
Tracking and Recognizing Actions at a Distance

Wei-Lwun Lu and James J. Little

Department of Computer Science,
University of British Columbia,

Vancouver, BC V6T 1Z4, CANADA
{vailen, little}@cs.ubc.ca

Abstract. This paper presents a template-based algorithm to track and
recognize athlete’s actions in an integrated system using only visual in-
formation. Usually the two elements of tracking and action recognition
are treated separately. In contrast, our algorithm emphasizes that track-
ing and action recognition can be tightly coupled into a single framework,
where tracking assists action recognition and vice versa. Moreover, this
paper proposes to represent the athletes by the grids of Histograms of
Oriented Gradient (HOG) descriptor. Using of the HOG descriptor not
only improves the robustness of the tracker, but also centers the fig-
ure in the tracking region. Therefore, no further stabilization techniques
are needed. Empirical results on hockey and soccer sequences show the
effectiveness of this algorithm.

1 Introduction

Vision-based tracking and action recognition systems have gained more and more
attention in the past few years because of their potential applications on smart
surveillance systems, advanced human-computer interfaces, and sport video anal-
ysis. In the past decade, there has been intensive research and giant strides in
designing algorithms for tracking humans and recognizing their actions [7].

In this paper, we develop a system that integrates visual tracking and action
recognition, where tracking assists action recognition and vice versa. The first
novelty of this paper is to represent the target by the HOG descriptor [5]. The
HOG descriptor and its variants have been used in human detection [5] and
object class recognition [15], and have been shown to be very distinctive and
robust. This paper shows that the HOG descriptor can be also exploited in vi-
sual tracking and action recognition as well. The second novelty of this paper is
an algorithm that solves the tracking and action recognition problems together
using learned templates. Given the examples of athletes’ appearances of differ-
ent actions, we learn the templates and the transition between the templates
offline. During the runtime, we use the templates and the transition matrix to
classify the athlete’s actions and compute the most probable template sequence
consistent with the visual observation. Moreover, the last template of the most
probable sequence can be used for the visual tracking system to search for the
next position and size of the athlete, which determines the next visual observa-
tion of the athlete.
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This paper is organized as follows: In Section 2, we review some related work
in visual tracking and action recognition. In Section 3, we introduce the HOG
descriptor representation. Section 4 details our tracking and action recognition
algorithms. The experimental results in hockey and soccer sequences are shown
in Section 5. Section 6 concludes this paper.

2 Previous Work

The task of vision-based action recognition can be described as follows: given
a sequence of consecutive images containing a single person, our task is to de-
termine the action of the person. Therefore, the vision-based action recognition
problem is indeed a classification problem of which the input is a set of images,
and the output is a finite set of labels.

The input of a vision-based action recognition system is usually a set of
stabilized images: figure-centric images containing the whole body of a single
person (including the limbs). Fig. 3 provides some examples of the stabilized
images. In order to obtain the stabilized images, vision-based action recognition
systems usually run visual tracking and stabilization algorithms prior to the
action recognition [6][22]. Then, the systems will extract relevant features such
as pixel intensities, edges, optical flow from the images. These features are fed
into a classification algorithm to determine the action of the person. For example,
Yamato et al. [24] transform a sequence of stabilized images to mesh features,
and use a Hidden Markov Model classifier to recognize the actions. Efros et al. [6]
transform the images to novel motion descriptors computed by decomposing the
optical flow of images into four channels. Then, a nearest-neighbor algorithm is
performed to determine the person’s actions. In order to tackle the stabilization
problem, Wu [22] develops an algorithm to automatically extract figure-centric
stabilized images from the tracking system. He also proposes to use Decomposed
Image Gradients (DIG), which can be computed by decomposing the image
gradients into four channels, to classify the person’s actions.

