimilarity matrix
obtained with the cluster-sorting method is structurally constricted.
One cannot re-adjust a single score for a particular pair compari-
son, without having to readjust other elements of the matrix. This
is a direct consequence of the requirement for a minimum of one-
stimulus-per-cluster imposed by the experimental procedure and
the fact that assigning a stimulus to a cluster also means that it is
not put into any of the other clusters of the same trial.

Dissimilarity scores obtained with the cluster-sorting method
have one of a set of discrete values. For the cluster sets used here,
these vary from 0 to 1000 with a resolution of 66.6 (Figure 5). For
10 of the 16 possible cases, there exists more than one combinator-
ial way to obtain the same score. Moreover, the random distribution
of the set of score values across the entire dissimilarity matrix is not
a normal distribution since the matrix elements (i.e., all the different
pairs) are not independent.

This was observed in post-analysis and shown in Table 3, which
displays the number of clusters actually chosen by our subjects on
the first sorting trial, as well as the number of maximum dissim-
ilarity scores of 1000 and of 0. The latter provide some indica-
tion of the dissimilarity matrix structure: a score of 1000 indicates
two stimuli that were never grouped together across the five trials
whereas a score of 0 indicates that they were always paired. Across
all 10 dissimilarity matrices, 20 associations (ranging from 2 to 4
stimuli in size) with scores of 0 were made and all but one involved
saw, edge and bump stimuli exclusively - for instance, subject #4
systematically put the stimuli bumpF74, bumpF110 and edgeH147
in the same clusters across all trials. Moreover, only 2 out of these
20 0-dissimilarity associations included stimuli of different ampli-
tudes (one of the exceptions is the example given above for subject
#4). Conversely, the average dissimilarity matrix indicates that 107
of the 435 possible pairs that could have been formed across the
five trials were never made (Table 4).

The high occurrence of dissimilarity scores of 1000 is easily ex-
plained. Over all five sorting trials, numerous pairs of stimuli are
never grouped together and therefore are assigned a maximum dis-

Table 3: Key properties of the individual dissimilarity matrices. Per-
centages in parentheses indicate a proportion of the dissimilarity ma-
trix’s 435 elements. Scores of 1000 and 0 represent cases where a
stimuli pair was always and never grouped together respectively.

Subject Nb. init. Nb. of Nb. of
index clusters 1000’s 0’s

1 6 210 (48%) 0 (0%)

2 5 241 (55%) 2 (0%)

3 8 245 (56%) 2 (0%)

4 5 238 (55%) 9 (2%)

5 12 253 (58%) 3 (1%)

6 8 233 (54%) 4 (1%)

7 2 203 (47%) 1 (0%)

8 7 269 (62%) 1 (0%)

9 6 258 (59%) 8 (2%)

10 6 207 (48%) 5 (1%)

Table 4: Key properties of the average dissimilarity matrix. The
average dissimilarity matrix, shown in Table 2, is formed by averaging
each score element of the 10 subjects’ matrices. Percentages in
parentheses indicate a proportion of the average dissimilarity matrix’s
435 elements.

Nb. of 1000’s Nb. of 0’s
Avg. Matrix 107 (25%) 0 (0%)

similarity score. Caution must be taken when interpreting a 1000
score. It cannot represent infinite dissimilarity because there is no
absolute zero of perceptual similarity. Humans are very good at
finding associations between items, irrelevantly of the amplitude of
the contrast between the items presented. However, it can either
stand for the maximum non-infinite difference between two stimuli
among the set of stimuli displayed, or simply represent a measure
of uncertainty of the data. The latter occurs, for instance, if not
enough cluster-sorting trials have been run. This dual nature of
1000 scores strengthens the argument that an MDS analysis should
assume cluster-sorted data are ordinal/untied.

The actual distribution of scores obtained through a simulation
of completely random sorting for this method is shown in Figure 62.
Also shown is the score distribution for a typical subject who chose
6 clusters for the initial trial, and whose individual MDS result ex-
hibited a clear and plausible clustering.

In both cases, high dissimilarity scores are much more present
than low dissimilarity scores, with a peak occurrence of the max-
imum dissimilarity score of 1000 (accounting for more than 40%
of all the scores in the matrix). Interestingly, the random distribu-
tion is almost monotonic, except for a score of 867 that occurs less
often than a score of 800, explained partially by the fact that there
exists more combinatorial ways for a stimulus pair to obtain a score
of 800 than a score of 867.

