
Channel Associative Networks for Multiple-Valued Mappings

Per-Erik Forssén
Laboratory for Computational Intelligence

Department of Computer Science
201-2366 Main Mall, BC, V6T 1Z4, Canada

perfo@cs.ubc.ca

Björn Johansson and Gösta Granlund
Computer Vision Laboratory

Department of Electrical Engineering
Linköping University, SE-581 83 Linköping

bjorn@isy.liu.se, gosta@isy.liu.se

Abstract

This paper introduces a novel artificial neural network
(ANN) structure which can learn multiple valued, non-
linear mappings. This is accomplished by expanding both
input and output domains using a set of localised functions
called channels. In the channel space the learning problem
becomes a linear mapping, which can be made sparse using
a non-negative constraint. By applying this ANN to an ob-
ject view recognition problem, we demonstrate that the net-
work is able to learn efficiently under perceptual aliasing.
This has applications for cognitive vision systems where
learning has to occur at several abstraction levels simul-
taneously. If a subsystem is supplied with ambiguous in-
puts, learning will not break down, instead the subsystem
will learn to pass the ambiguity to the output side, where
the next subsystem can hopefully resolve it using additional
context.

1. Introduction

Perceptual aliasing [4], also known as partial observ-
ability [3] is a problem that occurs in learning under incom-
plete knowledge. It has been extensively studied in rein-
forcement learning [22], but it also occurs in a supervised
setting when a one-to-one mapping from input to output
does not exist. For many real-world learning problems it
is easy to see that the inputs give evidence of what the out-
put should be, but it is often difficult to decide whether this
evidence is always non-ambiguous.

In general, perceptual aliasing occurs when we have two
training samples (xm,ym) and (xn,yn), where the inputs
xm,xn ∈ X are near identical, but the desired outputs
ym,yn ∈ Y are different. Learning of a single-valued map-
ping f : X 7→ Y will in such situations be impossible. If
attempted it typically results in an output which is some-
where in-between ym and yn. This could be disastrous,
e.g. if the system is an obstacle avoiding robot, and ym and

yn are motor controls that steer the robot respectively to the
left and to the right of an obstacle.

The standard solution to the perceptual aliasing prob-
lem is to add an internal state s ∈ S, and in-
stead learn two mappings: The state estimation map-
ping f1 : S × X 7→ S, which updates the state estimate ac-
cording to ŝn = f1(sn−1,xn), and the output mapping1

f2 : S 7→ Y , which estimates the response from the state
estimate ŷn = f2(sn). This solution works fine if we know
what state representation s we should use, but in general,
finding out the state representation is part of the learning
problem at hand, see e.g. [2]. When we have to learn the
state space shape, estimation of f1 and f2 will be quite slow,
since the state space will change during learning.

In some learning problems it is possible to resolve per-
ceptual aliasing by detecting it and adding suitable inputs,
see e.g. [11]. Such approaches, in essence assume that we
have a non-aliased set of percepts to choose from, which is
not the case in general.

In this paper we instead propose to learn a, possibly,
multiple-valued mapping X 7→ Y , where a single input xn

could produce multiple outputs yn. We can then, if needed,
learn the shape of the state space in a separate step. This
has the potential of speeding up open state space learn-
ing problems by orders. When learning the mapping, we
will make use of the channel representations of xn and yn,
un = enc(yn), and an = enc(xn), and learn a linear map-
ping

ûn = Can . (1)

The channel representation is a way to represent single and
multiple values in a unified manner, and is the topic of the
next section.

2. Channel Representation

The channel representation [8, 1, 17] is an encoding of a
signal value y, and an associated confidence r ≥ 0. This is

1or policy if we do reinforcement learning

done by passing y through a set of non-negative, localised
kernel functions {Bk(y)}K

k=1, and weighting the result with
the confidence r. Each output signal is called a channel, and
the vector consisting of a set of channel values

u = enc(y, r) = r
(

B1(y) B2(y) . . . BK(y)
)T

(2)

is said to be the channel representation of the signal–
confidence pair (y, r), provided that the channel encoding
is injective for r 6= 0, i.e. there should exist a corresponding
decoding that reconstructs y and r from the channel values.

