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Abstract

In this paper we make use of the idea that a robot can
autonomously discover objects and learn their appearances
by poking and prodding at interesting parts of a scene. In
order to make the resultant object recognition ability more
robust, and discriminative, we replace earlier used colour
histogram features with an invariant texture-patch method.
The texture patches are extracted in a similarity invari-
ant frame which is constructed from short colour contour
segments. We demonstrate the robustness of our invariant
frames with a repeatability test under general homography
transformations of a planar scene. Through the repeatabil-
ity test, we find that defining the frame using using ellipse
segments instead of lines where this is appropriate improves
repeatability. We also apply the developed features to au-
tonomous learning of object appearances, and show how
the learned objects can be recognised under out-of-plane
rotation and scale changes.

1. Introduction

During recent years there has been great progress in the
field of 3D object recognition. Appearance based tech-
niques such as SIFT[13] and local affine frames[17, 20] now
allow automatic modelling and recognition of a wide range
of 3D objects at real time speed. These methods essentially
rely on finding correspondences between textured patches
defined around intensity extrema, and thus have problems
with texture-free objects where few extrema per object are
found, and the resultant frames will tend to cover both ob-
ject and nearby background, and thus be sensitive to inter-
ference.

In our work we recently encountered a need for au-
tomatic modelling and recognition of objects of uniform
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colour and simple geometrical shape (see figure 1). Recog-
nition of this class of objects has traditionally been accom-
plished using model based approaches, see e.g. [12, 11]. In
the model based approach a geometrical object model is
postulated and fitted to the image data. We would like to
have the “model free” property of the appearance based ap-
proaches, but need to deal with texture-free objects. This
lead us the use of invariant frames constructed from short
colour contour segments. Our approach gives us several
invariant frames per object, and the obtained frames will
tend to have a smaller scale than the objects. A related ap-
proach is presented in [19], where contours are also used to
define invariant frames. They look for the longest contour
chains in an image, and define their frames using the two
end-points of each contour chain.

Figure 1. Scene examples.

We intend to use our system in a developmental robotics
setting [14], where the robot shall adapt to its environment
through experimentation. This setting allows us to have our
robot prodding or poking at the environment and make use
of rigidity of objects to decide what belongs together. A
collection of image features that reside in the rigid motion
region can then be associated with current object type and
position. This way to autonomously discover objects and
learn their appearances was introduced by Metta and Fitz-
patrick in [15]. We extend their work here, by replacing



their colour histogram features with a collection of simi-
larity invariant texture patches defined around contour seg-
ments.

1.1. Organisation

This paper is organised as follows. We start by giving an
overview of the proposed feature detection algorithm. Then
we describe each of the computational steps in detail. We
then demonstrate the stability of the detection process with
respect to scale and view angle changes, using a repeata-
bility test. Finally we employ the developed features for
learning of object appearances, and demonstrate that objects
which have been manipulated by the system can success-
fully be recognised in single frames throughout an image
sequence.

2. Algorithm overview

The algorithm for generating contour features consists of
the following steps:

1. Detect colour edges and their orientations

2. Extract curve segments

3. Split curve segments into lines

4. Combine compatible line segments into ellipse seg-
ments where appropriate

5. Define a similarity invariant frame from each line or
ellipse segment

6. Extract a gradient patch using the invariant frame.

2.1. Colour edge detection

For edge detection we make use of a slightly modi-
fied Canny edge detector [1]. Instead of applying Gaus-
sian derivative filters to a grey-scale image, we make use
of the colour information available as suggested by Jdhne
[9]. First we compute gradient vectors in each of the three
colour-bands separately

2z (x) = (gz:ﬁ’g (x), fork € {1,2,3}. (1)

then we combine them into a structure tensor
3
T(x) = sz(x)zk(x)T. )
k=1

Finally, the orientation information, now in double angle
representation is obtained as [6]:

a) = (15) =09). ®

To demonstrate that we really benefit from the use of colour
edges, we show a comparison between colour and grey-
scale Canny output in figure 2.