The task of visual tracking can be defined as follows: given the initial state
(usually the position and size) of a person in the first frame of a video sequence,
the tracking systems will continuously update the person’s state given the succes-
sive frames. During the tracking algorithm, relevant features should be extracted
from the images. Some systems use intensities or color information [2][20], some
use shape information [8][10], and some use both [1][23]. The tracking problem
can be solved either deterministically [2][4][11] or probabilistically [1][10][23]. In
order to improve the performance and robustness of the tracker, many systems
also combine the tracking system with other systems such as object detection
[1][19] and object recognition [12].

In order to simplify the tracking problem, many trackers use a fixed target
appearance [4][19][20]. However, having a fixed target appearance is optimistic
in the real world because the view point and the illumination conditions may
change, and the person constantly changes his poses. In order to tackle this
problem, [9][13] project the images of the person to a linear subspace and in-
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crementally update the subspace based on the new images. These systems are
efficient; however, they have difficulties recovering from drift because the linear
subspace also accumulates the information obtained from the images contain-
ing only the background. Jepson et al. [11] propose the WSL tracker of which
the appearance model is dominated by either the stable (S), wandering (W), or
lost (L) components. They use an online EM algorithm to update the parame-
ters of the stable component, and therefore the tracker is robust under smooth
appearance changes.

The tracking systems that most resemble ours are Giebel et al. [8] and Lee
et al. [12]. Giebel et al. [8] learn the templates of the targets and the transition
matrix between the templates from examples. However, they do not divide the
templates into different actions. During tracking, they use particle filtering [20]
to infer both the next template, and the position and size of the target. Lee et

al. [12] introduce a system that combines face tracking and recognition. They
also learn templates of faces and the transition matrix between the templates
from examples, and partition the templates into different groups according to
the identity of the face. During the runtime, they first recognize the identity of
the face based on the history of the tracking results. Knowing the identity of the
face, the target template used by the tracker can be more accurately estimated,
and thus improve the robustness of the tracker.

3 The HOG Descriptor Representation

In this paper we propose to use the grids of Histograms of Oriented Gradient
(HOG) descriptor [5] to represent the athletes. The HOG representation is in-
spired by the SIFT descriptor proposed by Lowe [14], and it can be computed
by first dividing the tracking regions into non-overlapping grids, and then com-
puting the orientation histograms of the image gradient of each grid (Fig. 1).

The HOG descriptor was originally designed for human detection [5]. In this
paper, we will show that the HOG/SIFT representation can be also used in
object tracking and action recognition as well. Using the HOG/SIFT represen-
tation has several advantages. Firstly, since the HOG/SIFT representation is
based on edge, the rectangular tracking region can contain the entire body of
the athlete (including the limbs) without sacrificing the discrimination between
the foreground and background. This is especially the case in tracking athletes
in sports such as hockey and soccer because the background is usually homo-
geneous. Another attractive property of the HOG/SIFT representation is that
it is insensitive to the changes of athlete’s uniform. This enables the tracker to
focus on the shape of the athletes but not the colors or textures of the uni-
form. Secondly, the HOG/SIFT representation improves the robustness of the
tracker because it is robust to small misalignments and illumination changes
[5][16]. Thirdly, the HOG/SIFT representation implicitly centers the figure in
the tracking region because it preserves some spatial arrangement by dividing
the tracking region into non-overlapping grids. In other words, no further sta-
bilization techniques [22] need to be used to center the figure in the tracking
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region. This helps integrate tracking and action recognition into a single frame-
work. Fig. 1 gives an example of the grids of HOG descriptor with a 2 × 2 grid
and 8 orientation bins.

(a) (b)

Fig. 1. Examples of the HOG descriptor: (a) The image gradient. (b) The HOG
descriptor with a 2 × 2 grid and 8 orientation bins.

