
Multiclass Object Recognition with Sparse, Localized Features

Jim Mutch and David G. Lowe
Department of Computer Science
University of British Columbia

#201 - 2366 Main Mall
Vancouver, B.C., Canada, V6T 1Z4

{mutch,lowe}@cs.ubc.ca

Abstract

We apply a biologically inspired model of visual object
recognition to the multiclass object categorization problem.
Our model modifies that of Serre, Wolf, and Poggio. As in
that work, we first apply Gabor filters at all positions and
scales; feature complexity and position/scale invariance are
then built up by alternating template matching and max
pooling operations. We refine the approach in several bi-
ologically plausible ways, using simple versions of sparsi-
fication and lateral inhibition. We demonstrate the value of
retaining some position and scale information above the in-
termediate feature level. Using feature selection we arrive
at a model that performs better with fewer features. Our
final model is tested on the Caltech 101 object categories
and the UIUC car localization task, in both cases achiev-
ing state-of-the-art performance. The results strengthen the
case for using this class of model in computer vision.

1. Introduction

The problem of recognizing multiple object classes in nat-
ural images has proven to be a difficult challenge for com-
puter vision. Given the vastly superior performance of hu-
man vision on this task, it is reasonable to look to biology
for inspiration. In fact, recent work by Serre, Wolf, and Pog-
gio [23] has shown that a computational model based on our
knowledge of visual cortex can be competitive with the best
existing computer vision systems on some of the standard
recognition datasets. Our paper builds on their approach by
incorporating some additional biologically-motivated prop-
erties, including sparsification of features, lateral inhibition,
and feature localization. We show that these modifications
further improve recognition performance, strengthening our
understanding of the computational constraints facing both
biological and computer vision systems.

Within machine learning, it has been found that increas-

ing the sparsity of basis functions [7, 14] (equivalent to re-
ducing the capacity of the classifier) plays an important role
in improving generalization performance. Similarly, within
computational neuroscience, it has been found that adding a
sparsity constraint is critical for learning biologically plau-
sible models from the statistics of natural images [20]. For
object class recognition, one way we have found to increase
sparsity is to use a lateral inhibition model that eliminates
weaker responses that disagree with the locally dominant
ones. We further enhance this approach by matching only
the dominant orientation at each position within a feature
rather than comparing all orientation responses. We also in-
crease sparsity during final classification by discarding fea-
tures with low weights and using only those that have been
found most effective. We show that each of these changes
provides a significant boost in generalization performance.

While some current successful methods for object class
recognition learn and apply quite precise geometric con-
straints on feature locations [6, 3], others ignore geometry
and use a “bag of features” approach that ignores the lo-
cations of individual features [4]. According to models of
object recognition in cortex [21], the brain uses a hierar-
chical approach, in which simple, low-level features having
high position and scale specificity are pooled and combined
into more complex, higher-level features having greater lo-
cation invariance. We investigate retaining some degree of
position and scale sensitivity at a higher point in this hierar-
chy than the approach of [23], and show that this provides a
significant improvement in final classification performance.

We test these improvements on the large Caltech dataset
of images from 101 object classes [5]. Our results show
that there are significant improvements to classification per-
formance from each of the changes. Further tests on the
UIUC car database [1] demonstrate that the resulting sys-
tem can also perform well on object detection and local-
ization. Our results further strengthen the case for incor-
porating concepts from biological vision into the design of
computer vision systems.

2. Models

The model presented in this paper is based on the “stan-
dard model” of object recognition in cortex (as summarized
by [21]), which focuses on the capabilities of the ventral
visual pathway in an “immediate recognition” mode, inde-
pendent of attention or other top-down effects. The rapid
performance of the human visual system in this mode im-
plies mainly feedforward processing, making it the easiest
to model.