Figure 2. Top row: grey-scale and colour im-
ages. Bottom row: detected edges in grey-
scale, and colour images. Double angle ori-
entation is shown in smooth transitions be-
tween red for horizontal, green for vertical,
and light blue and yellow for the diagonals.

2.2. Curve segment extraction

Curve segments are extracted from the Canny output, by
connecting nearby pixels in the edge image, if they have
compatible positions and gradient directions. The extrac-
tion process works sequentially, starting in positions with
large gradient magnitude, making use of the gradient direc-
tion information to decide in which directions to proceed.

2.3. Split curve segments into lines

The next step is to split the curve segments into a number
of short line segments. This is done by trying to fit line
equations to runs of consecutive contour points. The inliers
are then removed from the list and the process is repeated.

The output of this step is shown in figure 3c. Each line
segment is defined by its centre point my, length [;, and
normal angle ¢y,

Ly = (myp,lg, or) - “4)

For each line segment, we also store the list of edge pixel
coordinates that defines it. This data will be used later in
the ellipse segment estimation step.



An earlier account of a similar method for line segment
extraction, as well as an overview of related methods is
given by Nelson in [16]. Our line extraction code could
most likely be replaced by the one by Nelson with similar
results.

Figure 3. Steps in feature extraction. (a)
colour image, (b) detected colour edges, (c)
detected line segments superimposed on in-
put image, (d) detected line and ellipse seg-
ments superimposed on input image.

2.4. Combine line segments into ellipse
segments

In order to find ellipses, we first generate a list of line
segment pairs. The list only contains adjacent line segments
(smallest end-point distance below 4 pixels) with orienta-
tions that differ by between 8° and 80°.

We then try to combine each line segment pair with each
of the remaining line segments with a distance below 100
pixels! from the average line centre. The two lines form a
corner, and we can restrict the search for a matching seg-
ment to the semi-circle which the corner is pointing away
from. Using the three line segments we then try to fit an
ellipse to the set of edge points that define them. The least
squares fit is made using the Halir and Flusser method [7]
which is a modification of the Fitzgibbon method [3].

I'This speeds up the algorithm considerably, and essentially puts a limit
on how large ellipses we will find.

For each ellipse estimate, the residuals of the constituent
points are estimated. We then compute the residuals for the
remaining line segments, and add those with small resid-
ual. Finally we re-estimate the ellipse using all points in the
inlying line segments.

From the Halir and Flusser method we obtain a conic
matrix C, which we convert into a centroid m and inertia
matrix I:

<>1{>TC (}1() =0 & (x-m)'I'(x-—m)=4.
&)

Each ellipse segment is now defined by:

& = (my, 1) . (6)
2.5. Invariant frame construction

For each ellipse and line segment, we construct a fea-
ture vector a, by sampling the double angle gradient (3) in
an invariant frame. The frame is defined using a similar-
ity transform S [8], which maps a point p € R? to a point

p € R? as
p:s(‘l’). )

For aline Lo = (m, [, ¢), we define

1 o
S=-(R -Rm) where R = (CF’S‘P - 90) :
l sing  Ccosp
@®)

For an ellipse & = (m, I), we construct a line between the
two points on the perimeter that lie along the major axis, see
figure 4, left.

& = £05<m,4 /\1,arg(e1)>

where I = \jejel + Ayesel, Ay > ), is the eigenvalue
factorisation of I. Such a line will of course be quite arbi-
trary when the ellipse is close to being a circle. Except for
this degenerate case, the frame defined from such a line will
be quite useful for constructing a feature vector.

Since the direction of a line is ambiguous, both line di-
rections ¢ and ¢ + 7 are used during the prototype genera-
tion, giving two prototypes for each reference line.