4 Tracking and Action Recognition

The probabilistic graphical model of our system (Fig. 2) is a hybrid Hidden
Markov Model with two first-order Markov processes. The first Markov process,
{Et; t ∈ N}, contains discrete random variable Et denoting the template at time
t. The second Markov process, {Xt; t ∈ N}, contains continuous random variable
Xt denoting the position, velocity, and size of a single athlete at time t. The
random variable {It; t ∈ N} denote the frame of the video at time t, and the
parameter αt denote the action of the athlete at time t. The joint distribution
of the entire system is given by:

p(X, E, I|α) = p(X0)p(E0)
∏

t

p(It|Xt, Et, αt)·

∏

t

p(Et|Et−1, αt)
∏

t

p(Xt|Xt−1)
(1)

The transition distribution p(Et|Et−1, αt) is defined as:

p(Et = j | Et−1 = i, αt = a) = Aa
ij (2)

where Aa
ij is the transition distribution between templates i and j of action a.

The continuous random variable Xt is defined as Xt = {xt, yt, v
x
t , v

y
t , wt}T ,

where (xt, yt) denotes the center of the athlete, wt denotes the width of the rect-
angular tracking region (we currently fix the aspect ratio of the tracking region),
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Fig. 2. Probabilistic Graphical Model of our system.

and vx
t and v

y
t denote the velocity of the athlete along the x and y direction,

respectively. The transition distribution p(Xt|Xt−1) is a linear Gaussian:

p(Xt | Xt−1) = N (Xt | BXt−1, ΣX) (3)

where ΣX is a 5 × 5 covariance matrix and B is the dynamics matrix.
In order to track and recognize the athlete’s actions simultaneously, we per-

form the following three procedures at time t:

1. Tracking: Under the assumption that the the appearance of the athlete
changes smoothly, we use the template at time t−1 as the target appearance
to update the current state of the tracker using particle filtering.

2. Action Recognition: To estimate the action αt, we use a Hidden Markov
Model classifier [21][24] to determine the athlete’s action based on the pre-
vious T observations.

3. Template Updating: Having the optimal action, we update the current
template Et based on the most probable sequence in the Hidden Markov
Model [21][24].

By repeatedly performing these three procedures at time t, the system can
approximately update the athlete’s position, velocity, size, and determine the
athlete’s action in practice though we do not prove the convergence of the system.

4.1 Tracking

The posterior distribution p(Xt|I1:t, E0:t, α1:t) can be computed by the following
recursion:

p(Xt|I1:t, E0:t, α1:t) ∝ p(It|Xt, Et, αt)·
∫

p(Xt|Xt−1) p(Xt−1|I1:(t−1), E0:(t−1), α1:(t−1)) dXt−1

(4)
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Since computing the exact posterior distribution of Eq. (4) is intractable, we use
particle filtering [10][19][20] to approximate Eq. (4). Assume that we have a set

of N particles {X
(i)
t }i=1...N . In each time step, we sample candidate particles

from an proposal distribution:

X̃
(i)

t ∼ q(Xt | X0:t−1, I1:t, E0:t, α1:t) (5)

and weight these particles according to the following importance ratio

ω
(i)
t = ω

(i)
t−1

p(It|X̃
(i)

t , Et, αt) p(X̃
(i)

t |X
(i)
t−1)

q(X̃
(i)

t |X
(i)
0:t−1, I1:t, E0:t, α1:t)

(6)

In this paper, we set the proposal distribution by:

q(Xt | X0:t−1, I1:t, E0:t, α1:t) = p(Xt|Xt−1) (7)

and thus Eq. 6 becomes ω
(i)
t = ω

(i)
t−1 p(It|X̃

(i)

t , Et, αt). We re-sample the par-
ticles using their importance weights to generate an unweighted approximation
p(Xt|I1:t, E0:t, α1:t).

