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We present an intelligent tutoring framework designed to help students
acquire problem-solving skills from pedagogical activities involving
worked-out example solutions. Because of individual differences in their
meta-cognitive skills, there is great variance in how students learn from
examples. Our framework takes into account these individual differences
and provides tailored support for the application of two key meta-cogni-
tive skills: self-explanation (i.e., generating explanations to oneself to
clarify studied material) and min-analogy (i.e., not relying too heavily on
examples during problem solving). We describe the framework’s two
components. One component explicitly scaffolds self-explanation during
example studying with menu-based tools and direct tailored tutorial
interventions, including the automatic generation of example solutions at
varying degrees of detail. The other component supports both self-expla-
nation and min-analogy during analogical problem solving by relying on
subtler scaffolding, including a highly innovative example selection
mechanism. We conclude by reporting results from an empirical evalua-
tion of the former component, showing that it facilitates cognitive skill
acquisition when students access it at the appropriate learning stage. 
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INTRODUCTION

Research in cognitive science has provided extensive evidence for a natural
progression in cognitive skill acquisition that centres on worked-out example
solutions as learning aids. This progression starts with students studying
examples prior to problem solving (e.g., Anderson, Fincham et al., 1997;
VanLehn, 1996). As expertise increases through example studying, students
progress to problem solving, but can still find it useful to refer to examples for
guidance, thus engaging in what is commonly known as analogical problem
solving (e.g., Novick & Holyoak, 1991; Reed, Dempster et al., 1985; VanLehn,
1998; VanLehn, 1999). However, research in cognitive science also indicates
that how beneficial a role examples play in this progression strongly depends
on the student’s ability to apply meta-cognitive skills that foster learning during
example-based pedagogical activities. 

Two such meta-cognitive skills that have been extensively studied include
self-explanation and min-analogy. Self-explanation involves elaborating and
clarifying to oneself available instructional material (e.g., Chi, Bassok et al.,
1989; Pirolli & Recker, 1994; Renkl, 1997; Renkl, Stark et al., 1998). Min-
analogy involves not relying too heavily on examples during problem solving,
that is transferring from the example only the minimum amount of information
necessary to enable successful problem solving (VanLehn, 1998; VanLehn &
Jones, 1993). Unfortunately, research shows that not all students can apply
these meta-cognitive skills effectively, although there is some evidence that
they can be explicitly coached to do so (e.g., Bielaczyc, Pirolli et al., 1995).

In this paper, we present an Intelligent Tutoring framework that can provide
this coaching in an individualized manner, thus supporting an optimal
example-based natural progression in cognitive skill acquisition. The
framework complements Andes, a well established Intelligent Tutoring System
(ITS) designed to support physics problem solving at the college level (Conati,
Gertner et al., 2002; Schulze, Shelby et al., 2000), with two coaching
components that support the example-based phases of skill acquisition that
precede pure problem solving. The first component, known as the SE (Self-
Explanation)-Coach, supports example studying prior to problem solving. The
second component, known as the EA (Example-Analogy)-Coach, supports
analogical problem solving (APS from now on). An earlier version of the SE
Coach has been described in Conati and VanLehn (2000). In this paper we
describe both an extended version of the SE-Coach and the EA-Coach in the
context of an integrated framework to support learning from examples.
Although there will be some overlap with Conati and VanLehn (2000),
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we deem this as necessary to illustrate the scope and overall approach of
this work, and to make this paper a self-contained description of our
complete framework for example-based learning.

The choice of devising this framework to complement the support for
physics problem solving provided by Andes is based on three main reasons.
First, physics is one of the domains in which there is a well-recognized need
in cognitive science for innovative educational tools, due to the extreme
difficulties that students often encounter in bridging theory and practice,
either because they cannot make the leap from theory acquisition to
effective problem solving, or because they may learn to solve problems
effectively without grasping the underlying theory (Halloun & Hestenes,
1985). Second, there were several components of the Andes architecture
that we could reuse in the framework and that had been previously validated
through the various evaluations of Andes (e.g., the problem-solving
interface that the EA-Coach uses to support APS). Third, integrating our
framework with Andes facilitates the process of devising an Intelligent
Learning Environment that covers the complete progression from aided
example studying, to problem solving supported by tailored examples, to
pure problem solving with more traditional tailored hints and feedback. 

While there has been extensive research in Intelligent Tutoring Systems
(ITS) on how to use examples as learning aids, our framework for example-
based learning (ExBL framework from now on) has three distinguishing
features. The first is that ExBL is the only ITS that addresses both the
example-studying and the analogical problem-solving phases of cognitive
skill acquisition, and that does so by providing individualized coaching for
the relevant meta-cognitive skills. The second is that ExBL includes one of
the first attempts to apply natural language techniques for the automatic
generation of example solutions that stimulate example-based learning. The
third is that ExBL extends research on providing computer-based support
for meta-cognitive skill acquisition both by making the first attempt to
address the min-analogy meta-cognitive skill, specifically relevant to
improving performance during APS and by exploring the impact of
differences between a problem and an example to provide tailored stimuli
for effective APS.

Because of the complexity of the ExBL framework and of its
pedagogical components, we have adopted the strategy of evaluating the
individual components before proceeding to a comprehensive ecological
study of the complete system. In this paper, we report on a selection of the
results from an empirical evaluation of the SE-Coach (Conati & VanLehn,
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1999), showing that this component facilitates cognitive skill acquisition
when students access it at the appropriate learning stage. Although the EA-
Coach is yet to be evaluated, we will discuss how the results of the SE-
Coach evaluation support some of the design choices that shape the EA-
Coach pedagogical interaction.

In the rest of the paper, we first give a general overview of the ExBL
framework and architecture. We then provide details on each individual
Coach, including a discussion of the relevant meta-cognitive skills and of
the tools each Coach uses to foster them. Next, we describe the SE-Coach
evaluation. We then discuss related research, and conclude with future work. 

EXBL FRAMEWORK: OVERVIEW AND ARCHITECTURE

The philosophy underlying the design of the ExBL framework is to
support meta-cognitive skills for example-based learning by stimulating
students to take the initiative in the learning process, rather than by
enforcing a strict tutorial interaction in which students passively follow a
tutor’s directives. This is achieved by providing multiple levels of
scaffolding, individualized to best accommodate the varied student
propensity and capability for the relevant meta-cognitive skills (Chi,
Bassok et al., 1989; Renkl, 1997; VanLehn, 1998; VanLehn, 1999). The
scaffolding includes: 

- simple reminders to engage the student in the relevant meta-cognitive
processes, 

- presentation of study material tailored to facilitate adequate meta-
cognition, 

- feedback on student performance, both at the problem solving and at
the meta-cognitive level,

- interface tools designed to explicitly guide effective learning
behaviours, 

- directed tutorial interventions for those students who need stronger
guidance. 

The goal is to support students’ initiative by giving them the opportunity
to choose how much scaffolding they want. More proactive help, tailored to
each student’s specific needs, is provided only when students show
suboptimal learning behaviours.
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In order to tailor its scaffolding to a student’s needs, the ExBL framework
must be capable of monitoring and assessing each student’s performance with
respect to the target pedagogical tasks. Thus, the framework needs an internal
representation of these tasks, against which to compare the student’s problem-
solving and example-studying behaviours. It also needs to encode its
assessment in terms of the student’s domain knowledge and relevant meta-
cognitive skills in a computational student model that can then be used to guide
the tailoring of instructional support.

The above requirements are implemented in the architecture shown in
Figure 1. The architecture’s user interface components provide interactive tools
for students to study examples (SE-Coach) and to use examples during
problem solving (EA-Coach). All student interface actions are monitored and
assessed against the system’s internal representation of the relevant
problem/example solutions. This internal representation, known as the solution
graph, is automatically built before run-time by the component labelled as
Problem Solver in Figure 1 (left) starting from: (i) a knowledge base of physics
and planning rules (Domain and planning rules in Figure 1) and (ii) a formal
description of the initial situation for the examples/problems involved in each
task (Problem definition in Figure 1) (Conati & VanLehn, 2000). Each solution
graph is a dependency network that represents how each solution step derives
from previous steps and physics knowledge.

FIGURE 1
ExBL Framework architecture.

As an example of a solution graph consider, for instance, the physics
example in Figure 2. Figure 3 shows the part of the solution graph that
derives the first two steps mentioned in the example solution: establish the goal
to apply Newton’s 2nd Law and select the body to which to apply the law. In
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the solution graph, intermediate solution facts and goals (F- and G- nodes in
Figure 3) are connected to the rules (R- nodes) used to derive them and to
previous facts and goals matching the rules’ enabling conditions. The
connection goes through rule-application nodes (RA- nodes in Figure 3) which
explicitly represent the application of each rule in the context of a specific
example. Thus, the segment of the network in Figure 3 encodes that the rule R-
try-Newton-2law establishes the goal to apply Newton’s 2nd Law (node G-try-
Newton-2law) to solve the goal to find the force on the wagon (node G-force-
on wagon). 

The rule R-goal-choose-body then sets the sub-goal to find a body to
apply Newton’s 2nd Law (node G-goal-choose-body) and the rule R-body-
by-force dictates that if one has the goals to find the force on an object and
to select a body to apply Newton’s 2nd Law, that object should be selected
as the body. Thus, in Figure 3 this rule selects the wagon as the body for the
example in Figure 2 (node F-wagon-is the body). 

FIGURE 2
Sample SE-Coach example.
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FIGURE 3
Segment of solution graph for the example in Figure 2.

Both SE-Coach and EA-Coach use the solution graph to provide feedback
on students’ performance during example studying and problem solving, by
matching students’ interface actions to elements in the solution graph. In
addition to serving as the basis for the ExBL framework’s ability to provide
feedback, the solution graph is also used to build the framework’s student
models. Each time a student opens a new exercise, the corresponding solution
graph provides the core structure for a Bayesian network (Pearl, 1988) that
forms the short-term student model for the currently active Coach (see right side
of Figure 1). The Bayesian network uses information on the student’s interface
actions to generate a probabilistic assessment of the student’s knowledge and
relevant meta-cognitive tendencies at any given point during the interaction1.
This allows the system to generate tailored interventions to foster effective
meta-cognitive skills when the model assesses that the student has knowledge
gaps or that her meta-cognitive behaviours need improvement. The prior
probabilities to initialise the rule nodes in the Bayesian network come from the
long-term student model (see Figure 1). This model contains a probabilistic
assessment of a student’s knowledge of each rule in the Knowledge Base at the
time when a new exercise is started. This assessment is updated every time the
student finishes an exercise, with the new rule probabilities computed by the
short-term model Bayesian network for that exercise. 