2.6. Feature vector construction

Once we have the similarity mapping, the feature vectors
can be obtained by sampling the image orientations accord-
ing to the similarity transforms, see figure 4, right. To avoid
aliasing the sampling is made using a scale pyramid. Each
orientation sample z (see (3)) is rotated to the coordinate



Figure 4. Left: Two points on an ellipse define
a reference line. Right: Sampling grid around
reference line.

system of the reference line and then channel encoded (see
next section) with 8 channels to form a vector o:

o = |z|enc(arg(z)) . )

By stacking such vectors for the entire patch we get a 8 x
16 x 8 = 1024 element feature vector

01

02
a= . . (10)

016x8

2.7. Channel encoding

The channel representation is a way to represent single
and multiple values with associated confidences, in a uni-
fied manner [4, 5]. The channel encoding mentioned at (9)
converts a single scalar value x into a vector x, by passing
« through a set of regularly placed kernel functions By(+),
optionally weighting them with a confidence r,

T
1D
See figure 5 for an example of a periodic 12-channel set.
Note that the kernels continue on the other side of the dis-
continuity, and thus avoid wrap-around problems in the rep-
resentation. A more extensive discussion on channel repre-
sentations is out of the scope of this paper; the reader is in-
stead directed to [4] or [5]. We channel encode our feature
vectors to change the feature space metric. After channel
encoding, features more than one kernel width apart will
have zero correlation.

x=r-enc(z) =71 (Bi(z) Ba(z) Bk (z))

3. Repeatability test

We will now demonstrate how the repeatability of the
features is affected by view changes. To do this in a con-
trolled fashion, we make use of a high resolution photo-
graph (2592 x 1944 pixels) of a shape-sorter puzzle. We
place a synthetic camera with focal length f = 200 above

0 60 120 180 240 300 360
Figure 5. Example of a periodic arrangement
of channel kernel functions. Kernel at 90° is
shown in solid, other kernels are dashed.

the image, at varying angles and distances (scale). We
then compute feature representations of both the synthe-
sised view (300 x 300 pixels), and of the photograph, see
figure 6.

Figure 6. Experiment setup. (a) Photograph
with homography quadrangle overlaid. (b)
Synthesised view. (c) Synthesised view with
detected features painted in. White features
are valid correspondences, grey features are
discarded.

We then transform the features in the synthetic view to
the coordinate system of the photograph, and vice versa,
and compute the position and shape distances between fea-
tures. Correspondences falling below a threshold in posi-
tion and shape are counted, and are used to determine the
repeatability rate of the detector.

The repeatability rate [18] concept was originally used
to compare interest point detectors, by computing the fre-
quency with which an interest point detector gives repeated
detection of the same 3D point in different 2D projections of
the scene. We now extend the repeatability rate definition
to our features, by also considering the parameters of the
detected features. For the ellipse and line segment features
we compute the repeatability rates as:

N.(op, 05
Tellipse(Uans):minEA;;N)) and
prdVs
M (op,05)
ine yO0s) = . N - 12
Tiine (0, 7s) min(M,, M) (12)

Here N, and N, are the number of detected ellipses in the
overlapping parts of the photo and the synthesised view re-
spectively, and N, is the number of correspondences found.



Similarly the number of detected lines in the images are
given by M), and My, and M, is the number of correspon-
dences found.

The explicit formula for IV, is

NC(JP’US) =
| {(&,&}) |d(m;, m})? /o7 + d(L;,1})? /o2 < 1}|. (13)

J
The parameters o, and o are position and shape distance
thresholds. We have used 0, = 7 and o, = 0.3, which
gives visually quite similar ellipses after transformation.
The explicit formula for M, is

MC(U;DvUS) =

({5, £5) ld(m, w2 /0% + d(, )% fo? < 1} |
(14)

The parameters 0, and o, are centre position and normal
direction distance thresholds. We have used o, = 4 and
os = b°, which gives visually quite similar lines after trans-
formation.