2.1. Previous models

Our model builds on that of Serre et al. [23], which in turn
extends the “HMAX” model of Riesenhuber and Poggio
[21]. These are the latest of a group of models which can
be said to implement parts of the standard model, includ-
ing convolutional networks [16] and Neocognitrons [10].
All start with an image layer of grayscale pixels and suc-
cessively compute higher layers, alternating “S” and “C”
layers (named by analogy with the V1 simple and complex
cells discovered by Hubel and Wiesel [13]).

• Simple (“S”) layers use convolution with local filters to
compute higher-order features by combining different
types of units in the previous layer.

• Complex (“C”) layers increase invariance by pooling
units of the same type in the previous layer over lim-
ited ranges. At the same time, the number of units is
reduced by subsampling.

Recent models have moved towards greater quantita-
tive fidelity to the ventral stream. HMAX was designed
to account for the tuning and invariance properties [18] of
neurons in IT cortex. Rather than attempting to learn its
bottom-level (“S1”) features, HMAX uses hardwired filters
designed to emulate V1 simple cells. Subsequent “C” lay-
ers are computed using a hard MAX – a C unit’s output is
the maximum value of its afferent S units. This increases
feature invariance while maintaining specificity. HMAX is
also explicitly multiscale: its bottom-level filters are com-
puted at all scales, and subsequent C units pool over both
position and scale.

Serre et al. [23] introduced learning of intermediate-
level shared features, made additional quantitative adjust-
ments, and added a final (non-biologically motivated) SVM
classifier to make the model useful for classification.

2.2. Our base model

Our base model is similar to [23] and performs about as
well. Nevertheless, it is an independent implementation,
and we give its complete description here. Its differences
from [23] will be listed briefly at the end of this section.
Larger changes, representing the main contribution of this
paper, are described in section 2.3.

The model consists of five layers: an initial image
layer and four subsequent layers, each layer built from the
previous by alternating template matching and max pooling
operations. It is shown graphically in figure 1, and the
following subsections describe each layer.

Image layer. We convert the image to grayscale and scale
the shorter edge to 140 pixels while maintaining the aspect
ratio. Next we create an image pyramid of 10 scales,
each a factor of 21/4 smaller than the last (using bicubic
interpolation).

Gabor filter (S1) layer. The S1 layer is computed from the
image layer by centering 2D Gabor filters with a full range
of orientations at each possible position and scale. Our base
model follows [23] and uses 4 orientations. Where the im-
age layer is a 3D pyramid of pixels, the S1 layer is a 4D
structure, having the same 3D pyramid shape, but with mul-
tiple oriented units at each position and scale (see figure 1).
Each unit represents the activation of a particular Gabor fil-
ter centered at that position/scale. This layer corresponds to
V1 simple cells.

The Gabor filters are 11x11 in size, and can be described
by:

G(x, y) = exp

(

−
(X2 + γ2Y 2)

2σ2

)

cos

(

2π

λ
X

)

(1)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ. x
and y vary between -5 and 5, and θ varies between 0 and
π. The parameters γ (aspect ratio), σ (effective width), and
λ (wavelength) are all taken from [23] and are set to 0.3,
4.5, and 5.6 respectively. Finally, the components of each
filter are normalized so that their mean is 0 and the sum
of their squares is 1. We use the same size filters for all
scales (applying them to scaled versions of the image). The
response of a patch of pixels X to a particular S1 filter G is
given by:

R(X, G) =

∣

∣

∣

∣

∣

∑

XiGi
√

∑

X2

i

∣

∣

∣

∣

∣

(2)

Local invariance (C1) layer. This layer pools nearby
S1 units (of the same orientation) to create position and
scale invariance over larger local regions, and as a result
can also subsample S1 to reduce the number of units. For
each orientation, the S1 pyramid is convolved with a 3D
max filter, 10x10 units across in position1 and 2 units
deep in scale. A C1 unit’s value is simply the value of
the maximum S1 unit (of that orientation) that falls within
the max filter. To achieve subsampling, the max filter is
moved around the S1 pyramid in steps of 5 in position (but
only 1 in scale), giving a sampling overlap factor of 2 in

1Note that the max filter is itself a pyramid, so its size is 10x10 only at
the lowest scale.