What we have described so far are the elements that are shared by both
Coaches in the ExBL framework. We will now discuss each Coach in more
detail. For each Coach, we will first introduce the meta-cognitive skills
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required to learn effectively in the targeted learning context, followed by a
description of the Coach itself. 

THE SE-COACH: PROVING TAILORED SUPPORT
FOR EXAMPLE STUDYING

Prior to commencing problem solving, students often find it useful to
study some worked-out examples. There is substantial evidence that
students learn more effectively from this activity if they engage in the meta-
cognitive skill known as self-explanation, i.e., generating elaborations and
explanations to themselves to clarify the example solution (e.g., Chi, et al.,
1989; Pirolli & Recker, 1994; Renkl, 1997). Self-explanation is believed to
be beneficial both because it triggers more constructive learning processes
than merely reading a provided explanation and because it allows a student
to tailor the explanation to her particular needs, i.e., specific knowledge
gaps or misconceptions. As a result, students who self-explain end up with
more solid knowledge that they can bring to bear during problem solving.
However, studies show that many students tend not to self-explain
spontaneously, thus gaining limited benefits from example studying (e.g.,
Chi, Bassok et al., 1989; Pirolli & Recker, 1994; Renkl, 1997). The SE-
Coach is explicitly designed to provide support for these students by
recognizing when they are not self-explaining effectively and by generating
interventions to correct this behaviour. The capability of tailoring its
interventions to each student’s specific needs is what distinguishes the SE-
Coach from other systems that try to foster self-explanation. These systems
tend to either prompt students to self-explain every step in the instructional
material (Aleven & Koedinger, 2002), or make students self-explain
every incorrect step in a problem solution (Mitrovic, 2003). Although
these less tailored approaches have shown that they can improve student
learning as compared to problem solving without explaining, they may
incur the danger of being intrusive by forcing spontaneous self-explainers
to generate redundant and unnecessary self-explanations. The long term
goal of our research is to investigate if and how more tailored support
may improve on these existing approaches, in terms of both student
learning and student satisfaction.

SE Coach: Overview 
Research in cognitive science has identified a variety of different types of
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self-explanations that consistently correlate with learning (Atkinson, 2002;
Chi, Bassok et al., 1989). 

In the SE-Coach, we have focused on three of these types (discussed in
more detail below), that can be automatically formalised in a computational
model, given a rule-based representation of the underlying domain
knowledge. This allows the SE-Coach to have an internal representation of
the relevant, correct self-explanations of these three types that can be
generated for each available example. The SE-Coach uses this
representation to monitor a student’s self-explanations, to provide feedback
on their correctness and to suggest additional self-explanations that may
improve learning. We have decided to enable the SE-Coach to provide
feedback on self-explanation correctness despite the fact that some
researchers argue that an incorrect self-explanation can be as beneficial as
its correct counterpart (Chi, 2000; Ryan, 1996). The argument that incorrect
self-explanation should not be discouraged is based on the fact that,
although it creates flaws in the student’s knowledge, these flaws may later
be contradicted by other elements of the example, thus triggering self-
explanations to fix the flaws and generating learning. However, this
argument may not apply to those students who are not proficient in self-
monitoring their understanding during study tasks. These students may not
be able to detect the inconsistencies generated by their incorrect self-
explanations and would thus never overcome them on their on. We argue
that immediate feedback on correctness protects these students from
learning wrong knowledge from incorrect self-explanation, and simply
makes students who are better at self-monitoring detect the conflict sooner
than they would on their own.

The three types of self-explanations targeted by the SE-Coach are:

a) Justifying a solution step in terms of the domain theory (step
correctness self-explanation)

b) Relating solution steps to goals in the abstract plan underlying the
example solution (step utility self-explanation)

c) Filling in missing steps (gaps) in the example solution (gap-filling self-
explanation).

We label these self-explanations “domain-based” because they involve
relating example steps to existing domain knowledge, as opposed to self-
explanations that involve using common-sense and overly-general
knowledge to infer new domain knowledge that can justify a given example
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step (Chi & VanLehn, 1991; Chi et al., 1994; Bielaczyc et al., 1995; Ryan,
1996). The latter type of self-explanations, also referred to as Explanation-
Based Learning of Correctness (EBLC), tend to be much more open-ended
than domain-based self-explanations. Currently, the SE-Coach cannot
provide feedback for correctness and explicitly support EBLC via tools
because doing so would require much more complex domain and student
models. In a subsequent section, we discuss how the EA-Coach aims to
provide support for EBLC by implicit means that do not involve interface
tools and explicit feedback.

FIGURE 4
The ExBL architecture specialized for the SE-Coach. 

The SE-Coach’s focus on correct domain-based self-explanation is
supported by the general system architecture presented in the previous
section, extended as shown in Figure 4 to include components specific to the
SE-Coach. In the context of the interaction with the SE-Coach, the solution
graph for each available example represents a model of correct self-
explanation for that example’s solution, because for each solution step (i.e.
fact in the solution graph) it encodes the three types of domain-based self-
explanations needed to understand it as follows:

- step correctness, by encoding what domain rule generated that fact, 
- step utility, by encoding what goal that fact fulfils, and 
- gap filling, by showing how the fact derives from solution steps that

may not be shown in the example solution). 

10 CONATI et al.

o not involve interface tools and explicit feedback.

 
Long-term 

student model 

Example 

Before run - time 

Problem definition 
(givens and goals) 

Domain and planning rules 

Problem  
Solver 

Solution graph  

Example Generator 

  User Interface 

Before run - time 

Templates  

Explanation 

strategies 

Gap-filling 

menu 
Short-term  

student model 
(Bayesian network) 

Coach 
SE-Coach 



To provide explicit monitoring and support for gap-filling self-
explanation, the SE-Coach includes an example generator (see right part of
Figure 4). This is a system for Natural Language Generation that can
automatically tailor the level of detail in the example description to the
student’s knowledge, as we will describe shortly. 

Interacting with the SE-Coach
In a previous section, we mentioned that one of the elements that defines

the ExBL framework’s pedagogy is the provision of incremental scaffolding
for the meta-cognitive skills useful for effective example-based learning. As
part of providing this incremental support, the SE-Coach’s interface
includes three different levels of scaffolding for self-explanation. These
levels are designed to help students with different degrees of self-
explanation capabilities self-explain more, while maintaining as much as
possible the spontaneous, constructive nature of this learning activity.

FIGURE 5
A physics example (left) presented with the SE-Coach masking interface (right).

The first level of scaffolding is given by a masking interface that presents
different parts of the example covered by grey boxes (see Figure 5). In order
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to read the hidden text or graphics, the student must move the mouse over
the corresponding box. The fact that not all the example parts are visible at
once helps students focus their attention and reflect on individual example
parts. Furthermore, it allows the SE-Coach to track students’ attention (Conati
& VanLehn, 2000). The second level of scaffolding is provided by explicit
prompts to self-explain. These prompts go from a generic reminder to self-
explain, that appears next to each example part when it is uncovered (see self-
explain button in Figure 5, right), to more specific prompts for self-
explanations on step correctness, step utility and gap filling that appear when a
student clicks on the self-explain button for a given line (see Figure 6). 

The third level of scaffolding consists of menu-based tools designed to
provide constructive but controllable ways to generate the above self-
explanations, to help those students that would be unable to properly self-
explain if left to their own devices (Conati & Carenini, 2001; Conati &
VanLehn, 2000). In the next sections we describe in more detail the various
menu-based tools, in association with the types of self-explanation that they
are meant to trigger.

Supporting self-explanations for step correctness
As Figure 6 shows, one of the prompts that appears in the self-explain

menu for a given example part reads “This fact is true because...”. This
prompt aims to trigger self-explanations that justify why a step is correct in
terms of the domain knowledge that generated it. 

If a student selects the self-explanation prompt “this fact is true
because..”, a Rule Browser is displayed in the right half of the window (see
Figure 7a). The rule browser contains a hierarchy of physics rules, reflecting
the content of the ExBL framework’s Knowledge Base. The student can
browse the rule hierarchy to find a rule that justifies the currently uncovered
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(a)

(b)

FIGURE 6
SE-Coach prompts for specific types of self-explanation.



part. The SE-Coach will use a green check or a red cross to provide
feedback on the correctness of the student’s selection (see Figure 7a). To
determine the correctness of a selection, the selection is matched to the rule
that derives the uncovered example step in the solution graph. 

If a student wants to provide a more detailed explanation of a rule, s/he can
optionally click on the “Template” button at the bottom of the Rule Browser
(see Figure 7a). A dialog box comes up, containing a template corresponding to
a partial definition of the rule that has blanks for the student to fill in (see
Figure 7b). Clicking on a blank brings up a menu of possible fillers (see right
template in Figure 7b). The rule definition is in terms of the preconditions that
need to be verified for the rule to be applied and of the consequences that the
application of the rule generates, consistent with findings showing that this is
the spontaneous way in which self-explainers tend to express their self-
explanations for correctness (Chi & VanLehn 1991).

FIGURE 7
(a) Selections in the Rule Browser; (b) Template filling.

After completing a template, the student can select “submit” to get
immediate feedback. The SE-Coach retrieves the definition of the
corresponding rule from the Andes’ Knowledge Base and uses it to verify
the correctness of the student’s selections. Student performance in filling in
a given template is treated by the system as evidence of the student’s
knowledge on the corresponding rule (or lack thereof), and is therefore used
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to update that rule’s probability in the short-term student model for the
current example.

Supporting self-explanation for step utility
The second type of prompt that appears in a self-explanation menu ( “the

role of this fact in the solution plan is…”) aims to make the student abstract
the function of the current step in a high-level plan underlying the example
solution. When a student selects this type of prompt, a plan browser is
activated. The plan browser is similar to the rule browser, but it displays a
hierarchical tree representing the solution plan for a particular example
instead of the SE-Coach’s physics rules. For instance, Figure 8 shows the
Plan Browser for the ‘person-pulling-a-wagon’ example (Figure 2), which
displays the plan to apply Newton’s Second Law (Reif, 1995). To explain
the role of the uncovered fact in the solution plan, the student navigates
through the goal hierarchy and selects a sub-goal that most closely
motivates the fact. Pressing a “submit” button causes the SE-Coach to give
immediate feedback and to send the corresponding assessment of student
performance as evidence to the short-term student model. In the student
model, performance assessment is accomplished by matching the student
selection with the rule that established the solution graph’s goal node closest
to the currently uncovered step.