The confidence r can be viewed as a measure of relia-
bility of the value y. When no confidence is available, it is
simply taken to be r = 1.

Examples of suitable kernels for channel representations
include Gaussians [20, 21], and B-splines [19]. Here we
will use the windowed cos2-functions introduced in [17]:

Bk(y) =

{

cos2(ω(y − k)) if ω|y − k| < π/2

0 otherwise.
(3)

Here the kernel index k is also the kernel centre, and ω is
the kernel scale (typically set to π/3). See figure 1 for an
example of a set of cos2-kernels.

0 1 2 3 4 5 6 7 8 9

Figure 1. Regular channel arrangement. The
kernel with k = 4 is plotted in solid, the others
are dashed. All kernels have scale ω = π/3.

The kernels we use are normally defined a priori, and this
restricts us to represent values y that are bounded, and the
bounds should be known, i.e. we should know values bl, bu

such that

y ∈ [bl, bu] ∼= {y : bl ≤ y ≤ bu} ∀y . (4)

Then we should also ensure that the domain of y, i.e. [bl, bu]
coincides with the represented domain of the channel set
{Bk(y)}K

1 . This can e.g. be achieved by a linear mapping

y′ = k0 + k1y (5)

for some choice of coefficients k0 and k1.

2.1. Representation of Multiple Values

If we e.g. used the channel set in figure 1 to encode the
value y = 3 with r = 1, we would get

enc(3, 1) =
(

0 0.25 1 0.25 0 0 0 0
)T

. (6)

This vector can also be visualised as

As can be seen here, the channel vector is typically sparse,
i.e. it contains mostly zeroes. This means that the actual
amount of memory needed is not as large as it may appear,
since only the non-zero values need to be stored. A lot of
empty space in a channel vector also allows us to optionally
store more than one value, provided that the values we want
to store are sufficiently different. As an example consider

u = enc(3.2, 0.75) + enc(6.5, 0.25) (7)

=
(

0 0.072 0.718 0.336 0 0.186 0.186 0
)T

,
(8)

visualised as

The interpretation of such a channel vector could be “The
value 3.2 with likelihood 0.75, and 6.5 with likelihood
0.25”. That is, the channel representation allows us to repre-
sent ambiguous statements, which is exactly what we would
like to give as a response from a neural network, when per-
ceptual aliasing is present.

2.2. Channel Decoding

In order to decode several signal values from a channel
vector, we have to make a local decoding, i.e. a decoding
that assumes that the signal value lies in a specific limited
interval (see figure 2).

k k+1 k+2

[k+0.5,k+1.5]

Figure 2. Interval for local decoding (ω = π/3).

For the cos2-kernel, and a kernel scale ω = π/N , where
N ∈ {3, 4, 5 . . .} the decoding becomes [7]:

ŷ = k +
1

2ω
arg

[

k+N−1
∑

l=k

ule
i2ω(l−k)

]

. (9)

The confidence can be retrieved from the sum of the channel
values used in the decoding:

r̂ =
k+N−1
∑

l=k

ul . (10)

In order to decode multiple valued channel vectors, we sim-
ply go through all windows {uk, uk+1, uk+2} for different
values of k, decode, and check if the decoding lies within
the represented interval, see figure 2.

We will denote the process of obtaining one, or possibly
several value-confidence pairs by

{(ŷk, r̂k)} = dec(uk) . (11)

An important aspect of this decoding scheme is that, if
we encode two values y1, and y2, sum their channel repre-
sentations, and then decode, we will obtain:

• The average m = (y1 + y2)/2 when |y1 − y2| ≤ 1

• Both y1 and y2 when |y1 − y2| ≥ 2

• Two values close to y1 and y2, but shifted toward the
mean (y1 + y2)/2, otherwise.

This kind of representation, where two similar values are
confused with their average is common in biological sys-
tems, and is called a metameric representation [20].

3. A Channel Associative Network

We will below describe the associative network using
two simple one-dimensional examples that are of an illus-
trative nature, and we will concentrate on general ideas
rather than giving detailed performance measurements. Al-
though these examples do not tell the whole story, they
serve to give a quick insight. Another example will be given
later in the experiment section 4.