C2 Layer [r1 r2 ... rd]
d feature
responses

global max

S2 Layer [r1 r2 ... rd]
d feature
responses
per location

2222

9

× d features

C1 Layer []
4 orientations
per location

2525

9

local max

S1 Layer []
4 orientations
per location

130
130

10

× 4 filters

Image

Layer

1 pixel
per location

140
140

10

Figure 1. Overview of the base model. Each layer has units cover-
ing three spatial dimensions (x/y/scale), and at each 3D location,
an additional dimension of feature type. The image layer has only
one type (pixels), layers S1 and C1 have 4 types, and the upper
layers have d (many) types per location. Each layer is computed
from the previous via convolution with template matching or max
pooling filters. Image size can vary and is shown for illustration.

both position and scale. Due to the pyramidal structure of
S1, we are able to use the same size filter for all scales.
The resulting C1 layer is smaller in spatial extent and has
the same number of feature types (orientations) as S1; see
figure 1. This layer provides a model for V1 complex cells.

Intermediate feature (S2) layer. At every position and
scale in the C1 layer, we perform template matches between
the patch of C1 units centered at that position/scale and each
of d prototype patches. These prototype patches represent
the intermediate-level features of the model.

The prototypes themselves are randomly sampled from
the C1 layers of the training images in an initial feature-
learning stage. (For the Caltech 101 dataset, we use d =
4,075 for comparison with [23].) Prototype patches are like
fuzzy templates, consisting of a grid of simpler features that
are all slightly position and scale invariant.

During the feature learning stage, sampling is performed
by centering a patch of size 4x4, 8x8, 12x12, or 16x16 (x
1 scale) at a random position and scale in the C1 layer of
a random training image. The values of all C1 units within
the patch are read out and stored as a prototype. For a 4x4
patch, this means 16 different positions, but for each posi-
tion, there are units representing each of 4 orientations (see
the “dense” prototype in figure 2). Thus a 4x4 patch actu-
ally contains 4x4x4 = 64 C1 unit values.

Preliminary tests seemed to confirm that multiple fea-
ture sizes worked somewhat better than any single size.
Smaller (4x4) features can be seen as encoding shape, while
larger features are probably more useful for texture. Since
we learn the prototype patches randomly from unsegmented
images, many will not actually represent the object of inter-
est, and others may not be useful for the classification task.
The weighting of features is left for the later SVM step. It
should be noted that while each S2 prototype is learned by
sampling from a specific image of a single category, the re-
sulting dictionary of features is shared, i.e. all features are
used by all categories.

During normal operation (after feature learning) each of
these prototypes can be seen as just another convolution fil-
ter which is run over C1. We generate an S2 pyramid with
roughly the same number of positions/scales as C1, but hav-
ing d types of units at each position/scale, each represent-
ing the response of the corresponding C1 patch to a specific
prototype patch; see figure 1. The S2 layer is intended to
correspond to cortical area V4 or posterior IT.

The response of a patch of C1 units X to a particular S2
feature/prototype P , of size n × n, is given by a Gaussian
radial basis function:

R(X, P) = exp

(

−
‖X − P‖2

2σ2α

)

(3)

Both X and P have dimensionality n × n × 4, where n ∈

{4, 8, 12, 16}. As in [23], the standard deviation σ is set to
1 in all experiments.

The parameter α is a normalizing factor for different
patch sizes. For larger patches n ∈ {8, 12, 16} we are
computing distances in a higher dimensional space; for the
distance to be small, there are more dimensions that have
to match. We reduce the weight of these extra dimensions
by using α = (n/4)2, which is the ratio of the dimension
of P to the dimension of the smallest patch size.