The first trial allowed subjects to choose a preferred number of
sorting clusters. This extra degree of freedom in the experimen-
tal procedure is intended to expose what subjects feel is the nat-
ural number of clusters for the set of stimuli presented (and which
shows substantial and interesting variety, as documented by Ta-
ble 3). However, it adds yet another degree of complexity to the
analysis of the dissimilarity data. Figure 7 illustrates how the choice
of the initial number of clusters affects the random distribution of
the 1000-scores across the matrix. We chose to show the effect
on the 1000-score frequency since it is the highest, but it is easy
to understand that the entire random score distribution is depen-

2The random distribution was generated by averaging the results of
10000 iterations of the replication of a random classification of the stim-
uli following the sorting rules described in 3.3.3.
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randomized cluster sorting execution, as a function of the number of
clusters chosen for the first trial. Frequency indicates a proportion of
the 435 score-elements present in a 30-stimulus dissimilarity matrix.

dent on the initial number of clusters. Of all the sorting trials, the
one with the least number of clusters affects the distribution of the
1000-scores across the matrix the most because it forces a higher
average number of stimuli per cluster. Therefore, the dissimilarity
matrix obtained from a subject who selected two clusters for the
initial sort will contain a wider distribution of scores than that of a
subject who selected four clusters.

These results indicate that a validation of the subjects’ data –
for instance obtaining p-values that denote with high probability
that the subjects’s clustering were not random – is not a trivial task
because the random distribution is ill-defined. This also suggests
that comparing the scores of the individual dissimilarity matrices
through standard techniques such as standard deviation might not
be relevant, and should probably not be used to discard subjects.

For the analysis reported here, we validated the individual dis-
similarity matrices obtained by trying to find any flagrant inconsis-
tencies in subjects’ answers. For instance, we examined the indi-
vidual MDS plots of each subject. We also compared the number
of 1000’s between the subjects individual matrices and the random
distribution. These inspections did not reveal any inconsistency and
therefore we made use all of our subjects’ data for our analyses.

Further work is required to assess the significance of the de-
pendencies among the matrix cell values, the discretization of the
scores and the unusual shape of the score distribution because they

are likely to have implications on the results and validation of any
analysis (MDS or other).

5.3 Capture of MDS Group Internal Structure

For our example results, the MDS plot’s y-axis seems to absorb
different stimulus design parameters for different large groupings
(Section 3.3.5). This made us wonder about the extent to which the
cluster-sorting method can capture and reveal sub-dominant stimu-
lus distinctions. Clearly, a 2D MDS analysis cannot provide enough
detail to resolve group internal structure (if it varies from group to
group) because of the dimensionality restriction it imposes on the
algorithm; but does a dissimilarity matrix acquired with the cluster-
sorting method nevertheless contain the more subtle distinctions
specific to a given major group found by a low-dimensional analy-
sis? If present, can it be recovered without resort to a less-intuitive,
higher-dimension MDS analysis? To address these questions, we
ran a second experiment.

Method: The experiment protocol was similar to the one de-
scribed in 3.3.2, with the following differences and key parameters.

We tested five subjects, none of whom had taken part in the first
experiment. For the first part of this experiment, subjects were
again asked to classify the entire set of 30 stimuli, but this time
with a cluster-set of {5,10,15} rather than the set used for 3.3.2.
In the second part, subjects proceeded to execute the same classi-
fication task three more times, on the 6 stimuli of three different
particular waveform types (tri, roll and edge, respectively) and
for a cluster-set of {2,3,4}.

Data: From the first part of the experiment, we generated a con-
trol dissimilarity matrix (sized 30x30) from which we isolated the
three 6x6 submatrices belonging to the subsets being examined for
internal structure. From the second part, we produced three full 6x6
dissimilarity matrices, one for each waveform type. We then ran a
2D MDS analysis for the 30x30 control matrix and each of these
six 6x6 matrices, and compared the resulting plots.

Results and Discussion: The resulting 2D MDS plot for the
control dissimilarity matrix (Figure 8(a)) is very similar to our MDS
plot obtained with the original experiment (Figure 4). Since these
were derived from cluster sorts using different cluster-sets, this sug-
gests that cluster-set does not strongly impact the outcome of the
MDS analysis.