Assume that we have a set of training samples,
{(xn, yn)}N

n=1, from which we want to learn a mapping
x 7→ y. As the first example we consider the special case of
single valued mappings, see left plot in figure 3. However,
a more general and interesting class of problems is multiple
valued mappings, as shown in the second example in figure
3.

Example 1 Example 2

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 3. Two mapping examples.

Let a and u denote channel representations of x and y
respectively, i.e. a = enc(x) and u = enc(y). Note that
the encoding functions are in general different for the two
domains, since the number of channels and the mapping (5)
differs. We will refer to the vectors a and u as the feature

vector and the response vector respectively, and their ele-
ments as feature channels and response channels. Further-
more, let an = enc(xn) and un = enc(yn). The single val-
ued mapping problem is often solved using kernel regres-
sion, one example is RBF-networks [10]. This approach is
basically equivalent to a linear mapping from a channel rep-
resentation (possibly normalised) of the input domain x to
the output domain y, i.e.

ŷ = cT a . (12)

The vector c containing the model parameters can for exam-
ple be computed using the training samples {(an, yn)} and
least squares. The result of using this approach is shown in
figure 4. We see that the model displays a ringing behaviour
near the discontinuity in the first example, which is typical
for linear methods (see e.g. [18]). The model naturally fails
completely in the multiple valued region in the second ex-
ample.

Example 1 Example 2

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 4. Results for the two examples us-
ing model (12) and evaluation points sampled
with a resolution higher than for the training
points. The figure also shows the positions
and widths of the feature channels.

A more powerful model is a linear mapping from a chan-
nel representation of x to a channel representation of y, i.e.

û = Ca . (13)

The matrix C that contains the model parameters can again
be found by solving a least squares problem,

min
C

‖U − CA‖2 , (14)

where

A =
(

a1 a2 . . . aN

)

, (15)

U =
(

u1 u2 . . . uN

)

. (16)

We will refer to C as a linkage matrix and its elements as
links.

The channel vector û can in usage mode be decoded us-
ing the scheme in section 2.2 to give one or several esti-
mated values of y. Figure 5 shows the result using model
(13) on the two examples. The performance is much better
than using model (12) in both cases. Note the metameric ef-
fect (c.f. section 2.2) in the second example, when the two
values are confused with their average if they lie too close
to each other.

Example 1 Example 2

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 5. Results for the two examples us-
ing model (13). Only the most confident de-
coding is plotted in the first example, while
all decodings with confidence above a cer-
tain threshold are plotted in the second ex-
ample. The figure also shows the positions
and widths of the feature channels and the
response channels.

3.1. Monopolar Constraint

So far we have created a model which seems to have a
good performance, but the cost is a large increase in model
parameters, C, leading to more memory requirements and a
higher computational complexity. We propose a solution
to reduce the number of parameters that is fairly simple
and which has some nice properties: a non-negative con-
straint on C, also referred to as a monopolar constraint. In
a fuzzy rule framework this corresponds to using only pos-
itive rules, which would make the model easier to interpret
[15]. Furthermore, the non-negative constraint on C will
ensure a non-negative response vector û. We modify (14)
into

min
C≥0

‖U − CA‖2 . (17)

Problem (17) is solved using the simple gradient based iter-
ative algorithm

C(i + 1) = max
(

0,C(i) − (C(i)A − U)AT D
)

, (18)

where C(0) = 0 and D = diag−1(AAT 1). The sequence
(18) is sometimes called a projected Landweber method and
the matrix D a preconditioner which can, if properly chosen
(not necessarily as a diagonal matrix), allow a considerable
acceleration of the ordinary gradient search, see e.g. [5, 18].
In practise, the present choice gives significant speedups
compared to ordinary gradient search, see [13].

Note that the error function (17) is based on a training
data set, and the error on other data may very well increase
during the iterative process, sometimes referred to as semi-
convergence or over-fitting. We use early termination as a
means for regularization. Semiconvergence is also occur-
ing in the sense that we optimize using an error function in
the channel space rather than in the original space, which
means that the error in the original space may also increase
during iterations. Further details, such as convergence of
(18) are discussed and proven in [13, 12].