FIGURE 8
Selection in the Plan Browser.

14 CONATI et al.



Supporting gap-filling self-explanation
The two types of self-explanations described above are supposed to help

students clarify steps that are explicitly shown in the example solution.
Studying detailed example solutions has been shown to be beneficial for
acquiring problem-solving skills because it reduces the high cognitive load
that pure problem solving tends to induce in novice students (Sweller,
1988). This high cognitive load is caused by the fact that during problem
solving one needs to both search for a reasonable solution path and
understand how individual pieces of domain knowledge can be applied to
implement this path. Detailed example solutions are a good starting point
for novices because they eliminate the search component of the problem-
solving process, allowing students to focus on understanding domain
knowledge application. Self-explanations for correctness and utility have
been shown to aid this process (e.g., (Chi, Bassok et al., 1989)). However, a
third type of self-explanation has also been shown to aid the acquisition of
problem-solving skills. If students are presented with example solutions
with missing steps, they may learn by self-explaining how to fill such
solution gaps (Atkinson, 2002). A likely reason for the effectiveness of this
type of self-explanation is that it provides mini problem-solving sessions
that help the transition from pure example studying to full-blown problem
solving. We argue that this transition can be further facilitated by: 

- introducing in the example solutions gaps that are not too cognitively
demanding for a given student, and 

- supporting student self-explanations aimed at filling these gaps. 

To test our hypothesis, we have given the SE-Coach the capability to
both generate examples with tailored solution gaps and coach gap-filling
self-explanation over these gaps. The SE-Coach decides which gaps are
suitable for a given student by monitoring how a student’s knowledge
changes while studying a sequence of examples, and by only selecting gaps
that relate to knowledge the student seems to have mastered after studying
fully detailed examples.

As shown in Figure 4, the tailored example solutions are generated by the
SE-Coach Example Generator (EG from now on) with input from the long-
term student model. When a student selects an example from the SE-Coach
pool, EG uses the corresponding solution graph and a set of explanation
strategies (Figure 4) to create a text plan for the example. This is a data
structure that specifies the content, organization and rhetorical structure for
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a natural language description of the complete example solution represented
in the solution graph (Conati & Carenini, 2001).

Once the text plan has been generated, it is revised to possibly insert
solution gaps suitable for the current student. More specifically, the revision
process examines each proposition specified by a primitive communicative
action in the text plan (i.e., an action that would be realized as a solution
step in the example presentation). If, according to the long-term student
model, there is a high probability that the student knows the rule necessary
to infer that proposition, the action is de-activated. After this, all active
communicative actions are realized in English by applying a set of linguistic
templates (Figure 4). In contrast, de-activated actions are kept in the text
plan but are not realized in the example text, thus creating solution gaps.
However, as we will see shortly, de-activated actions may be realized in
follow-up interactions. 

FIGURE 9
(left) Portion of Example 2 without solution gaps; (right) solution with added gaps.

As an illustration of the effects of the revision process on content
selection, compare the example solutions shown in Figure 9. They are both
solutions for the example shown in the figure (Example 2), but the solution
to the left does not contain any solution gaps. In contrast, the same portion
of the solution to the right in Figure 9 is much shorter, because it includes
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several solution gaps. As previously described, EG determines what
information to leave out by consulting the long-term probabilistic student
model. In particular, the concise solution in Figure 9 (right) is generated by
EG if the student model gives a high probability that the student knows the
rules necessary to derive the missing steps (e.g., the rules that describe when
to apply Newton’s Second Law, how to choose a body to apply this law,
when a weight force exists and with which direction, etc.), possibly because
the student previously studied and self-explained other examples involving
these rules. When selecting the content for Example 2, EG leaves out all the
propositions derived from the rules with high probability of being known.
Notice, for instance, that the concise solution in Figure 9 does not mention
the solution method (Newton’s second law) used, or the weight force
existence/direction. Also, the choice of the body and of the coordinate
system is only conveyed indirectly.

To support student self-explanation targeted at filling the inserted gaps, a
specific prompt is added to the list of prompts that appear after a student
clicks the self-explain button. The prompt is added only when the uncovered
example part is enabled by solution steps corresponding to some of the
primitive communicative actions that were de-activated during the revision
process. The rationale behind this condition is that a solution gap with
respect to an example part comprises all the solution steps that were left out,
but whose understanding is a direct precondition to derive that example part.
For instance, given the part of Example 2 uncovered in Figure 10a, there is
only one solution gap preceding it, namely the one corresponding to the step
of choosing the wagon as the body for the current problem. As shown in
Figure 10a, the prompt for gap filling is generated by adding the item
“filling in missing steps” to the self-explain menu. If the student clicks on
this item, the interface inserts in the solution text an appropriate number of
masking boxes, representing the missing steps (see Figure 10b, left panel,
first box from top). The interface also activates a dialogue box containing a
blank for each missing step, that the student can use to fill in the step (see
Figure 10b, right panel). Since the interface currently does not process
natural language input, the student fills each blank by selecting an item in
the associated pull-down menu. EG generates the entries in this menu by
realizing in natural language some of previously de-activated
communicative actions in the text plan (see ‘Gap filling menu’ component
in Figure 4). These will include both communicative actions related to other
parts of the solution, which will thus represent incorrect selections, as well
as the correct one.
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FIGURE 10
Interface tools for gap-filling self-explanation.

The student receives immediate feedback on the correctness of her
selection, which is sent as evidence to the short-term student model
corresponding to the Bayesian network built for the current example (see
Figure 4). The network node that corresponds to the missing step is set to
either true or false, depending on the correctness of the student’s
selection, and the network updates the probability that the student knows
the corresponding rule. Thus, if the student’s actions show that s/he is not
ready to apply a given rule to fill a solution gap, this rule’s probability
will decrease in the student model. As a consequence, the next presented
example involving this rule will include the related solution steps, giving
the student one more chance to study the application of the rule in an
example-studying condition. 

The SE-Coach’s Interventions
The interface tools described in the previous sections are designed to

provide incremental scaffolding for self-explanation that students can
access at their own discretion, to adhere to our goal of providing an
environment that stimulates as much as possible the student’s initiative in
the learning process. However, to help those students who are not
receptive to interface scaffolding because of their particularly low
tendency for self-explanation, the SE-Coach can also provide more direct
tutorial interventions, targeting specific limitations in a student’s self-

18 CONATI et al.

(a)

(b)Figure 10: Interface tools for gap-filling self-explanation



explanation behaviour. In the rest of this section we describe the design of
these tutorial interventions. 

Initially, self-explanation is voluntary. However, the SE-Coach keeps
track of the students’ progress through the example; including how much
time they looked at a solution item (through the masking interface), what
they chose to self-explain via the interface tools and whether or not the self-
explanations were correct. This information is collected in the SE-Coach’s
student model, which assesses what parts of the example may benefit from
further self-explanation (Conati & VanLehn, 2001). Then, when the student
tries to close the example, the SE-Coach generates tutorial interventions to
make the student self-explain those parts. These interventions include:

1.A generic warning: “You may learn more by self-explaining further
items. These items are indicated by pink covers”. The warning is
accompanied by changing the colour of the relevant boxes to pink
(shown as dark grey in Figure 11). 

2.A specific prompt attached to each pink box, such as “Self-explain with
the Rule Browser”, “Self-explain with both the Rule and the Plan
Browser” or “Read more carefully”, depending on what self-
explanation the student model predicts to be missing for that item. 

FIGURE 11
SE-Coach interventions to elicit further self-explanation.
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When the item is uncovered, the more specific prompt appears in place
of the simple self-explain button (see Figure 11). The colour of the boxes
and the related messages change dynamically as the student performs more
reading and self-explanation actions that change the probabilities of the
corresponding nodes in the student model. The student is not forced to
follow all of the SE-Coach suggestions, and can close the example
whenever desired.

One of the challenges in designing the SE-Coach tutorial interventions is
that they must motivate students who have low propensity to self-explain to
do so. The current design based on the colouring of example lines was
selected through pilot testing of various alternatives (Conati & VanLehn,
2000) because it allows the students to see at once all the parts that they
should further self-explain as well as what interface tools they should use
for that purpose. It also gives students suitable feedback on the progress
they are making, because the colour of the solution steps and the attached
hints change dynamically as students generate more self-explanations. 

SE-Coach: Summary
In this part of the paper we have described the SE-Coach component of

our adaptive ExBL framework for example-based learning. The SE-Coach
aims to improve student problem-solving skills by helping students learn
from worked-out example solutions before solving problems. To do so, the
SE-Coach provides individualized scaffolding for various forms of self-
explanation, a meta-cognitive skill that has been widely shown to improve
the effectiveness of example-studying activities. One of the self-
explanations the SE-Coach supports, gap-filling self-explanation, is meant
to ease students into more direct problem-solving activities, while still in
example-study mode. We will now describe how the transition from
example studying to problem solving is further facilitated by the EA-Coach,
the other component of the ExBL framework. 

THE EA-COACH: PROVIDING TAILORED SUPPORT
FOR ANALOGICAL PROBLEM SOLVING

Example studying is more beneficial to learning than problem solving for
students in the early stages of skill acquisition. As students gain expertise,
problem-solving activities become more beneficial (Kalyuga, Chandler et
al., 2001). However, as students move to problem solving, they still tend to
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rely on worked-out examples to overcome impasses (e.g., (Reed & Bolstad,
1991; Reed, Dempster et al., 1985; VanLehn, 1998; VanLehn, 1999;
VanLehn & Jones, 1993)). This process is referred to in the literature as
analogical problem solving (APS), and can be beneficial to learning.
However, as for pure example studying, APS can have different degrees of
pedagogical effectiveness, depending upon the meta-cognitive skills that
students bring to bear (VanLehn, 1998; VanLehn, 1999; VanLehn & Jones,
1993). For some students, APS is simply a way to overcome problem-
solving impasses by copying from existing example solutions. For others,
APS affords the opportunity to acquire or refine relevant domain knowledge
(VanLehn, 1998; VanLehn, 1999; VanLehn & Jones, 1993). In this section,
we describe how the ExBL framework discourages the former type of APS
and encourages the latter.

Analogical problem solving can be characterized by two phases: example
selection and application (VanLehn 1998). Selection involves retrieving an
example that helps the student solve the target problem. Research indicates
that this phase is mediated by expertise, in that novice students tend to
experience difficulties finding appropriate examples (e.g., Novick, 1988).
Application involves using the example’s solution to help generate the target
problem solution. The learning outcomes from this phase are heavily
influenced by a number of meta-cognitive skills that can be characterized
using two dimensions: analogy-type and reasoning. 