Global invariance (C2) layer. Finally we create a d-
dimensional vector, each element of which is the maximum
response (anywhere in the image) to one of the model’s
d prototype patches. At this point, all position and scale
information has been removed.

SVM classifier. The C2 vectors are classified using an all-
pairs linear SVM2. Data is “sphered” before classification:
the mean and variance of each dimension are normalized
to zero and one respectively.3 Test images are assigned to
categories using the majority-voting method.

Differences from Serre et al. Our base model, as described
above, performs about as well as that of Serre et al. in [23].
However, in [23]:

• image height is always scaled to 140,
• a pyramid approach is not used (different sized filters

are applied to the full-scale image),
• the S1 parameters σ and λ change from scale to scale,
• S1 filters differ in size additively,
• C1 subsampling ranges do not overlap in scale, and
• S2 has no α parameter.

2.3. Improvements

We have developed and tested a number of improvements to
the base model. Each of these is described below. Testing
results for each modification are provided in section 3.

Sparsify S2 inputs. In the base model, an S2 unit computes
its response using all the possible inputs in its correspond-
ing C1 patch. Specifically, at each position in the patch, it is
looking at the response to every orientation of Gabor filter
and comparing it to its prototype. Based on the principle
that features should be as sparse as possible, we reduce the
number of inputs to an S2 feature to one per C1 position.
In the feature learning phase, we remember the identity and
magnitude of the dominant orientation (maximally respond-
ing C1 unit) at each of the n×n positions in the patch. This
is illustrated in figure 2; a 4x4 prototype patch now contains
only 16 C1 unit values, not 64. When computing responses

2We use the Statistical Pattern Recognition Toolbox for Matlab [8].
3Suggested by T. Serre (personal communication).

Dense Sparse

Figure 2. Dense vs. sparse S2 features. Dense S2 features in the
base model are sensitive to all orientations of C1 units at each po-
sition. Sparse features are sensitive only to a particular orientation
at each position. A 4x4 S2 feature for a 4-orientation model is
shown here. Stronger C1 unit responses are shown as darker.

to S2 features, equation 3 is still used, but with a lower di-
mensionality: for each position in the patch, the S2 feature
only cares about the value of the C1 unit representing its
preferred orientation for that position.

In conjunction with this we increase the number of
Gabor filter orientations in S1 and C1 from 4 to 12. Since
we’re now looking at particular orientations, rather than
combinations of responses to all orientations, it becomes
more important to represent orientation accurately. Cells in
visual cortex also have much finer gradations of orientation
than π/4 [13].

Inhibit S1/C1 outputs. Our second modification is similar
– we again ignore non-dominant orientations, but here we
focus not on pruning S2 feature inputs but on suppressing
S1 and C1 unit outputs. In cortex, lateral inhibition refers
to units suppressing their less-active neighbors. We adopt a
simple version of this between S1/C1 units encoding differ-
ent orientations at the same position and scale. Essentially
these units are competing to describe the dominant orienta-
tion at their location.

We define a global parameter h, the inhibition level,
which can be set between 0 and 1 and represents the fraction
of the response range that gets suppressed. At each loca-
tion, we compute the minimum and maximum responses,
Rmin and Rmax, over all orientations. Any unit having
R < Rmin + h(Rmax −Rmin) has its response set to zero.

As a result, if a given S2 unit is looking for a response to
a vertical filter (for example) in a certain position, but there
is a significantly stronger horizontal edge in that rough
position, the S2 unit will be penalized.

Limit position/scale invariance of S2 features. Like many
“bag of features” models [4], the base model disregards
all geometry above the level of S2 units. It simply uses
the maximum response to each S2 feature at any position
or scale. This gives complete position and scale invari-
ance, but S2 features are still too simple to eliminate bind-

ing problems: we are still vulnerable to false positives due
to chance co-occurrence of features from different objects
and/or background clutter.