The constrained solution (17) is sparse, i.e. it contains
much fewer non-zero elements than the unconstrained solu-
tion (14). To further illustrate the network, figure 6 shows
the matrices A, U from the second example, the solution C

from problem (17), and the estimated responses Û = CA.

C A

U Û = CA

Figure 6. The matrices A and U in example
two, the solution C from (17), and the esti-
mate Û.

The performance in the two examples is visually unaf-
fected by the use of the monopolar constraint (therefore not
shown). In fact, the constraint can actually improve the per-
formance in many cases. As shown in [12, 13], the monopo-
lar constraint actually gives an upper limit on the linkage
matrix values which makes it a form of regularisation.

3.2. Model Aspects

As always, models contain a number of user parameters
that affect the result. In this case we have to specify chan-
nel widths and positions for both input and output domain,
which controls the behaviour of the network. For example,
the distinction between a discontinuity and a steep slope is
not well defined when we only have access to a set of sam-
ples. This is mainly controlled by the distance and overlap
between the response channels, see figure 7.

We emphasise that an increase in the number of response
channels does not cause an explosion in the number of used
links. In [7] it is demonstrated that for the case of a single
valued mapping the number of links remains fairly stable
at approximately two to three times the number of links re-
quired for the simpler model (12). This is a direct conse-
quence of the monopolar constraint. For the mappings in
figure 5, the number of links are 3.1 and 4.1 times higher
than the corresponding mappings in figure 4.

3.3. Discussion

To summarise the associative network, the basic idea is
quite simple if we ignore all the surrounding notation; a
non-linear, single or multiple valued mapping x 7→ y can
be effectively implemented as a simple linear mapping be-
tween a channel representation of each domain, a 7→ u.
The linkage matrix C that defines the mapping can be made
sparse due to a monopolar constraint.

PSfrag replacements

x

y

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 7. Model behaviour for varying width
of the response channels. The width con-
trols the distinction between a discontinuity
and a steep slope. Note the “staircase effect”
for the very dense response channels in top
graph, and the loss of discontinuity preser-
vation for very large channels in the bottom
right graph.

Computer vision problems often involve high-
dimensional mappings x ∈ R

Mx 7→ y ∈ R
My , but

the fundamental idea is similar to the one described above,
namely, to decompose the space and represent the problem
by locally linear problems. The feature channels are
usually not of the simple kind described above, but of a
very complex nature and usually not regularly positioned.
The feature channels ah will in a typical case describe local
properties of a signal, or local properties in an image of an
object, such as local orientation, local curvature, colour,
etc.

4. Experiments

As a practical illustration of a multiple-valued mapping
we will use the mapping from appearance of a 3D ob-
ject, to its orientation. When two views of an object have
the same appearance, a mapping from appearance to view
angle should output both view angles. We will use im-
ages from the COIL-100 database [16]. This database
(see http://www.cs.columbia.edu/CAVE) con-
tains 100 objects of varying shape and colour. Each ob-
ject has been placed on a motorised turntable, and has been
photographed at 72 different views, 5◦ apart, and stored as
128 × 128 pixel RGB bitmaps (see figure 8). The COIL-
100 database has previously [16, 23] been used to evaluate
object recognition systems, but we will instead use it as an
example of a situation where multiple-valued mappings can
be used.

Figure 8. Five views of COIL-100 object #51.

4.1. Network Inputs

The inputs to the associate network are computed from
responses from the first order rotational symmetry operator
s1 [14, 12] designed to find high curvature points from gra-
dient images in double-angle representation. The s1 oper-
ator responses are well suited to associative learning, since
they are sparse and relatively robust.

The gradient field which is the input to the s1 operator
is computed with Gaussian derivatives of σ = 1.0. The
s1 operator itself is computed with a Gaussian window of
σ = 5.5, and the result is subsampled to a 32 × 32 grid.
The output s1(x) is a complex number in each position,
x, where the argument represents the direction of the cur-
vature. We then compute four non-negative feature maps
from s1(x) by separating each complex number into real,
and imaginary parts, and further into positive and negative
parts. This gives us in total 32 × 32 × 4 = 4096 features
per view. The s1 response magnitude, |s1(x)|, and the four
non-negative components of s1(x), are shown in figure 9.

|s1| [<(s1)]+ [−<(s1)]+ [=(s1)]+ [−=(s1)]+

Figure 9. Left to right: Magnitude |s1| for the
second view in figure 8, and the four non-
negative components of s1.