The analogy-type dimension characterizes a student’s preferred style of
problem solving when examples are available (VanLehn, 1998; VanLehn &
Jones, 1993) and includes Min-analogy and Max-analogy. Min-analogy
identifies students who try to solve a problem on their own, and refer to an
example only when they reach an impasse or to check a solution. Max-
analogy identifies students who copy as much as possible, regardless of
whether they can solve the problem on their own. These students miss the
opportunity to practice their existing problem-solving skills, as well as the
opportunity to run into impasses that would allow them to detect and
overcome knowledge gaps. Empirical results based on protocol analysis
demonstrate that students who prefer min-analogy tend to learn more,
because it directly supports the benefits of APS, including knowledge
strengthening and refinement (VanLehn, 1998; VanLehn & Jones, 1993). 

The reasoning dimension of the APS application phase characterizes
how a student tries to understand the example solution, in order to overcome
a problem-solving impasse. Impasses occur either because of a lack of
understanding of how to apply existing knowledge (e.g., because multiple
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principles apply), or because domain knowledge is missing. When referring
to an example to overcome the first type of impasse, students may use the
domain-based self-explanations (described earlier) in order to gain an
understanding of which rule to apply. However, when referring to an
example to overcome an impasse due to missing knowledge, students need
to use a different type of self-explanation to extract the necessary
information from the example solution. This self-explanation is known as
Explanation-Based Learning of Correctness (EBLC). EBLC can be used to
learn new domain principles from an example’s solution, either during pure
example studying or during APS, by using common-sense and overly-
general knowledge in conjunction with domain principles (VanLehn, 1999). 

To demonstrate how EBLC works, Figure 12 (left) shows a problem and
an example in the domain of Newtonian physics2. Let’s suppose that a
student 1) tries to self-explain the example before working on the problem
and 2) when self-explaining solution steps 3 and 4, she reaches an impasse
because she does not know about normal forces. In step 3, the example
solution states that there is a normal force acting on the crate, but does not
state why. Figure 12 (right) shows how commonsense and overly-general
rules, in conjunction with a domain rule can be used to explain the existence
of the normal force mentioned in step 3 of the example (Figure 12, left)
(VanLehn, 1999). Specifically, to explain this rule, the student relies on her
existing (1) commonsense knowledge to infer that since the crate is
supported by the ramp, it pushes down on the ramp (Commonsense rule in
Figure 12); (2) overly-general knowledge to infer that this push is an
‘official physics force’ (Overly-general rule in Figure 12); (3) domain
knowledge to infer that there is a reaction force that acts on the crate and is
due to the ramp (Newton’s Third Law rule in Figure 12). This line of
reasoning results in a new domain principle (Normal-exists rule, Figure 12).
A similar process can be used to explain example step 4 (Figure 12, left)
specifying the direction of the normal force. Once the student gains
knowledge about normal forces and their direction through EBLC, she can
apply it to generate solution steps 3 and 4 in the target problem.

Empirical results based on protocol analysis provide some indication that
certain students have an inherent tendency for EBLC (VanLehn, 1999).
Unfortunately, many students employ more superficial reasoning processes,
which either do not result in learning, or result in shallow forms of
knowledge (Reed, Dempster et al., 1985; VanLehn, 1998; VanLehn, 1999).
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One such process employed during APS involves performing minimal
adaptations of example lines so that they can be copied over to the problem
solution. This can be done, for instance, by substituting example constants
by problem ones (e.g., the example constant crate by the problem constant
block in Figure 12). This process is known as transformational analogy or
mapping-application (Anderson, 1993; VanLehn, 1998), and may prevent
students from learning new rules during analogical problem solving because
the correct solution is generated mostly through copying of superficially
adapted example lines. 

The above findings suggest that, as for example studying, there is much
to gain by providing students with adaptive support for meta-cognitive skills
that foster learning during APS. In the ExBL framework, the EA-Coach is
designed to provide this support for students by recognizing when they are
engaging in suboptimal APS behaviors and by generating interventions to
trigger the more effective meta-cognitive skills. 

Although both ExBL Coaches follow the philosophy of delivering
tailored, scaffolded support for meta-cognitive skills, the EA-Coach differs
slightly from the SE-Coach in how it delivers its support. Our hypothesis is
that students should be provided with explicit types of scaffolding when
they are in the early stages of skill acquisition, such as when they interact
with the SE-Coach. However, some of this scaffolding should be faded
eventually, to encourage students to become less reliant on tools. Thus,
although the EA-Coach provides some interface scaffolding, instead of
providing other tools the coach provides a more subtle form of scaffolding.
This scaffolding is realized by the system-supported selection of suitable
examples. However, this adds a new level of challenge, because it is hard to
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Example: A person pulls a 9 kg. crate up a ramp inclined 30 degrees to  

the horizontal. The crate is moving with some unknown acceleration. The 

pulling force is applied at an angle of 30 degrees CCW from the 

horizontal, with a magnitude of 100N. Find the normal force on the crate. 

    [step 1] To solve this problem, we apply Newton’s Second Law. 

    [step 2] We choose the  crate  as the body.  

    [step 3] One of the forces acting on the crate  is the normal force.  

    [step 4] It is directed 120 degrees  CCW from the horizontal.  

 

[Commonsense rule] 
If an object O1 supports object O2 then 

  There is a force F on O1 due to O2 

 

[Overly-general rule] 
If F is a force generated by commonsense 

reasoning then 

  F is an official physics force 

 

[Newton’s Third Law rule] 
If an objects O1 exerts a force on object O2 

then 

  O2 exerts an equal and opposite force on O1 

 

[Normal-exists rule] 
If an object O2 is supported by object O1 then  

  There is a normal force on O2 due to O1 

 

Problem: A workman pulls a 50 kg. block  along the floor. He pulls it 

hard, with a magnitude of 120 N, applied at an angle of 25 degrees  CCW 

from the horizontal. The block is moving with some unknown  

acceleration. What is the normal force on the block? 

    [step 1] To solve this problem, we apply Newton’s Second Law. 

    [step 2] We choose the  block  as the body.  

    [step 3]  One of the forces acting on the block   is  the normal force.  

    [step 4] It is directed straight-up (90 degrees CCW from the horizontal). 

FIGURE 12
Problem & Example (left) and Reasoning via EBLC (right).



assess students’ self-explanation behaviour in the absence of rich interface tools.
In a later section, we will see how the EA-Coach responds to this challenge by
using additional information on various types of differences between the current
problem and example to assess students’ reasoning during APS. 

The EA-Coach focuses on supporting the two key meta-cognitive skills
needed for APS (i.e., min-analogy and self-explanation via EBLC). Although
domain-based self-explanations may also have the potential to be beneficial
during APS, we have chosen to focus only on these two skills because we have
cognitive science findings to support their role in effective APS (VanLehn,
1998; VanLehn, 1999; VanLehn & Jones, 1993). Our plan is to first evaluate
the current level of support provided by the EA-Coach, and then use the
outcome of these evaluations to determine if and how domain-based self-
explanations should be incorporated. 

We will describe how the EA-Coach aims to encourage EBLC, as well as
min-analogy, after introducing the overall system. 

FIGURE 13
The ExBL Architecture specialized for the EA-Coach.

EA-Coach Overview
The EA-Coach provides support for min-analogy and EBLC following the

general ExBL framework philosophy of providing multiple levels of scaffolding
tailored to individual students’ needs. The EA-Coach architecture extends the
ExBL framework with components specific to the EA-Coach, as shown in Figure
13. The system contains a database of worked-out examples and problems for the
student to work on (the textual description of the example solutions must
currently be entered by a human being). As with the SE-Coach, the Problem
Solver generates the system’s internal representation of the example and problem
solutions in the solution graph format we introduced earlier (Figure 3). In the
context of the EA-Coach, it is the solution graph corresponding to the problem
the student is working on that forms the basis of the EA student model (Figure
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13, short-term student model component). As for the SE-Coach, the student
model allows the EA-Coach to assess students’ problem-solving performance
and provide feedback on it. The solution graph also serves a second function for
the EA-Coach: it is used to compare the target problem and an example to assess
the differences between them (Comparison Engine component). This assessment
serves two crucial functions in the EA-Coach: 

- to allow the Coach component to select examples that trigger effective
APS behaviours, thus providing implicit support for learning through this
process, 

- to help assess students’ cognitive and meta-cognitive states during APS. 

Interacting with the EA-Coach 
We will now introduce how students interact with the EA-Coach. The EA-

Coach interface allows students to solve problems and refer to worked-out
examples (problem and example windows, Figure 14, left and right
respectively). To work on a problem, the student selects the one of her choice,
which opens the problem window. The problem-solving interface is directly
based on the Andes design (Conati, Gertner et al., 2002) and consists of the
diagram and equation panes, which students can use to draw free-body
diagrams (problem window, left, Figure 14) and type equations (problem
window, right, Figure 14). To help the system assess the correctness of
students’ equations, any variables that students include in their equations must
first be added to the variable definition pane (problem window, top, Figure 14). 

During problem solving, students can ask the system to provide an example,
which the EA-Coach presents in the example window (Figure 14, right). Note
that the EA-Coach example format differs a little from the SE-Coach design.
We initially intended to use the SE-Coach format in the EA-Coach, which is
loosely based on the presentation of worked-out examples in physics text
books. However, a pilot study with the EA-Coach revealed that students felt
this format was not sufficiently similar to the Andes problem-solving window’s
design. One common complaint was related to the lack of a variable definition
pane in the example window. Although this lack of similarity could be a form
of scaffolding to discourage copying, we found that for several subjects it
hindered problem solving. To address this issue, we decided to change the
example format to more closely mirror the problem-solving format3. 
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As is the case with the SE-Coach, the general ExBL framework principle
of providing incremental support is realized in the EA-Coach by offering
several levels of scaffolding for min-analogy and EBLC. In this section, we
describe the scaffolding that is embedded in the EA-Coach interface, while
in the next section we introduce the scaffolding provided through tailored
example selection.

One form of interface scaffolding corresponds to providing immediate
feedback for students’ problem-solving entries, realized by colouring these
entries as either red or green. As evidence in cognitive science demonstrates
(Chi, Bassok et al., 1989), and as we confirmed through our pilot studies, some
students lack self-monitoring skills and so are unable to diagnose their own
misconceptions or errors. We argue that immediate problem-solving feedback
can help trigger the right APS behaviours in these students, who would
otherwise continue on incorrect solution paths. For instance, if a problem-
solving error is due to a max-analogy student indiscriminately copying from an
example, immediate feedback can discourage this form of copying by making
the student aware of max-analogy’s limitations. If the error is the result of a
knowledge gap the student is not aware of, then the immediate feedback can
help the student realize the existence of an impasse, and encourage using an
available example to overcome it.
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Problem Window  Example Window  

FIGURE 14
EA-Coach Problem (left) and Example (right) Interface.