3.1. Distance measures

For completeness, we will here define the distance mea-
sures used in (13) and (14). For positions m; and m;», we
define the distance as

d(m;, m})* =

(m; — m’)T (m; — m}) 4 (m; — m’7)T(ﬁ1Z —m}).
15)
Here ~ denotes that an element has been transformed to
the other view (the photograph, or the synthesised view) by
the appropriate homography mapping, see [8]. Note that
we apply the transformation both ways in order to remove

possible bias favouring one direction of the transform.

For two inertia matrices I; and I;», we define the distance
as:

IL; — I
[T+ 115

LT,
st 1y = =L
(L] + (151
Mapping of an inertia matrix through a homography is ac-
complished by mapping the entire conic form, see [8].

For two normal angles ¢; and <p’j , we define the distance
as

2 2
d(pi, ©)* = arg {em”’?‘e_iw;} + arg {ei%"e_iw/f} .
a7
Note the doubling of the angle in order to avoid the modulo
m ambiguity.

3.2. Repeatability results

Figure 7b and 7d show how the repeatability is affected
by the inclination angle. The angle is varied in the range
0...50° which results in homography quadrangles accord-
ing to figure 7a. In figures 7d and 7e we also see a compar-
ison between keeping and removing line segments that are
used to define ellipses. As can be seen, and as should be
intuitively evident, detected line segments that actually are
parts of an ellipse are not as stable as those that represent
actual lines.

(a) Quadrangles

0 10 20 30 40 50 0 10 20 30 40 50

(b) Ellipse repeatability (c) #Correspondences

0.2 20

0 10 20 30 40 50 0 10 20 30 40 50

(d) Line repeatability (e) #Correspondences
Figure 7. (a) Homography quadrangles for in-
clination angles 0...50°. (b,d) Repeatability
as function of inclination angle. (c,e) Num-
ber of correspondences as function of incli-
nation angle. Solid curves are averages over
all in-plane rotations. Dashed curves in (d)
and (e) show results when line segments that
make up the ellipses are also included.

Figure 8b and 8d show how the repeatability is affected
by scale change. The scale is varied in the range 0.5...2
which results in homography quadrangles according to fig-
ure 8a. In figures 8d and 8e we again show a comparison
between keeping and removing line segments that are used



to define ellipses. As can be seen, the results are the same
as in the inclination angle experiment: detected line seg-
ments that represent parts of an ellipse are not as stable as
those that represent actual lines. The repeatability across
scale could probably be improved by replacing Canny with
a multi-scale edge detection algorithm.

E||:||:||:|
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Figure 8. (a) Homography quadrangles for
scales 0.5 to 2. (b,d) Repeatability as function
of scale. (c,e) Number of correspondences
as function of scale. Solid curves are av-
erages over all in-plane rotations. Dashed
curves in (d) and (e) show results when line
segments that make up the ellipses are also
included.

4. Learning object recognition

Learning to recognise three dimensional objects is
greatly enhanced by the ability to manipulate the objects
yourself, especially by means of prodding and later grasp-
ing. Metta and Fitzpatrick demonstrate this for the robot
COG [15]. By allowing the robot to prod at objects it can
directly find out what parts of the scene move together, and
thus obtain an object/background segmentation. In order to
do this in a controlled fashion we settle for a non-robotic
equivalent here: We take a sequence of still images of the

shape-sorter puzzle in figure 1, and move one of the pieces
between each pair of frames, see figure 9.

4.1. Figure/ground segmentation

For each training image pair (see figure 9a,b) we then
perform a colour image segmentation and measure the
amount of changes within each region. All regions with
more than a given percentage of changing pixels are said to
belong to a change mask. Note that most segmentation al-
gorithms will work here, provided that they can be tuned to
over-segment rather than under-segment the image.

We now want to remember the appearance of the object
within the change mask. This will allow us to recognise the
moved object also without prodding it.