Moreover, MDS plots (not shown) generated from submatrices
of the 30x30 control matrix strongly resemble their intra-waveform
matrix counterparts ((b), (c) and (d) of Figure 8). Specifically, all
graphs display a clear spatial demarcation between stimuli of half
amplitude and stimuli of full amplitude. Furthermore, most of the
gradation in duration as well as its orientation present on the intra-
waveform plots is also visible on the submatrix plots. Thus, our
data seems to offer evidence that the cluster-sorting method does
capture the underlying structure of non-dominant distinctions.

A key observation is that these subtleties are not apparent from
inspection of the global MDS plot based on the control 30x30 dis-
similarity matrix. This suggests that re-running the MDS algorithm
on sub-sets of the entire stimulus space (thus relaxing the stress on
the algorithm when it is required to find consistent dimensions for
an entire diverse set of stimuli) can offer valuable information on
lower structural levels of the entire stimulus set that are not visible
from the global MDS plot.

5.4 Effects of Noise

Perceptual experiments always suffer from noisy data due to sub-
ject fatigue and calibration drift. The effects of perceptual noise on
data obtained from a cluster-sorting experiment are hard to quan-
tify, even if assumed to be random, because a fixed level of ran-
domness will weigh differently on the overall noise from one trial
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Figure 8: Ordinal untied MDS plots obtained from grouping the
different waveforms into cluster-sets of {2,3,4}: (a) control with all
30 stimuli and with isolated (b) tri, (c) roll and (d) edge stimuli.

to another. The similarity point assignment process tends to am-
plify noise for trials with a large number of clusters. For instance,
the noise-induced erroneous sorting of a stimulus when 15 clusters
are present is more significant than with only 3 clusters because
an improperly matched pair is assigned 15 similarity points in the
former case and only 3 in the latter. To complicate things, it can
be argued that a 15-cluster discrimination task will generate more
uncertainty than a 3-cluster task because it imposes a heavier cog-
nitive load on the subject. If this is true, it would mean that the most
noisy part of the data is also precisely the one that accounts for the
largest similarity scores (or lowest dissimilarity scores).

Despite the fact that we are currently unable to account for the
level of noise in the data, we are not too alarmed by this potential
problem since, as reported in 5.2, our results were reproducible.
This suggests that, even though noise might get amplified for the
trials with a large number of clusters, the initial amount of noise
generated by applying the cluster-sorting technique is not impor-
tant enough to significantly distort the dissimilarity data. However,
if this was to become a problem in future experiments using the
same technique, one possible solution would consist in applying
a corrective factor that decreases the weight of trials containing a
large number of clusters.

6 CONCLUSIONS AND FUTURE WORK

The advantages of the cluster sorting algorithm for generating per-
ceptual MDS input data are significant: in particular, it is superbly
efficient in both time and consistency of subject response. The con-
cerns we have identified are at minimum important to be aware of.
Based on the reported investigation, advantages seem to outweigh
the concerns, and it appears justifiable to continue using this tech-
nique with well-informed caution. With respect to each of our Sec-
tion 4 questions, we specifically conclude:

Q1 Perceptual data obtained using this cluster-sorting technique is
best assumed to be ordinal, and analyzed with a non-metric
MDS algorithm.

Q2 Key characteristics of a cluster-sorted dissimilarity matrix, in
particular a restriction on element independence, may impact
MDS output. Further investigation is required to quantify both

the magnitude of this restriction, and the robustness of MDS
algorithms to such inter-matrix correlations.

Q3 Hidden patterns in the resulting plot of a MDS analysis car-
ried out on the entire stimuli set can become apparent when
selected submatrices of the full dissimilarity matrix are sub-
mitted to the same MDS algorithm. This tends to indicate that
the cluster-sorting technique also captures detailed informa-
tion about sub-level of stimuli distinction that are not visible
by sole inspection of the global MDS plot.

Q4 It is difficult to make sense of the distribution of noise across
the dissimilarity matrix obtained from the cluster-sorting
method (mainly due to noise amplification for trials with a
large number of clusters). However, the fact that we were
able to replicate our results over two independent experiments
seems to indicate that the data-gathering technique is not gen-
erating enough noise to significantly distort the data.

This work represents the first step in an ongoing effort to de-
velop a suitable mechanism for analyzing the perceived differences
and usability of haptic icons. Our results for questions 2 and 4 in
particular need further development. Finally, we are also consider-
ing alternatives to MDS for perceptual analysis of haptic icons.
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