A second form of interface scaffolding in the EA-Coach is provided by
the same masking interface used by the SE-Coach. As for the SE-Coach,
this interface can help focus a student’s attention on individual solution
lines. In the context of the EA-Coach, this interface also serves a second
function: it is intended to discourage copying because of the effort needed to
explicitly uncover example solution steps. 

To further discourage copying, the interface includes a third form of
scaffolding corresponding to the lack of ‘Cut’ and ‘Paste’ functionality
between the example and problem windows. This design is based on
findings from an earlier pilot study involving an interface that allowed
cutting and pasting. That study showed that some students abused these
functionalities to copy entire example solutions.

Supporting APS via Example Selection 
In addition to the interface scaffolding described in the previous section,

the EA-Coach scaffolds effective APS behaviours by selecting examples
that discourage max and transformational analogy, while facilitating min-
analogy and EBLC. The example selection is tailored to a student’s needs,
according to the ExBL principle of providing tailored support for meta-
cognition. This is one of the key, original contributions of the EA-Coach,
which we will discuss further in the related work section.

A fundamental factor that the system must take into account in order to find
an appropriate example is the differences between it and the current problem,
and how these impact APS meta-cognitive behaviours. Thus, before describing
the selection process in more detail, we first describe this impact.

Impact of Differences between Problem and Example
Typically, an example is different from the problem in some ways

(otherwise, the example is simply a direct solution). Our approach for
providing tailored support to APS relies on assessing structural and
superficial differences between the problem and the example solutions
steps. This allows the system to determine whether a student can correctly
transfer a solution step from an example to a problem and how easily she
can do it, as we demonstrate in the next section. 

Two corresponding solution steps are defined to be structurally different
if they are not generated by the same domain principles (e.g., rules in the
solution graph in Figure 3), and identical otherwise. Two structurally
identical steps may be superficially different. We classify these differences
as trivial or non-trivial, as defined below.
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Given:

P = Pd + Ps where Pd = problem description , Ps = problem solution
E = Ed + Es, where Ed = example description, Es = example solution
PsolStep = a solution step in Ps containing constant cp 
EsolStep = a solution step in Es containing constant ce 
cp ≠ ce and PsolStep, EsolStep are structurally identical

If constant ce is in Ed and constant cp is in Pd and if replacing ce by cp in
EsolStep generates a corresponding correct solution step PsolStep in P, then the
difference between steps PsolStep, EsolStep is classified as trivial. Otherwise, the
difference is classified as non-trivial.

To make this more concrete, Figure 15 illustrates how the EA-Coach
classifies the structural and superficial relations between solution steps 3
and 4 in the problem and example originally shown in Figure 12. To do so,
the system relies on the solution graph structure introduced earlier, which
contains all the solution steps (i.e., facts) and corresponding rules, as well as
its internal representation of the problem and example description. (Figure
15 shows both the textual representation seen by the student and the
system’s corresponding internal representation; for the solution steps, the
corresponding rules are also shown). Since problem steps 3 and 4 have a
structurally identical counter-part in the example solution (i.e., are
generated by the same rules, R:Normal-exists, R:Normal-dir respectively),
both are classified as structurally identical. On the other hand, both steps 3
and 4 are superficially different from their corresponding example steps.
The difference between step 3 in the problem and example is classified as
trivial, because (i) it is due to problem/example constants block and crate,
which are found in both the problem/example descriptions and solutions;
(ii) the example constant crate can be replaced by the problem constant
block to generate the correct solution step in the problem. On the other hand,
the superficial difference between problem and example steps 4 is non-
trivial. The difference relates to the fact that for the problem solution, a
normal force is drawn straight-up, as opposed to perpendicular to the ramp
for the example. This difference depends on a constant defining the incline
of the surfaces on which the block and crate rest, which only explicitly
appears in the example specification (see Figure 12), but which also requires
additional inference in order to be reconciled (i.e., that the force is directed
90 degrees away from the surface’s incline). Note that our classification of
the structural and superficial relations relies on comparing the problem and
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example solutions, which the EA-Coach has access to (students only have
access to the example solution). 

FIGURE 15
Classification of Differences.

Now the key question is: “What impact do various differences have on
students’ APS behaviours?” The answer to this question depends both on
whether the student tends to spontaneously engage in effective APS
behaviours, and on whether the student possesses the relevant knowledge.

The impact of a structural difference between a problem and example
solution step depends on whether the student has the knowledge to generate the
step on her own. If the student does know the rule, then the difference forces
her to do pure problem solving, which can help her strengthen her knowledge
through practice. If the student does not, however, the example will not be
helpful for acquiring the domain principle(s) needed to generate the problem
solution, and no learning gains will occur (as found in Novick, 1988). 

On the other hand, superficial differences do not block students from
transferring from the example, which increases the chances that they can
carry on in their problem solving. This is because these types of differences
afford students the opportunity to either copy the solution step directly over
to the target problem, or to learn the domain principle embedded in the
example’s solution and apply this knowledge to generate the corresponding
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[EsolStep3 ] On e of the forces acting on 
the crate is the normal force  

A workman pulls a 50 kg block … A person pulls a 9 kg crate … 

Solution:  

Problem Description (P d): Example Description (E d): 

Solution:  

[E solStep4 ] This  force  is  oriented  120
o
 

CCW from the horizontal  

R: Normal -dir  

[PsolStep4 ] This  force  is  oriented   90
o
 

CCW from the horizontal  

R: Normal -dir  

[PsolStep3 ] One of the forces acting on 
the block is the normal force  

R: Normal -exists  Structurally identical  

Superficial Difference (Trivial)  
PsolStep 3 contains constant c p=block, which is also in  Pd   
EsolStep 3 contains constant c e=crate, which is also in  Ed  

[P solStep1 ] To solve this problem we apply 
Newton’s Second Law  

[P solStep 2] We choose the block  as the body   

Superficial Difference(Non -Trivial) 
PsolStep 4 contains constant c p=90, which is not in  Pd  

EsolStep 4 contains constant c e=120 , which is not in  Ed  
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Newton’s Second Law  

[EsolStep 2] We choose th e crate as the body   

(f orce (type normal )(applied -to block ) 

R: Normal -exists  
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(object  (name block ) ) (object  (name crate ) )  



step in the target problem. However, we propose that the two kinds of
superficial differences we introduced above may have different impacts on
whether learning occurs:

- because trivial differences can be resolved by simple constant
substitution and so facilitate copying, they do not stimulate EBLC and
min-analogy for students who do not spontaneously engage in these
processes and have poor knowledge. There is some evidence backing
up this assumption: students do not have difficulty reconciling trivial
differences during APS to generate the problem solution, but do not
always learn the underlying domain principles from doing so (Reed,
Dempster et al., 1985; VanLehn, 1998), possibly because they are not
using the appropriate APS skills;

- non-trivial differences can have a positive impact on learning for
students with poor APS skills, because this type of difference: 

• can only be resolved by EBLC (and not transformational analogy).
In particular, a student who tries to copy a solution line containing
a non-trivial difference will not obtain a correct answer. If she is
made aware of the error through feedback, she may be encouraged
to reason more deeply via EBLC to learn the domain principle that
generated the example solution (this newly acquired knowledge
could then be applied to generate the problem solution);

• has the potential to discourage max-analogy by making pure
copying an ineffective strategy. 

In the next section, we illustrate how the EA-Coach incorporates the
impact of various differences between a problem and an example into its
example selection mechanism.

Example Selection Process
Understanding the impact of both superficial and structural differences

allows the EA-Coach to find an example that meets its general goal of providing
support for APS. This goal is divided into the following two sub-goals:

- finding an example that triggers learning by encouraging min-analogy
and EBLC and discouraging their ineffective counterparts, i.e., max and
transformational analogy (learning goal),

- finding an example that helps to solve the target problem (problem-
solving success goal).
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Both of these sub-goals need to be taken into account in order to find an
appropriate example. Examples that introduce certain types of differences
do have the potential to encourage learning, but decrease the chances of
problem-solving success by making the full solution more difficult (or
impossible) to transfer. For instance, an example may encourage the
learning of a particular rule due to a non-trivial superficial difference, but
also include a structural difference with the problem (because its solution
does not involve a domain principle required for the problem’s solution). If
this difference corresponds to a student’s knowledge gap, the example will
not be useful in helping the student overcome the problem-solving impasse
caused by the knowledge gap, and thus the student will not be able to solve
the problem. On the other hand, examples that virtually guarantee problem-
solving success because they are very similar to the target problem facilitate
max and transformational analogy and therefore may hinder learning. To
find the best balance in satisfying both the learning and problem-solving
success goals, the EA-Coach assesses an example’s impact by taking into
account the following factors:

- superficial and structural differences between the example and the
target problem,

- the student’s knowledge of the domain principles needed to generate
the problem solution,

- the student’s tendency for min-analogy and EBLC. 

We will now describe how these factors are used by the EA-Coach to
find an example that best satisfies the two selection sub-goals for a specific
student. This involves a two-step process.

As the first step, for each example in the example pool, the EA-Coach
uses its student model to simulate what a student will learn from a given
example and how the example will help her solve the target problem. To see
how this simulation operates, recall that the student model is a Bayesian
network built upon the problem’s solution graph (such as the one shown in
Figure 3). As for the SE-Coach, this network includes nodes representing
the probability that the student: 1) knows the rules that generated the
problem solution (represented by the rule nodes in the solution graph), 2)
can generate the corresponding solution steps (represented by the fact nodes
in the solution graph). In addition, the network includes nodes that explicitly
represent a student’s tendency for min-analogy and EBLC reasoning, as
well as nodes representing the similarity between steps in the target problem
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and selected example (Muldner & Conati, 2005). To simulate how the
example impacts learning of the rules involved in the problem-solving
process (the first selection sub-goal), the similarity between the example
and the problem solution steps is introduced as evidence to the network.
This causes the network to update the probability that the student will learn
the rules embedded in the problem solution by referring to the example.
Learning of a specific rule is predicted to occur if: 

- there is low probability that the student knows it, and
- the example solution includes the rule (i.e., there is no structural

difference) and
- either there is high probability that the student has good APS meta-

cognitive tendencies, or the example shares a non-trivial superficial
difference with the problem that encourages EBLC on this rule by
blocking copying of the corresponding step. 