The problem of Eq. (6) is that Et and αt are unknown. Assuming that the
appearance of the athletes changes smoothly, we approximate the current tem-
plate and action by the previous ones, i.e., Ẽt = Et−1, α̃t = αt−1. Following
[4][20][19], we define the sensor distribution p(It|Xt, Ẽt, α̃t) as:

p(It|Xt, Ẽt = i, α̃t = a) ∝ exp(−λ ξ2(Ht, Π
a
i )) (8)

where Ht is the HOG descriptor of the image It given the state Xt, Π
a
i is

the HOG descriptor of the template i of the action a, and λ is a constant. The
similarity measure ξ2(·, ·) is the Bhattacharyya similarity coefficient [4][20][19]
defined as:

ξ(H, Π) =

[

1 −
Nk
∑

k=1

√

hkπk

]1/2

(9)

where H = {h1 . . . hNk
}, Π = {π1 . . . πNk

}, and Nk denotes the dimensionality
of the HOG descriptor.

4.2 Action Recognition

Knowing the position and size of the athlete, the current HOG descriptor Ht of
the tracking region can be computed. Assuming that the previous T observations
are generated by the same action, we use a Hidden Markov Model classifier [21]
[24] to determine the athlete’s current action based on the previous T observa-
tions. Let s = t−T +1 denote the time of first observation we use to classify the
athlete’s action, the likelihood of the previous T observations can be defined as:

p(Hs:t|αt) =
∑

Et

p(Hs:t, Et|αt) (10)

p(Hs:t, Et|αt) = p(Ht|Et, αt)
∑

Et−1

p(Hs:(t−1), Et−1|αt) p(Et|Et−1, αt) (11)
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The sensor distribution p(Ht|Et, αt) is defined as a Gaussian distribution:

p(Ht | Et = i, αt = a) = N (Ht | Π
a
i , Σ

a
i ) (12)

where Π
a
i and Σ

a
i are the mean and covariance of the HOG descriptor of the

template i in action a.
The optimal action of the athlete at time t can be computed by

α∗

t = argmax
αt

p(Hs:t | αt) (13)

Note that Eq. (10), (11), and (13) can be efficiently computed using the forward-
backward algorithm [21]. The parameters of the Hidden Markov Model, i.e. Aa

ij ,
Π

a
i , Σ

a
i , and the initial distribution, can be learned using the Baum-Welch (EM)

algorithm [21].

4.3 Template Updating

Knowing the current action α∗

t , we compute the most probable template sequence
from time s to t given the observations represented by the HOG descriptors:

E∗

s:t = argmax
Es:t

p(Es:t | Hs:t, α
∗

t ) (14)

We can use the Viterbi algorithm [21] to compute the most probable template
sequence E∗

s:t.
To update the current template Et, we simply set Et = E∗

t . In other words,
we use the last template of the most probable sequence as the template of time
t.

5 Experimental Results

We tested our algorithm in soccer sequences [6] and hockey sequences [19]. For
both sequences, we first manually crop a set of stabilized images and partition
them into different groups according to the action of the player. These images
will be used to learn the parameters of the Hidden Markov Model of each action.
Fig. 3 shows some of the training images of both the hockey and soccer sequences.

For the hockey sequences, we partition the training images into 6 actions:
skating left, skating right, skating in, skating out, skating left 45, and skating right
45. Note that the action of the player can not be determined by only the position
and velocity of the tracking region because the camera is not stationary; often the
player of interest remains centered in the image by the tracking camera. Then,
we transform the training images to the HOG descriptors. To compute the HOG
descriptors, we first convolve the images by a 5×5 low-pass Gaussian filter with
σ = 5.0, and then divide the image into 5 × 5 grids. For each grid, we compute
the 8 bins orientation histograms of the image gradient. Next, we perform the
Baum-Welch algorithm to learn the parameters of the Hidden Markov Model of



8

Fig. 3. Examples of the training images.

each actions, i.e., Aa
ij , Π

a
ij , Σ

a
ij , and the initial distribution. For each action,

we assume that there are 10 possible templates, and we classify the action of
player based on the previous 7 observations (T = 7). Tracking will start with a
manually initialized tracking region and with 60 particles in our experiments.