4.2. Network Outputs

The desired response from the associative network is the
view angle φ. The view angle is channel encoded with
12 channels placed along the periodic interval [0◦, 360◦],
as shown in figure 10. Note that the three channels at the
0◦ ⇔ 360◦ discontinuity in figure 10 continue on the other
side. This is accomplished by modifying (3) to:

Bk(y) =

{

cos2(ωd(y, k)) if ωd(y, k) < π/2

0 otherwise.
(19)

By setting d(y, k) = |y − k| we again get (3), but we will
now instead use a periodic distance:

dK(y, k) = min(mod(y − k,K), mod(k − y,K)) . (20)

0 60 120 180 240 300 360

Figure 10. Modular cos2 channel arrangement
for view angle representation. Channel cen-
tred at 90◦ is plotted in solid, others are
dashed.

4.3. Learning Object View

We now supply features and responses for all 72 avail-
able views of object #51 (see figure 8) to the optimisation
algorithm (18). Since this object is symmetric, its appear-
ances from opposite sides are near identical, and the op-
timisation algorithm will thus get samples (am,um), and
(an,un), where the features am, an are very similar, but
the desired responses um, un are quite different, i.e. we
have the perceptual aliasing problem mentioned in section
1. Figure 11, left, shows what the optimised linkage matrix
C will output when it is again fed with the feature samples.
Compare this with the desired responses in figure 10.

0 60 120 180 240 300 360

0 60 120 180 240 300 360

Figure 11. Top: Obtained responses when us-
ing object #51. Channel centred at 90◦ is plot-
ted in solid, others are dashed. Bottom: Fea-
ture correlation functions for object #51. Cor-
relation for feature at 90◦ is plotted in solid,
others are dashed.

As can be seen in figure 11, left, the single peaks in the
desired response functions have been split into two peaks
with lower amplitude. Most of the energy ended up in the
desired place, but a fraction ended up at the samples where
the directly opposing view was presented. The network re-
sponse thus reflects the high degree of similarity between
the two views.

Note however that the obtained response is quite differ-

ent from a direct correlation of the feature vectors. Consider
the feature correlation function

rk(n) =
aT

k
an

||ak||||an||
. (21)

Figure 11, bottom is a plot of the 12 different rk(n) func-
tions corresponding to the responses in figure 10, and 11,
top. By comparing the top and bottom plots in figure 11,
we can see that the feature correlation functions have nearly
equal strength at the opposite views, while the associative
network manages to suppress a great deal of the features
that also correlate with the opposite view. The associative
network can be said to try its best to use only features that
uniquely describe a certain view. When this is not possi-
ble, it will pick those features that have the least amount of
activity outside the desired response region. This is what
makes the associative network avoid the DC offset present
in the feature correlation functions.

4.4. Decoding Performance

The output functions from figure 10, and figure 11 are
also visualised in a different way in the two first plots in the
top row of figure 12. The individual outputs are quite noisy,
but the noise is significantly reduced when we combine the
responses using the local decoding (9), as can be seen in fig-
ure 12, top right. Here we can also see that the extra output,
although slightly noisier than the specified one, lies con-
sistently at an offset of about 180◦. Mean absolute errors
(MAE) for the two decodings are 0.88◦, and 3.58◦ respec-
tively. Compare this with the 5◦ view distance. The bottom
row of figure 12 shows the result of the same experiment,
when only every fourth sample is shown to the associative
network (i.e. 20◦ view distance). As can be seen, the result
is similar, although slightly more noisy. The MAE values
for these curves are 1.42◦ and 4.59◦ respectively.