For instance, given a student with poor knowledge and poor APS meta-
cognitive tendencies, and the problem/example pair shown in Figure 15, the
simulation would predict that there is a low probability the student will learn
the domain principle associated with the rule corresponding to step 3
(R:Normal-exists in Figure 15). This is because for this step, the difference
with the corresponding problem step is a superficially trivial one (as illustrated
in Figure 15), which allows the student to follow her tendency for max-analogy
and copy the step instead of learning the rule. On the other hand, the simulation
would predict that there is a higher probability the rule corresponding to step 4
(R:Normal-dir in Figure 15) will be learned. This is because although this
student has a low tendency for min-analogy and EBLC, the system predicts
that the non-trivial superficial difference between this step and the
corresponding problem step encourages EBLC by making copying impossible. 

To simulate how the example impacts problem-solving success (the second
sub-goal of the example selection process), the similarity between the problem
and example solution steps is used by the model to update the probability that
the student will be able to generate the problem solution steps in the presence
of the example. The simulation predicts that problem-solving success for a
target solution step will occur if: 

- either the student is able to generate the solution step on her own accord 
- or the example solution includes the corresponding rule (i.e., there is no

structural difference) and
• either the example allows the student to copy the step from its

solution 
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• or the student is able to generate any pre-requisite solution steps
and the example allows the student to learn the rule needed to
generate the step from its solution and apply it to the problem
(although the latter generates a lower probability of problem-
solving success than if the step can be directly copied). 

Returning to our example of the student with poor knowledge and APS
meta-cognitive tendencies, the simulation would predict that there is a high
probability that the student will be able to generate the steps needed for the
problem shown in Figure 15, because they all have structurally-identical
counterparts in the example4. This probability will be slightly higher for
steps that the simulation predicts this student will simply copy from the
example, as is the case for trivially different steps (e.g., step 3 in Figure 15),
than for steps for which this student has to learn the corresponding rule
because a non-trivial difference exists (e.g., step 4 in Figure 15).

As described above, the simulation generates a prediction of how an
example will help a student solve the target problem, and what will be
learned during the process, corresponding to the Bayesian network’s fact
and rule probabilities respectively (recall that this network corresponds to
the problem’s solution graph). Given the outcome of this simulation, which
as we said is repeated for each example in the system’s example pool, the
second step in the example selection process involves finding the ‘best’
example. To do so, the framework relies on a decision-theoretic approach
(Clement, 1996), and assigns a utility to each available example. To
calculate this utility, the framework uses a multi-attribute linearly-additive
utility model (see Figure 16) in order to meet the learning and problem-
solving success objectives. We will now describe this model in more detail.

First, utility nodes are added and linked to the network’s rule nodes (e.g.,
‘Utility Rule1’, ‘Utility Rule2’ nodes in Figure 16). The value of each utility
node is the expected utility (EU) of the corresponding rule (‘Rulei‘ nodes in
Figure 16), which corresponds to the sum of the probability P of each
outcome multiplied by the utility U of that outcome:

Since in our model, U(known(Rulei))=1 and U(¬known(Rulei))=0, the
expected utility of a rule corresponds to the probability that the rule is

))(())(())(())(()( iiiii RuleknownURuleknownPRuleknownURuleknownPRuleEU ¬⋅¬+⋅=
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4Figure 15 only explicitly shows the structural relations for steps 3 and 4, but all four steps are clas-
sified as structurally identical to the corresponding example steps because they are generated by the
same rules in the problem and example solutions.



known. The ‘Utility Rulei’ nodes are linked to a multi-attribute utility
(MAU) node representing the learning objective (‘Learning Utility’ node in
Figure 16). The value of this node is the weighted sum of its input values:

Since we consider all the rules to have equal importance, all the weights
w are assigned an equal value (i.e., 1/n , where n is the number of rules in
the network). 

A similar approach is used to obtain the measure for the problem-solving
success objective: utility nodes are added and linked to the network’s fact
nodes (e.g., ‘Utility Fact1’, ‘Utility Fact2’ nodes in Figure 16), where U(
generated(Facti))= 1 and U( ¬generated(Facti))= 0. These utility nodes are
used as inputs to the ‘PS Success Utility’ node, whose value is a weighted
sum of its inputs. As was the case for rule nodes, we assume that all the facts
are equally important, and so the weights are assigned an equal value (i.e.,
1/n, where n is the number of facts in the network).

Finally, as shown in Figure 16, the ‘Learning Utility’ and ‘PS Success
Utility’ nodes are linked to a MAU node representing the overall utility of an
example (‘Overall Utility’ node in Figure 16), whose value corresponds to
the weighted sum of its inputs. These weights are currently set to the same
value (i.e., 1/2), since we assume learning and problem-solving success to
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FIGURE 16
Fragment of the EA Utility Model.
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be equally important, but we plan to refine this assumption through
evaluations with students. The framework chooses the example with the
highest ‘Overall Utility’ node value and presents it to the student. A similar
approach is described in (Murray & VanLehn, 2000) to select tutorial
actions; here we extend this approach to the example-selection task.

Role of Example in the Student Model’s Assessment
Once an example is selected, it helps the EA-Coach student model refine its

assessment of the student’s knowledge and APS tendencies, in conjunction
with the student’s interface actions (Muldner & Conati, 2005). For instance, if
the student correctly generates a solution step that does not have a
corresponding element in the example solution, the model can deduce that no
copying took place. This increases the probability that the student knows the
rule needed to generate the step. Similarly, suppose that a student assessed to
have a low EBLC tendency and low physics knowledge views an example step
(by uncovering it in the masking interface) that shares a trivial superficial
difference with the problem (e.g., such as step 3 in Figure 15), and then
generates a correct solution step. Given this scenario, the model predicts that
transfer happened through transformational analogy and not EBLC. Suppose,
on the other hand, that the same student generates a step after looking at an
example that shares a non-trivial superficial difference with the target problem
over this solution step (such as step 4 in Figure 15). In this case, the student
model assesses that the student did self-explain through EBLC, because this is
the only way to resolve the difference between problem and example and
correctly generate the problem solution. This assessment in turn results in the
model assigning a higher probability for both the physics rule corresponding to
the problem step and the student’s EBLC tendency.

EA-Coach: Summary
In this second portion of the paper, we have described the EA-Coach

component of our adaptive framework for example-based learning. The EA-
Coach aims to extend the SE-Coach tailored support for example studying
to the usage of examples during problem solving (analogical problem
solving, or APS), thus bridging the transition between example studying and
full-fledged problem solving. Following the general philosophy of the
ExBL framework, the EA-Coach targets the meta-cognitive skills that
trigger effective APS (min-analogy and EBLC) and does so in a tailored
manner. The crucial part of this tailoring is achieved through the
individualized selection of examples that can trigger positive APS
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behaviours in students who have a low tendency for them.
In the rest of the paper, we describe an initial evaluation of the ExBL

framework, focusing on the pedagogical effectiveness of the SE-Coach.

EMPIRICAL EVALUATION OF THE SE-COACH

Although we have not had a chance to fully evaluate all the components of
our ExBL framework, we have conducted an empirical study to test the
effectiveness of the SE-Coach support for self-explanation of correctness and
utility (Conati & VanLehn, 2000). Despite the fact that the evaluation targets only
the SE-Coach, its results also provide initial support for decisions related to the
EA-Coach design. In particular, not only do they show that complex scaffolding
for self-explanation is beneficial at the initial stage of cognitive skill acquisition,
but they also suggest that as student expertise increases, subtler forms of
scaffolding may be more effective. This indirectly validates our choice of giving
the EA-Coach less explicit ways to scaffold self-explanation as compared to the
SE-Coach.

The SE-Coach study involved 56 college students, using an earlier version of
the SE-Coach that covered two of the three types of self-explanations currently
included in the system: step correctness (justify why a solution step is correct in
terms of rules in the target domain) and step utility (explain what role a solution
step plays in the high-level plan underlying an example solution). Thus this
version did not include support for gap-filling self-explanation, i.e., for those
explanations aimed at clarifying how a given solution fact derives from steps that
are not shown in the example solution. 

The ExBL framework does not provide any introductory physics instruction,
because it is meant to complement regular classroom activities. Hence, to
evaluate the SE-Coach adequately, subjects need to have enough knowledge to
understand the topic of the examples, but not so much knowledge as to find the
examples not worthy of attention. The closest we could get to enforce this
constraint was to recruit college students taking introductory physics and who
already had their first lecture on Newton’s Second Law, but not a class test on the
topic. The students came from 4 different colleges.

The one-session study comprised: 1) solving four pre-test problems on
Newton’s Second Law; 2) studying examples on Newton’s Second Law with the
system; 3) solving post-test problems equivalent but not identical to the pre-test
ones. The study had two conditions. In the experimental (SE) condition, 29
students studied examples with the complete SE-Coach. In the control condition,
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27 students studied examples using only the masking interface and the Plan
Browser (the tool to support explanations for step utility)5. They could see the
self-explain prompt appear when they uncovered a line, but had no access to the
subsequent level of prompting for self-explanations on step correctness (“this
step is correct because…”) and step utility (“the role of this plan in the solution
step is..”). They also had no access to the Rule Browser and Templates (the tools
to support explanations for step correctness), nor feedback or coaching. 

As we reported in (Conati & VanLehn, 2000), the analysis of the log files
from the study shows that the SE-Coach’s interface is easy to use and explicit
tutorial interventions are quite successful at stimulating self-explanation. To
evaluate the pedagogical effectiveness of the SE-Coach, we first compared how
the students in the SE condition learned in comparison to the students in the
control condition. 

Table 1 shows summary statistics for pre-test scores, post-test scores and their
difference (gain scores) for each condition. There were no significant differences
between the pre-test scores of the two conditions, indicating that subjects had
been successfully randomized to obtain two conditions with equivalent physics
knowledge. The difference between gain scores of SE and control condition was
also not statistically significant, as measured by an Analysis of Covariance
(ANCOVA) with post-test scores as the dependent variable, the pre-test scores as
the covariate and condition as the main factor.

TABLE 1
Test and gain scores for SE and Control conditions.
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N Mean SD

SE-condition 29

Pre-test 24.47 5

Post-test 30.51 6.8

Gain  6.04 4.49

Control

condition

27

Pre-test 25.46 6.2

Post-test 30.51 6.4

Gain  5.05 4.35

____________________________
5We let the control students access the Plan Browser because introductory physics courses usually
do not address solution planning, therefore control students would have had too much of a disad-
vantage if they had not been able to see what a solution plan is through the Plan Browser.