We wanted to investigate the option of retaining some
geometric information above the S2 level. In fact, neurons
in V4 and IT do not exhibit full invariance and are known to
have receptive fields limited to only a portion of the visual
field and range of scales [22]. To model this, we simply
restrict the region of the visual field in which a given S2
feature can be found, relative to its location in the image
from which it was originally sampled, to ±tp% of image
size and ±ts scales, where tp and ts are global parameters.

This approach assumes the system is “attending” close
to the center of the object. This is appropriate for datasets
such as the Caltech 101, in which most objects of interest
are at similar positions and scales within the image. For the
more general detection of objects within complex scenes,
as in the UIUC car database, we augment it with a search
for peak responses over object location using a sliding
window.

Select features that are highly weighted by the SVM. Our
S2 features are prototype patches randomly selected from
unsegmented training images. Many will be from the back-
ground, and others will have varying degrees of usefulness
for the classification task. We wanted to find out how many
features were actually needed, and whether cutting out less-
useful features would improve performance, as we might
expect from machine learning results on the value of spar-
sity.

We use a simple feature selection technique based on
SVM normals [19]. In fitting separating hyperplanes, the
SVM is essentially doing feature weighting. Our all-pairs
m-class linear SVM consists of m(m− 1)/2 binary SVMs.
Each fits a separating hyperplane between two sets of points
in d dimensions, in which points represent images and each
dimension is the response to a different S2 feature. The d
components of the (unit length) normal vector to this hy-
perplane can be interpreted as feature weights; the higher
the kth component (in absolute value), the more important
feature k is in separating the two classes.

To perform feature selection, we simply drop features
with low weight. Since the same features are shared by
all the binary SVMs, we do this based on a feature’s av-
erage weight over all binary SVMs. Starting with a pool of
12,000 features, we conduct a multi-round “tournament”.
In each round, the SVM is trained, then at most4 half the
features are dropped. The number of rounds depends on the
desired final number of features d. (For performance rea-
sons, earlier rounds are carried out using multiple SVMs,
each containing at most 3,000 features.)

4Depending on the desired number of features it may be necessary to
drop less than half per round.

Figure 3. Some images from the Caltech 101 dataset.

Model
15 training 30 training
images/cat. images/cat.

Our model (base) 33 41
Serre et al. [23] 35 42
Holub et al. [12] 37 43
Berg et al. [2] 45
Grauman & Darrell [11] 49.5 58.2
Our model (final) 51 56

Table 1. Published classification results for the Caltech 101
dataset. Results for our model are the average of 8 independent
runs. Scores shown are the average of the per-category classifica-
tion rates.

Our experiments show that dropping features (effectively
setting their weights to zero rather than those assigned by
the SVM) improves classification performance, and the re-
sulting model is more economical to compute.

3. Multiclass experiments (Caltech 101)

The Caltech 101 dataset contains 9,197 images comprising
101 different object categories, plus a background category,
collected via Google image search by Fei-Fei et al. [5].
Most objects are centered and in the foreground, in a stereo-
typical pose. Some sample images are shown in figure 3.

First we ran our base model (described in section 2.2) on
the entire set. The results are shown in table 1 for both 15
and 30 training images per category.

Each result is the average of 8 runs. For each run we:

1. choose 15 or 30 training images at random from each
category, placing all remaining images in the test set,

2. learn features at random positions and scales from the
training images (an equal number from each image),

3. build C2 vectors for the training set,

4. train the SVM (performing feature selection if that op-
tion is turned on),

5. build C2 vectors for the test set and classify the test
images.