4.5. Other objects

We have also applied the associative networks to the
other objects in the COIL-100 database. The decoded re-
sponses for a selection of other objects are shown in figure
13. We have also included the corresponding feature corre-
lation functions for comparison. The objects in the database
can be divided into the following categories:

1. Objects where all views are sufficiently different. This
is case for e.g. the frog in the first row.

2. Objects with a single symmetry, which is not directly
the opposite view. See e.g. tin can in second row.

3. Objects with three-fold symmetry. See e.g. the tin can
in the third row.

U Û dec(Û)

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

Figure 12. Learning results for object #51.
Top row: results for training with all samples.
Bottom row: results for training with every
fourth sample. Left: The desired response
functions from figure 10 shown as rows in an
image. White is 0, black is 1. Centre: The ob-
tained responses from figure 11, left. Right:
Decoded network responses. Each valid de-
coding (ŷ, r̂) is visualised as a dot at (y, ŷ)
with a size proportional to r̂ (only decodings
with r̂ > 0.15 are shown).

4. Objects with a four-fold symmetry. See e.g. sandwich
in fourth row.

5. Objects where there is confusion along part of the tra-
jectory, but where some views are sufficiently differ-
ent. See e.g. the dental-floss box in the fifth row.

6. Objects where all views are very similar. See e.g. the
plastic jar in the sixth row.

5. Discussion

This paper has introduced a novel neural network archi-
tecture that is able to learn multiple valued mappings. The
aim of the paper has been to demonstrate what the network
can do, rather than presenting a complete application. In-
stead of directly learning the desired response function, the
network learns a set of channel functions, which can be de-
coded to one or several output values with associated con-
fidences. We have shown that the network automatically
switches between a single response and several depending
on the problem at hand. The price of this is a higher mem-
ory requirement. When the network learns single valued
mappings, the memory requirements is roughly 2 to 3 times
higher than in a conventional kernel regression network.

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

0 100 200 300

2

4

6

8

10

12

0 100 200 300

2

4

6

8

10

12

0 100 200 300
0

50

100

150

200

250

300

350

Figure 13. Results for a selection of COIL-
100 objects. Each row describes a differ-
ent object. Columns left to right: Object at
320◦ view. Correlation functions, Network re-
sponses, Decoded responses (only decod-
ings with r̂ > 0.15 are shown).

The experiment section demonstrates how multiple val-
ued mappings can be used to learn under perceptual alias-
ing. The experiments are meant to give an idea of what
kinds of learning problems can be solved with channel asso-
ciative networks. We have compared the network to feature
correlation and showed that the behaviour is qualitatively
different. The network can, in contrast to the correlation, se-
lect the appropriate features to model the desired responses.
When only ambiguous features are available, the network
will select the least ambiguous features and use these to
propagate the ambiguity to the output. We also measured
the accuracy of the obtained mapping, and demonstrated the

ability of the network to generalise to novel samples.
We believe that the field of cognitive vision can benefit

from the use of channel associative networks, since cogni-
tive vision often requires adaptation at several abstraction
levels simultaneously. The associative networks also allow
segmentation of large complex learning problems into sev-
eral smaller ones without requiring that each mapping is al-
ways non-ambiguous. In fact, we have already employed
the networks to a cognitive vision task in [6]. Here we used
the networks to learn a mapping from local image patches
to relative object location, orientation, and object type. For
such a mapping it is advantageous to have the option of
multiple outputs, since several objects can have near identi-
cal appearance locally. We resolved the resultant ambiguity
on the output side by combining the responses from sev-
eral patches using a clustering algorithm. Earlier, we also
employed the multiple response property of the network for
learning in 3D-object recognition [9], where a multiple val-
ued output indicated the locations of the multiple objects
present in the scene.

Acknowledgements

This work was supported by the Swedish Research
Council through grants for the projects Active Exploration
of Surroundings and Effectors for Vision Based Robots
and A New Structure for Signal Processing and Learning,
and the European Community through EC Grant IST-2003-
004176 COSPAL. It reflects only the authors’ views and the
Community is not liable for any use that may be made of the
information contained therein.

References

[1] M. Borga. Learning Multidimensional Signal Process-
ing. PhD thesis, Linköping University, Sweden, SE-581 83
Linköping, Sweden, 1998. Dissertation No 531, ISBN 91-
7219-202-X.

[2] R. I. Brafman, G. Shani, and S. E. Shimony. Par-
tial observability under noisy sensors–from model-free
to model-based. In Workshop on Rich Represen-
tations for Reinforcement Learning, August 2005.
http://www.cs.waikato.ac.nz/∼kurtd/rrfrl/.