We then restricted the analysis to the subgroups of subjects coming from
different colleges: Carnegie Mellon University (CMU, 14 students),
Community College of Allegheny County (CCAC, 5 students), University
of Pittsburgh (PITT, 20 students) and U.S. Naval Academy (USNA, 17
students). We found that the SE condition of CMU and CCAC students had
gain scores substantially higher than the control condition. In contrast, in
both the Pitt and USNA subgroups, students in the control condition had
slightly better gain scores than students in the SE condition (see Table 2 for
a summary of the mean test values for the four groups).

TABLE 2
Mean pre-test, post-test and gain scores for Control and SE group in each college.

The commonality of behaviour between CMU and CCAC is quite
surprising, because the two schools are supposed to be, respectively, the
most and the least prestigious of the four colleges in the study, and this
ranking is confirmed by the trends in pre-test scores (see Figure 17).

FIGURE 17
Pre-test scores for students in the four colleges.
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Pre test (mean) CCAC CMU Pitt USNA

Control group 21.17 26.64 25.71 25.37

SE group 21.25 25.61 22.27 25.51

Post test (mean) CCAC CMU Pitt USNA

Control group 26.5 29.23 32.71 31.84

                                                            

5 We let the control students access the Plan Browser because introductory physics courses usually do not addres

 

  CCAA   CMU  PITT  USNA  

College   Mean

CCAC    21.2

CMU    26.13

Pitt    24.

USNA    25.45



However, there is one characteristic that CMU and CCAC have in
common and that distinguishes them from Pitt and USNA students.
They start the semester at least a week later than Pitt and USNA.
Therefore, although all the students participated in the experiment after
they had their lectures on Newton’s laws and before they took a class
test on the topic, Pitt and USNA students were ahead in the course
schedule and had likely spent more time on Newton’s laws than CMU
and CCAC students when they participated in the study. This could
have generated differences in the background knowledge and/or in the
way the two subgroups used the system, affecting how the students
benefited from it.

To test this hypothesis, we continued our analysis by comparing the
subgroup consisting of CMU and CCAC students (we’ll label this late-
start from now on) with the subgroup including Pitt and USNA students
(early-start). An ANCOVA with post-test as the dependent variable,
subgroup (early-start vs. late-start) and condition (SE vs. control) as
the main factors, and pre-test as the covariate confirms that there is a
statistically significant interaction of group with condition (F(1,55) =
7.238; p <0.01), and indicates that prior physics knowledge does not
account for the different behaviour of the two subgroups in the two
conditions. Adding SAT scores (math and verbal) to the ANCOVA as
covariate preserves the significance of the interaction, (F(1,45) = 7.61,
p <0.01), showing that general proficiency as measured by these tests
also does not account for the different behaviour of the two groups.

Within the late-start group, the SE condition performed better than
the control condition. In terms of gain scores, the SE condition has a
mean of 7.5 vs. 3.2 of the control condition. An ANCOVA with post-test
scores as dependent variable, condition as main factor and pre-test as
covariate shows a marginally significant difference over post-test
performance (F(1,24) = 6.17, p = 0.021) using the _ level of 0.0125
given by a Bonferroni adjustment for 4 post-hoc comparisons (two
more of these comparisons will be discussed below). Within the early-
start group the control condition performed slightly better than the SE
condition (mean gain 5 vs. 6.7), but the performance difference between
the two groups is  not statist ically significant,  as shown by the
corresponding ANCOVA for post-test scores over pre-test and condition
(F(1,30)= 1.6, p>0.2).
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FIGURE 18
Gain scores for late-start and early-start students within the two conditions.

We then performed pairwise comparisons of the late-start and early-
start groups within each of the instructional conditions. Let’s start by
analyzing performance. Figure 18 gives the pairwise performance
comparison for the two groups within each condition in terms of gain
scores. In the SE condition late-start students performed better than early-
start students. However, the performance difference is not statistically
significant as per an ANCOVA with post test scores as the dependent
variable, group as the main factor, and pre-test as the covariate (F(1,28) =
2.17, p > 0.1). In the control condition, early-start students performed
considerably better than late-start students, and the corresponding
ANCOVA with group as main factor showed a marginally significant
difference in post test performance when controlled for pre test (F(1,26)
= 5.58, p = 0.027), as per the aforementioned Bonferroni adjustment. As a
matter of fact, early-start students in the control condition performed
almost as well as late-start students in the SE Condition. 

One reason for these results could be that the early-start students in the
control condition were actually self-explaining. The reader should
remember that this condition did have a minimal form of scaffolding
provided by the masking interface and associated self-explain button. It is
possible that, because of the more advanced learning stage of the early-start
students, this minimal scaffolding was sufficient to trigger self-explanation,
making the early-start students in the control condition self-explain more
than late-start students in the same condition did.

Verifying this hypothesis is not easy, because students in the control
condition could not communicate their explanations to the control version
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of the SE-Coach. The only measures that may indicate self-explanation in
the log files include: (i) mean and standard deviation of multiple accesses to
example lines; (ii) mean and standard deviation of the time spent on each
example line; (iii) mean number of accesses and selections in the Plan
Browser. To explore the potential influence of these measures on post-test
performance in relation to learning stage, we ran a multiple regression
analysis of post test scores on these measures within each of the two control
sub-groups, early-start and late-start. 

TABLE 3
Regression of post test on mean and stardard deviation of line accesses for Early Start group.

For the early-start control group, the model we obtained (see Table 3) is
able to account for 64.4% of the variance in post-test performance (i.e.,
adjusted R2 = 64.4), with the following predictor variables yielding a
significant or marginally significant correlation with the dependent variable:
the mean number of line accesses (variable mean-acces in Table 3,
correlation coefficient 2.96, t(10) = 1.92, p = 0.083), standard deviation of
multiple line accesses (sd-acc in Table 3, correlation coefficient -3.65, t(10)
= -2.15, p = 0.0573) and pre-test scores (pre in Table 3, correlation
coefficient -0.72, t(10) = 4.06, p = 0.0448). None of the aforementioned
variables that may indicate self-explanation yield a significant or marginally
significant correlation in the analogous multiple regression for the late-start
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control group (13 students). Although these results are not strong enough to
conclude that early-start control students self-explained more than late-start
control students, the hypothesis that early-start students self-explained more
in the control condition is consistent with the fact that these students had
started studying Newton’s Laws earlier and had probably gained more
knowledge on the topic. It is possible that, although this knowledge was not
strong enough to make early-start control students better problem solvers, it
was sufficient to enable them to generate effective self-explanations under
the minimal scaffolding provided by the masking interface.

One might wonder why we didn’t see a similar effect in the SE condition,
i.e., why we did not see more learning in early-start students in this
condition (17 students), given that they not only had potentially more
familiarity with the topic than late-start students in the SE condition (12
students), but they also had more help in generating useful self-explanations
than their control counterpart. To try and answer this question, we compared
early and late-start students in the SE Condition with respect to time on task
and statistics on usage of the SE tools to see if we could find any difference
that could explain the comparatively limited benefits the early-start students
got from the interaction with the SE-Coach. We did not find any difference
in terms of time on task or frequency of SE-tools usage, but we did find a
statistically significant difference (p = 0.011, 2-tailed t-test with Bonferroni
adjustment) in the average number of attempts tried before giving up on a
Template explanation, with early-start students showing significantly fewer
attempts. This difference suggests that early-start students might have had a
lower level of motivation to learn from the SE-Coach, because they started
learning Newton’s second laws earlier than late-start students and thus
perceived studying examples on this topic to be less useful, consistent with
the findings described in (Nguyen-Xuan, Bastide et al. 1999). Browser
selections and template filling are recall tasks not as constructive as
generating explanations verbally, unless students actively reflect on the
result of their actions. It is plausible that, because early-start students were
less motivated to study the SE-Coach examples, they may have reasoned
less on what they were doing with the SE-Coach interface. Thus, they did
not learn as much as they could have from the SE tools, although they did
not access them less than late-start SE students did. 

SE-Coach Evaluation: Summary
In this section, we have described the results of a controlled study

designed to test the pedagogical effectiveness of the SE-Coach support for
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self-explanation for step correctness and utility. These results show that the
SE-Coach’s multiple levels of scaffolding for self-explanation improve
students’ problem solving when students are in the early stage of cognitive
skill acquisition. However, the results also suggest that the full-fledged
system is not as effective for students who are at a more advanced learning
stage. As a matter of fact, there is indirect evidence that the milder form of
scaffolding provided by the SE-Coach masking interface and untailored
reminders may be sufficient to trigger effective self-explanation for these
more advanced students. These results provide initial support for our design
decision of confining strong self-explanation scaffolding to the early
learning stage of example studying supervised by the SE-Coach, and to fade
this scaffolding when students are advancing to the analogical problem
solving targeted by the EA-Coach. We will of course need to run more user
studies to understand how effective the EA-Coach design is, but the study
we have presented provides initial evidence that we are on the right track.

RELATED WORK

The ExBL framework is to the best of our knowledge the only
framework that integrates tailored support for both example studying prior
to problem solving and APS, and that does so by targeting the meta-
cognitive skills involved in these instructional activities. However, there are
systems that target one of the two ExBL phases in isolation (Aleven &
Ashley, 1997; Kashihara, Hirashima et al., 1995; Nogry, Jean-Daubias et al.,
2004; Renkl, Atkinson et al., 2002; Weber, 1996), or that target the ExBL
meta-cognitive skills in a different instructional context (Aleven &
Koedinger, 2002; Mitrovic, 2003).

Renkl, Atkinson et al. (2002) describe a tutor that aims to coach self-
explanation during example studying like the SE-Coach. However, this tutor
focuses exclusively on gap-filling self-explanation. The gaps are inserted
following a fixed progression, instead of being tailored to a student’s
knowledge. The framework presented by Kashihara, Hirashima et al. (1995)
also tries to foster gap-filling self-explanation, in the context of studying
instructional text on word meaning. In this system, like in the SE-Coach,
gap selection is tailored to reduce a student’s cognitive load. However, to
generate the corresponding instructional material the system relies on a
simple user model, while the SE-Coach uses a sophisticated model of the
student’s inferential capabilities.
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The natural language generation (NLG) field has extensively studied the
process of producing text tailored to a model of the user’s inferential
capabilities (e.g., Horacek, 1997; Korb, McConachy et al., 1997; Young,
1999). However, the application of NLG techniques in ITS tends to be
limited either to managing and structuring the tutorial dialog (e.g.,
Freedman, 2000; Moore, 1996) or to making the selected content more
fluent (Di Eugenio, Glass et al., 2002; Haller & Di Eugenio, 2003), rather
than on tailoring the presentation of the instructional material to a detailed
model of the student’s inferential capabilities, as we do in the SE-Coach.