4 6 8 10 12 14 16

40

41

42

43

44

45

orientations

av
er

ag
e

%
 c

or
re

ct

group A
group B

0 0.25 0.5 0.75

42
43
44
45
46
47
48
49
50

inhibition factor h
1 10 100

45
46
47
48
49
50
51
52
53
54
55
56

allowed % position variation
0 1 2 3 4 5 6 7 8

52

53

54

55

56

57

allowed scale variation

Figure 4. The results of parameter tuning for various enhancements to the base model using the Caltech 101 dataset. Each data point is
the average of 8 independent runs, using 15 training images and up to 100 test images per category. Tests were run independently on two
disjoint groups of 50 categories each. The horizontal lines in the leftmost graph show the performance of the base model (dense features,
4 orientations) on the two groups. Tuning is cumulative: the parameter value chosen in each graph is marked by a solid diamond on the
x-axis. The results for this parameter value become the starting points (shown as solid data points) for the next graph.

0 2000 4000 6000 8000 10000 12000

47

48

49

50

51

av
er

ag
e

%
 c

or
re

ct

number of features

Figure 5. Results for the final model on the entire Caltech 101
dataset for various numbers of features, selected from a pool of
12,000. Each data point is the average of 4 runs with 15 training
images and up to 100 test images per category. The horizontal
line represents the performance of the same model but with 4,075
randomly selected features and no feature selection.

4 x 4 8 x 8 12 x 12 16 x 16
0
5

10
15
20
25

%
 k

ep
t

Figure 6. Percentage of each size of feature remaining after feature
selection, using the final number of features (1500).

Next we successively turned on the improvements de-
scribed in section 2.3. Each has one or two free param-
eters that must be tuned. The complete parameter space
is too large to search exhaustively, hence we chose an or-
der and optimized each parameter separately before mov-
ing to the next. First we turned on S2 input sparsification
and found a good number of orientations, then we fixed that

number and moved on to find a good inhibition level, etc.
Our goal was to find parameter values that could be used
for any dataset, so we wanted to guard against the possi-
bility of tuning parameters to unknown properties specific
to the Caltech 101. This large dataset has enough variety to
make this unlikely; nevertheless, we ran tests independently
on two disjoint subsets of the categories and chose parame-
ter values that fell in the middle of the good range for both
groups (see figure 4). The fact that such values were easy to
find increases our confidence in the generality of the chosen
values. The two groups were constructed as follows:

1. remove the easy faces and background categories,
2. sort the remaining 100 categories by number of im-

ages, then
3. place odd numbered categories into group A and even

into group B.

The final parameter, number of features, was optimized
for all 102 categories. Since models with fewer features can
be computed more quickly, we chose the smallest number
of features that still gave results close to the best. Among
these surviving features, the 4x4 size dominates (figure 6),
suggesting that this size yields the most informative features
for this task [24].

The results of parameter tuning are shown in figures 4
and 5. Note that we limited the number of test images per
category to 100 to save time. The chosen parameters were
12 orientations, h = 0.5, tp = ±5%, ts = ±1 scale, 1500
features.

Finally, we computed results for our final model, using
both 15 and 30 training images and all remaining test im-
ages per category. Again, each result is the average of 8
independent runs. The results are summarized in table 1,
along with those from other published studies. Our final
results for 15 and 30 training images are 51% and 56%.

Model Single-scale Multiscale
Agarwal et al. [1] 76.5 39.6
Leibe et al. [17] 97.5
Fritz et al. [9] 87.8
Our model 99.94 90.6

Table 2. Detection/localization results (recall at equal-error rates)
for the UIUC car dataset. The results for our model are the average
of 8 independent runs. Scoring methods were those of [1].

According to advance copies of upcoming papers pro-
vided by the authors [15, 25], some further improved results
for the Caltech 101 dataset will be published soon. These
use improved kernels for the SVM classifier (as does Grau-
man & Darrell [11]). It will be interesting to see whether
these ideas can be successfully combined with our sparse
image features to get further improvements.

4. Detection / localization experiments
(UIUC car dataset)

We ran our final, tuned model on the UIUC car dataset [1].
This dataset consists of small (100x40) training images of
cars and background, and larger test images in which there
is at least one car to be found. There are two sets of test
images: a single-scale set in which the cars to be detected
are roughly the same size (100x40 pixels) as those in the
training images, and a multi-scale set.