[3] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Act-
ing optimally in partially observable stochastic domains. In
AAAI-94, volume 2, pages 1023–1028, Seattle, Washington,
USA, 1994. AAAI Press/MIT Press.

[4] L. Chrisman. Reinforcement learning with perceptual alias-
ing: The perceptual distinctions approach. In National Con-
ference on Artificial Intelligence, pages 183–188, 1992.

[5] B. Eicke. Iteration methods for convexly constrained ill-
posed problems in Hilbert spaces. Numerical Function
Analysis and Optimization, 13(5&6):413–429, 1992.

[6] M. Felsberg, P.-E. Forssén, A. Moe, and G. Granlund. A
cospal subsystem: Solving a shape-sorter puzzle. In AAAI
Fall Symposium: From Reactive to Anticipatory Cognitive
Embedded Systems, number FS-05-05 in AAAI Technical
Report Series, pages 65–69, Virginia USA, November 2005.

[7] P.-E. Forssén. Low and Medium Level Vision using Channel
Representations. PhD thesis, Linköping University, Sweden,
SE-581 83 Linköping, Sweden, March 2004. Dissertation
No. 858, ISBN 91-7373-876-X.

[8] G. H. Granlund. The complexity of vision. Signal Process-
ing, 74(1):101–126, April 1999. Invited paper.

[9] G. H. Granlund and A. Moe. Unrestricted recognition of
3-D objects for robotics using multi-level triplet invariants.
Artificial Intelligence Magazine, 25(2):51–67, 2004.

[10] S. Haykin. Neural Networks–A Comprehensive Foundation.
Prentice Hall, Upper Saddle River, New Jersey, 2nd edition,
1999. ISBN 0-13-273350-1.

[11] S. Jodogne and J. Piater. Interactive learning of mappings
from visual percepts to actions. In 22nd ICML, Bonn, Ger-
many, 2005.

[12] B. Johansson. Low Level Operations and Learning in Com-
puter Vision. PhD thesis, Linköping University, Sweden,
SE-581 83 Linköping, Sweden, December 2004. Disserta-
tion No. 912, ISBN 91-85295-93-0.

[13] B. Johansson, T. Elfving, V. Kozlov, Y. Censor, P.-E.
Forssén, and G. Granlund. The application of an oblique-
projected landweber method to a model of supervised learn-
ing. Mathematical and Computer Modelling, 43:892–909,
2006.

[14] B. Johansson and G. Granlund. Fast selective detection
of rotational symmetries using normalized inhibition. In
6th ECCV, volume I, pages 871–887, Dublin, Ireland, June
2000.

[15] B. Kosko. Fuzzy Engineering. Prentice Hall, 1996. ISBN
0-13-124991-6.

[16] S. K. Nayar, S. A. Nene, and H. Murase. Real-Time 100
Object Recognition System. In Proc. of ARPA Image Un-
derstanding Workshop, 1996.

[17] K. Nordberg, G. Granlund, and H. Knutsson. Representa-
tion and Learning of Invariance. In 1st ICIP, Austin, Texas,
November 1994. IEEE.

[18] M. Piana and M. Bertero. Projected Landweber method and
preconditioning. Inverse Problems, 13:441–463, 1997.

[19] H. Scharr, M. Felsberg, and P.-E. Forssén. Noise adaptive
channel smoothing of low-dose images. In CVPR Workshop:
Computer Vision for the Nano Scale, June 2003.

[20] H. Snippe and J. Koenderink. Discrimination thresholds for
channel-coded systems. Biological Cybernetics, 66:543–
551, 1992.

[21] H. Spies and P.-E. Forssén. Two-dimensional channel repre-
sentation for multiple velocities. In 13th SCIA, LNCS 2749,
pages 356–362, Gothenburg, Sweden, June-July 2003.

[22] R. S. Sutton and A. G. Barto. Reinforcement Learning, An
Introduction. MIT Press, Cambridge, Massachusetts, 1998.
ISBN 0-262-19398-1.

[23] M.-H. Yang, D. Roth, and N. Ahuja. Learning to Recognize
3D Objects with SNoW. In 6th ECCV, volume I, pages 439–
454, Dublin, Ireland, June 2000.