There are two ITS that support self-explanation during pure problem
solving. The Geometry Explanation Tutor (Aleven & Koedinger, 2002)
supports self-explanation during geometry theorem proving, while Normit-
SE (Mitrovic, 2003) targets data normalization in the database domain.
Unlike the ExBL framework, neither of these tutors tailors its support to
specific shortcomings in student self-explanation behaviour. The Geometry
Explanation tutor prompts students to self-explain every problem-solving
step, while Normit-SE prompts students to self-explain every new or
incorrect problem-solving step. 

Both tutors target only self-explanations for step correctness and provide
interface tools similar to the SE-Coach’s to scaffold it. Normit-SE provides
menu-based tools, while the Geometry tutor asks students to select an
explanation from a list of geometry theorems. The Geometry tutor has
recently been extended to allow students to type free-form self-explanations
(Aleven, Ogan et al., 2004). This is an important addition given that all
cognitive science studies reporting on the effectiveness on this meta-
cognitive skill targeted free-form verbal self-explanation, closer in nature to
free-form typed explanations than menu-based ones. However, a study
comparing the two versions of the Geometry tutor revealed no overall
difference in learning between self-explaining by selecting from a menu vs.
typing free-form explanations. 

There are a number of systems that, like the EA-Coach, select examples
for students during problem solving. However, none of these systems take
into account the impact of various differences between the problem and
example on a student’s knowledge and/or meta-cognitive skills. ELM-PE
(Weber, 1996) helps students solve LISP programming problems by
choosing examples that are as similar as possible to the problem the student
is working on. CATO (Aleven & Ashley, 1997) helps students build legal
arguments by dynamically generating examples of how an expert would
argue about a particular case. In (Nogry, Jean-Daubias et al., 2004) the
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authors claim that their AMBRE system supports the solution of algebra
problems by choosing structurally-appropriate examples. However, it is not
clear from the paper what “structurally appropriate” means. SPIEL (Burke &
Kass, 1995) supports learning of social skills by retrieving and presenting
examples, referred to as stories, intended to illustrate first-person narratives
about actual experiences. To recognize when a story is relevant, SPIEL relies
on a set of rules representing story-telling strategies (for instance, a story could
be relevant because it explains alternative perspectives to the student).

Recently, Aleven, McLaren et al., (2004) expanded the Geometry tutor
with a Help-seeking Tutor to provide tailored support for the meta-cognitive
skill of effective help-seeking. One aspect of this skill involves not abusing
available help by asking for detailed hints too lightly and too frequently. The
Help-Seeking tutor relies on a production rule model that captures both
correct help-seeking behavior and incorrect help-seeking behavior that
negatively correlates with learning, in order to provide tailored support to
effective help-seeking. Referring to examples during problem-solving
activities is also a form of help seeking. The EA-Coach discourages max-
analogy, which is also a form of ‘help abuse’, but does so by selecting
appropriate examples.

In this paper, we have argued that prompts to encourage students to
reason effectively should be tailored, because tailored prompts have the
potential to both trigger better learning and be less intrusive than untailored
ones. The only work that has compared tailored and non-tailored prompts is
Hausmann and Chi (2002). This work found no learning difference between
receiving tailored vs. untailored prompts in a Wizard of Oz experiment
involving students studying instructional text in biology. However, this
work does not provide conclusive evidence on this issue because it also
showed that students learned well without any prompts to self-explain,
possibly because the instructional material was intended for a much younger
population (i.e., college students were studying grade 8 text). Furthermore,
the study did not include any results on student preferences for tailored vs.
untailored interventions, even though student satisfaction can often have a
strong impact on system acceptance and consequent effectiveness.

SUMMARY & FUTURE WORK

In this paper we have presented ExBL, an ITS framework designed to
help students effectively acquire problem-solving skills from pedagogical
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activities involving worked-out example solutions. The rationale underlying
this work is that students tend to spontaneously rely on examples when
learning new skills through traditional pedagogical material (i.e. textbooks),
and they do so by (i) studying examples prior to problem solving in the very
early stages of skill acquisition, (ii) using examples as aids during problem
solving (analogical problem solving, or APS) as their expertise increases.
Thus, it seems highly valuable to provide computer-based support for these
activities, to complement the extensive availability of computer-based
support for pure problem solving.

However, like many other pedagogical activities, there is great variance
in how well different students learn by using examples. Cognitive science
studies have shown that this variance strongly depends on individual
differences in the ability to apply meta-cognitive skills that positively affect
example-based learning. 

ExBL is designed to take into account these individual differences and
provide tailored support for the application of self-explanation and min-
analogy, two of the meta-cognitive skills related to example-based learning
that have been most extensively studied in cognitive science. The subject
matter targeted by the ExBL framework is Newtonian physics, one of the
domains in which there is a well-recognized need for innovative educational
tools, due to the extreme difficulty students often encounter in bridging
theory and practice, either because they cannot make the leap from theory
acquisition to effective problem solving, or because they may learn to solve
problems effectively without grasping the underlying theory.

In this paper, we have described the two coaching components of ExBL,
that separately address the two phases of example-based learning: (i) the
SE-Coach, that scaffolds self-explanation during example studying; (ii) the
EA-Coach, that supports both self-explanation and min-analogy during
problem solving. 

There are three main contributions in our work:

1. It describes an ITS with the unique characteristic that it supports the use
of examples both before and during problem solving, and that it does so
by adapting not only to individual students’ cognitive traits, but also to
their specific meta-cognitive needs.

2. It includes one of the first attempts to apply natural language generation
techniques for the automatic generation of example solutions at varying
degrees of detail, a functionality used by the SE-Coach to support self-
explanation aimed at filling gaps in sparse example solutions. 
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3. It extends research on providing computer-based support for meta-
cognitive skill acquisition both by making the first attempt to address
the min-analogy meta-cognitive skill, specifically relevant to improving
performance during APS and by exploring the impact of differences
between a problem and an example to provide tailored stimuli for
effective APS.

Several parts of the ExBL architecture rely on the architecture of Andes,
a well established ITS for physics problem solving. This has two main
advantages. The first is that some of the ExBL modules have been
empirically validated through the studies performed on Andes. These
modules include the ExBL physics knowledge base, as well as the
components used by the problem-solving part of the EA-Coach (i.e., the
Andes interface, and its mechanisms for feedback and knowledge
assessment). The second advantage is that the ExBL framework is ready to
be integrated into a larger environment that covers all phases of cognitive
skill acquisition, from pure example studying with the SE-Coach, to APS
with the EA-Coach, to pure problem solving with Andes.

In the paper, we have discussed how both ExBL coaches rely on the
philosophy of providing multiple levels of tailored scaffolding for their
target cognitive skills, although the intensity of the scaffolding is faded from
the SE-Coach to the EA-Coach. The SE-Coach includes fairly explicit
scaffolding for building useful self-explanations in the form of menu-based
tools and direct tailored tutorial interventions. Conversely, the EA-Coach
relies on subtler scaffolding means, including a highly innovative example
selection mechanism. This mechanism is tailored to student needs and
chooses examples that can trigger the appropriate meta-cognitive
behaviours because of their level of similarity (or lack thereof) with the
target problem. 

We have also presented results from a study on the effectiveness of the
SE-Coach component of the ExBL framework. The study targeted an earlier
version of the system that supported only two types of self-explanation: (i)
step correctness (justify why a solution step is correct in terms of rules in the
target domain); (ii) step utility (explain what role a solution step plays in the
high-level plan underlying an example solution). The study showed that the
SE-Coach tailored scaffolding improved students’ problem-solving
performance if students accessed the system at an early learning stage. The
study also provided preliminary evidence that simpler, untailored
scaffolding may be sufficient to support self-explanation for more expert
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students. Because these are the students that are more likely to be ready to
move to the APS phase of cognitive skill acquisition, these preliminary
results are consistent with our choice of a milder form of scaffolding in the
EA-coach. 

Naturally, one of the immediate next steps in this research is to directly
evaluate the EA-Coach, as well as the newer version of the SE-Coach
complete with scaffolding for self-explanation aimed at filling gaps in
sparse example solutions. 

In addition to testing the overall pedagogical effectiveness of these
components, we intend to design the studies so that they will provide
insights on the following issues. 

- Is the subtler form of scaffolding provided by the EA-Coach sufficient
or do we need more direct interventions, in the SE-Coach style?

- The EA-Coach currently addresses only one type of self-explanation,
Explanation-Based Learning for Correctness (EBLC). EBLC allows
students to learn new rules by applying common-sense and overly-general
knowledge to explain unknown steps in the example solution. We chose to
focus the EA-Coach on EBLC because this is the type of self-explanation
on which we have cognitive science findings in relation to its role in
effective APS. However, it is possible that the other kinds of self-
explanations (for correctness, utility and gap filling), currently addressed
only by the SE-Coach may still play a role during APS. We would like the
EA-Coach study to give us insights on what this role might be and if and
how it will need support during interaction with the EA-Coach.

- The EA-Coach relies on supporting learning during problem solving by
encouraging min-analogy and EBLC through example selection. A
benefit of this strategy is that it affords students the opportunity to
practice the application of meta-cognitive skills, which could help them
become more effective learners. A related drawback, however, is that it
places much of the responsibility during the learning process on the
student. This may be problematic for some students, especially for the
ones who have very low meta-cognitive tendencies. An alternative
approach for supporting problem-solving activities, taken by Andes, is
to provide direct problem solving hints instead of examples (i.e., to
support pure problem solving). It would be interesting to compare the
two approaches to gain a better understanding of how each coach
supports learning, and if and how student characteristics and expertise
(e.g., stage in cognitive skill acquisition) impact the learning outcomes.
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- A more general question related to the above point is whether there are
optimal trajectories that students can follow to go from pure example
studying (SE-Coach), to APS (EA-Coach), to pure problem solving
(Andes). If so, how can they be defined and supported in an intelligent
learning environment that includes all three coaches?

In the longer term, we are planning to investigate how to apply the
natural language generation techniques currently used by SE-Coach to the
EA-Coach to generate examples with adequate solution steps. Currently, the
textual description of each available example solution in the EA-Coach
must be entered by a human being. Natural-language generation could be
used to build this textual description automatically from the solution graph,
as it is currently done in the SE-Coach. 
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