Other than the number of features, which we set to 500
(selected from 4000 in 3 rounds, comparing features in
groups of at most 1000), all parameters were unchanged.
For localization in these larger images we added a sliding
window. Duplicate detections were consolidated using the
neighborhood suppression algorithm from [1].

We trained the model using 500 positive and 500 neg-
ative training images; features were sampled from these
same images. As in [1], the sliding window moves in steps
of 5 pixels horizontally and 2 vertically. We increase the
width of a “neighborhood” from 71 to 111 pixels to avoid
merging adjacent cars.

Our results are shown in table 2 along with those of other
studies. Our recall at equal-error rates (recall = precision)
is 99.94% for the single-scale test set and 90.6% for the
multiscale set, averaged over 8 runs. Scores were computed
using the scoring programs provided with the UIUC data.

In our single-scale tests, 7 of 8 runs scored a perfect
100% – all 200 cars in 170 images were detected with no
false positives. To be considered correct, the detected posi-
tion must lie inside an ellipse centered at the true position,
having horizontal and vertical axes of 25 and 10 pixels re-
spectively. Repeated detections of the same object count as
false positives. Figure 8 shows the only errors from the 8th

run; figure 7 shows some correct single-scale detections.

Figure 7. Some correct detections from one run on the single-scale
UIUC car dataset.

Figure 8. The only 2 errors (1 missed detection, 1 false positive)
made in 8 runs on the single-scale UIUC car dataset.

For the multiscale tests, the sliding window also searches
through scale, and the scoring criteria include a scale toler-
ance (from [1]).

5. Discussion and future work

In this study we have shown that a biologically-based model
can compete with other state-of-the-art approaches to ob-
ject categorization, strengthening the case for investigat-
ing biologically-motivated approaches to object recogni-
tion. Even with our enhancements, this model is still rel-
atively simple.

The system implemented here is not real-time; it takes
several seconds to process and classify an image on a 2GHz
Intel Pentium server. Hardware advances will reduce this
to immediate recognition within a few years. Biologically
motivated algorithms also have the advantage of being sus-
ceptible to massive parallelization. Localization in larger
images takes longer; in both cases the bulk of the time is
spent building feature vectors.

We have found increasing sparsity to be a fruitful ap-
proach to improving generalization performance. Our
methods for increasing sparsity have all been motivated by
approaches that appear to be incorporated in biological vi-
sion, although we have made no attempt to model biological
data in full detail. Given that both biological and computer
vision systems face the same computational constraints aris-
ing from the data, we would expect computer vision re-
search to benefit from the use of similar basis functions for

describing images. Our experiments show that both lateral
inhibition and the use of sparsified intermediate features
contribute to generalization performance.

We have also examined the issue of feature localization
in biologically based models. While very precise geometric
constraints may not be useful for broad object categories,
there is a substantial loss of useful information in com-
pletely ignoring feature location as in bag-of-features mod-
els. We have shown a considerable increase in performance
by using intermediate features that are localized to small
regions of an image relative to an object coordinate frame.
When an object may appear at any position or scale in a clut-
tered image, it is necessary to search over all potential refer-
ence frames to combine appropriately localized features. In
biological vision this attentional search appears to be driven
by a complex range of saliency measures [22]. For our com-
puter implementation, we can simply search over a densely
sampled set of possible reference frames and evaluate each
one. This has the advantage of not only improving classi-
fication performance but also providing quite accurate lo-
calization of each object. The strong performance shown
on the UIUC car localization task indicates the potential for
further work in this area.

As we do not wish to stray too far from what is clearly
a valuable source of inspiration, we lean towards future en-
hancements that are biologically realistic. A likely first step
would be to attempt to model intermediate level features
(above V1) more accurately, possibly adding higher-order
features or view-tuned units. In addition, there would likely
be some benefit to clustering intermediate features to favor
those that occur most frequently in the training set.