4.2. Learning phase

Learning in this system consists of generation and stor-
age of a set of prototype vectors for each object. To gener-
ate the prototype vectors we move and rotate each object we
want to recognise, see figure 9. Lines and ellipses are esti-
mated from the images and a change mask is constructed
between each consecutive image pair in the sequence (see
figure 9c,d). For each line and ellipse segment inside the
change mask a feature vector as),, and a 180° rotated copy
ag,+1 are constructed and stored in a matrix A. The two
copies are needed to resolve the 180° ambiguity in the in-
variant frame construction, see section 2.5. Then a vector
pointing from the line centre to the object centre together
with the object type is stored in a matrix U. The object cen-
tre is defined by the centre of gravity of the change mask in
the line’s coordinate system, and the object type is the num-
ber (1...5) of the puzzle piece that is moved. These under
the learning phase constructed vectors are called prototype
vectors and the vectors constructed during recognition are
called query vectors.

4.3. Recognition phase

Now, we want to detect and recognise the trained ob-
jects in new images without a change mask. This is done
by calculating a feature vector a, for each line segment in
the image and match these with the prototype features. The
match score M is computed as a normalised correlation:

aqTap
M(ay,ay) = — 7 (18)

~ llagllllap]

For each query vector a, the IV best matches are picked (we
typically use N € {3...10}), and the stored object posi-
tions in U corresponding to these matches are transformed
to the new line’s coordinate system. This gives N votes on



(©) (d)

Figure 9. Training data example. Arch piece
has moved between frames (a) and (b). (c)
shows the resultant change mask, and (d)
shows the change mask with features from
(b) superimposed.

object position and type for each line segment in the image,
the votes are weighted with the match scores M. The votes
are then clustered using mean-shift clustering [2]. Signifi-
cant clusters indicate recognised objects and the cluster po-
sitions give the position and type of the recognised objects.

Since the pieces are moved by hand in the used train-
ing sequence we have no information about the object’s 3D
rotation and scale. Had the robot moved the pieces itself,
this would be available as internal (or proprioceptive) sen-
sory information, and could be included in the clustering to
obtain the pose (3D position and orientation) of the objects
[10].

4.4. Recognition evaluation

During training, each puzzle piece is moved and rotated
ten times. Thus, we have about 36° rotation between two
adjacent views. This gave a feature matrix A with 420 fea-
ture vectors, which means about 420/(10 x 5) ~ 8 features
on average for an object in an image. Note that in a real
robotic setting the robot should decide for itself when it has
enough prototypes to reliably recognise an object.

As a simple way to evaluate the recognition system
(without designing an explicit ground truth) we now place
the pieces on a board, and move and rotate it in a contin-
uous manner. For each frame in the resultant sequence we
perform the recognition step, 56 frames in total. The result
of this is shown in figure 10. As can be seen in the figure,

Figure 10. Recognition results for out-of-
plane rotation. Top row: First and last frame
in sequence. Bottom: Last frame with de-
tection results. Detections with confidence
above a threshold are plotted with a symbol
corresponding to the object type.

most objects are recognised in most of the frames. A simi-
lar sequence with zoom instead of rotation and translation is
shown in figure 11. This sequence (7 frames) is taken with
a different camera and with different illumination and the
total zoom in the sequence is about 1.5 octaves. The scaling
between the last frame and the training images is about 0.2
octaves.

4.5. Concluding remarks

We have introduced a novel way of computing invari-
ant frames from colour contour descriptions and shown that
they can be used in object recognition. We have demon-
strated the robustness of the features with respect to scale
and inclination angle changes in a repeatability test. We
have also designed a simple object recognition system that
makes use of the features to recognise some simple 3D
shapes. This system was a first test of the features before
using them for full 3D-pose object recognition on a robotic
platform. For the system to be useful in more general ob-
ject recognition settings we belive it is necessary to include
other classes of invariant frames, such as SIFT and MSER
as well. This is indeed the next step on our agenda.



Figure 11. Recognition results for zoom. Top
row: First and last frame in sequence. Bot-
tom: Last frame with detection results. De-
tections with confidence above a threshold
are plotted with a symbol corresponding to

the object type.
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