We implement the entire system using Matlab. The processing time of the
hockey sequence is about 2 seconds for each frame (320× 240 gray image). Fig.
4 and Fig. 5 show the experimental results of two hockey sequences. The upper
part of these images shows the entire frame while the lower part of the images
shows the previous tracking regions used to determine the player’s action. In Fig.
4, the player first moves inward, turns left, moves outward, and finally turn a
right. Since the camera is following the tracked player, the velocity of the tracking
region is not consistent with the action of the player. However, our system can
still track the entire body of the player and recognize his action based on the
visual information. Fig. 5 gives an example when there is significant illumination
changes (flashes) and partial occlusion. We can observe that our system is not
influenced by the illumination changes because we rely on the shape information.
Moreover, the system also works well under partial occlusion because it maintains
an accurate appearance model of the tracked player. However, when two players
cross over and one completely occludes the other, further techniques such as [3]
are needed to solve the data association problem. In Fig. 4 frame 198, we can
observe that the action recognizer make a mistake when the player moves toward
the camera. This is because the contours of a person moving toward and away
from the camera are very difficult to distinguish (even by human beings).

For the soccer sequences, we partition the training images into 8 actions: run
in/out, run left, run right, run left 45, run right 45, walk in/out, walk right, and
walk left (the categories are the same as [6]). We use the same way to compute
the HOG descriptors. We also assume that there are 10 possible templates, and
classify the player’s action based on the previous 7 observations (T = 7).

The processing time of the soccer sequence is about 3 seconds for each frame
(720× 480 gray image) due to the larger image size (we pre-compute the image
gradients of the entire image and quantize them into orientation bins). Fig. 6
and Fig. 7 show the experimental results of two soccer sequences. Fig. 6 shows a
soccer player running across a line on the field, and Fig. 7 shows a soccer player
of very low resolution. In both cases, our tracker and action recognizer work well.
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6 Conclusions and Future Work

This paper presents a system that tightly couples tracking and action recognition
into an integrated system. In addition, the HOG descriptor representation not
only provides robust and distinctive input features, but also implicitly centers
the figure in the tracking region. Therefore, no further stabilization techniques
need to be used. Experimental results in hockey and soccer sequences show that
this system can track a single athlete and recognize his/her actions effectively.

6.1 Future Work

In the future, we plan to extend the current system to the following three di-
rections. Firstly, the feature size of the HOG descriptor can be reduced us-
ing dimensionality reduction techniques such as Principal Component Analysis
(PCA). The advantages of reducing the feature size are two-folds: (1) it can pos-
sibly increase the processing speed without loss of accuracy. (2) the number of
training examples can be reduced because of the small feature vector. Secondly,
it is possible to use a more sophisticated graphical model such as a hybrid Hier-
archical Hidden Markov Model [17] instead of the current one. For example, we
can treat the action as a random variable instead of a parameter. We can also
introduce dependencies between the current action and the previous action, and
dependencies between the action and the state of the tracker. Then, the action
of the player will not only determined by the appearance/pose of the player, but
also by the velocity and position of the player. Furthermore, after registering
the player onto the hockey rink [18] or the soccer field, the action of the player
can help to predict the velocity and position of the player. Finally, the action
can be used as an additional cue in multi-target tracking when players occlude
each other. Imagine that one player is moving left and another is moving right
and they cross over. Since we know the action and the appearance change of the
players, we can possibly accurately predict the next appearance of the player.
Thus, the probability that two tracking windows get stuck into a single player
can be reduced and the data association problem could be solved.
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Frame 198 Frame 213 Frame 233

Frame 273 Frame 303 Frame 312

Fig. 4. Experimental results in hockey sequence 1.

Frame 1715 Frame 1735 Frame 1800

Frame 1804 Frame 1809 Frame 1819

Fig. 5. Experimental results in hockey sequence 2.
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Frame 392 Frame 432 Frame 434

Frame 440 Frame 442 Frame 455

Fig. 6. Experimental results in soccer sequence 1.

Frame 439 Frame 449 Frame 454

Frame 469 Frame 485 Frame 495

Fig. 7. Experimental results in soccer sequence 2.