References

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect ob-
jects in images via a sparse, part-based representation. PAMI,
26(11):1475–1490, November 2004. 1, 7

[2] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and
object recognition using low distortion correspondence. In
CVPR, June 2005. 5

[3] G. Bouchard and B. Triggs. Hierarchical part-based visual
object categorization. In CVPR, June 2005. 1

[4] G. Csurka, C. Dance, J. Willamowski, L. Fan, and C. Bray.
Visual categorization with bags of keypoints. In ECCV In-
ternational Workshop on Statistical Learning in Computer
Vision, Prague, 2004. 1, 4

[5] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. In CVPR
Workshop on Generative-Model Based Vision, 2004. 1, 5

[6] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
2003. 1

[7] M. Figueiredo. Adaptive sparseness for supervised learning.
PAMI, 25(9):1150–1159, September 2003. 1

[8] V. Franc and V. Hlavac. Statistical pattern recognition tool-
box for Matlab. 4

[9] M. Fritz, B. Leibe, B. Caputo, and B. Schiele. Integrating
representative and discriminative models for object category
detection. In ICCV, pages 1363–1370, Beijing, China, Octo-
ber 2005. 7

[10] K. Fukushima. Neocognitron: A self-organizing neu-
ral network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics,
36(4):193–202, April 1980. 2

[11] K. Grauman and T. Darrell. Pyramid match kernels: Dis-
criminative classification with sets of image features. Tech-
nical Report MIT-CSAIL-TR-2006-020, March 2006. 5, 7

[12] A. Holub, M. Welling, and P. Perona. Exploiting unlabelled
data for hybrid object classification. In NIPS Workshop on
Inter-Class Transfer, Whistler, B.C., December 2005. 5

[13] D. Hubel and T. Wiesel. Receptive fields of single neurones
in the cat’s striate cortex. Journal of Physiology, 148:574–
591, 1959. 2, 4

[14] B. Krishnapuram, L. Carin, M. Figueiredo, and
A. Hartemink. Sparse multinomial logistic regression:
Fast algorithms and generalization bounds. PAMI,
27(6):957–968, 2005. 1

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, June 2006. 7

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, November 1998. 2

[17] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In ECCV Workshop on Statistical Learning in Computer Vi-
sion, pages 17–32, Prague, Czech Republic, May 2004. 7

[18] N. Logothetis, J. Pauls, and T. Poggio. Shape representation
in the inferior temporal cortex of monkeys. Current Biology,
5:552–563, 1995. 2

[19] D. Mladenic, J. Brank, M. Grobelnik, and N. Milic-Frayling.
Feature selection using linear classifier weights: Interaction
with classification models. In The 27th Annual Interna-
tional ACM SIGIR Conference (SIGIR 2004), pages 234–
241, Sheffield, UK, July 2004. 5

[20] B. Olshausen and D. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images. Nature, 381:607–609, 1996. 1

[21] M. Riesenhuber and T. Poggio. Hierarchical models of ob-
ject recognition in cortex. Nature Neuroscience, 2(11):1019–
1025, 1999. 1, 2

[22] E. T. Rolls and G. Deco. The Computational Neuroscience
of Vision. Oxford University Press, 2001. 5, 8

[23] T. Serre, L. Wolf, and T. Poggio. Object recognition with
features inspired by visual cortex. In CVPR, San Diego, June
2005. 1, 2, 3, 4, 5

[24] S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of
intermediate complexity and their use in classification. Na-
ture Neuroscience, 5(7):682–687, 2002. 6

[25] H. Zhang, A. Berg, M. Maire, and J. Malik. Svm-knn: Dis-
criminative nearest neighbor classification for visual cate-
gory recognition. In CVPR, June 2006. 7

