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Abstract

This paper presents a new sampling algorithm for approximating func-
tions of variables representable as undirected graphical models of arbi-
trary connectivity with pairwise potentials, as well as for estimating the
notoriously difficult partition function of the graph. The algorithm fits
into the framework of sequential Monte Carlo methods rather than the
more widely used MCMC, and relies on constructing a sequence of in-
termediate distributions which get closer to the desired one. While the
idea of using “tempered” proposals is known, we construct a novel se-
quence of target distributions where, rather than dropping a global tem-
perature parameter, we sequentially couple individual pairs of variables
that are, initially, sampled exactly from a spanning tree of the variables.
We present experimental results on inference and estimation of the parti-
tion function for sparse and densely-connected graphs.

1 Introduction
Undirected graphical models are powerful statistical tools having a wide range of applica-
tions in diverse fields such as image analysis [1, 2], conditional random fields [3], neural
models [4] and epidemiology [5]. Typically, when doing inference, one is interested in
obtaining the local beliefs, that is the marginal probabilities of the variables given the evi-
dence set. The methods used to approximate these intractable quantities generally fall into
the categories of Markov Chain Monte Carlo (MCMC) [6] and variational methods [7].
The former, involving running a Markov chain whose invariant distribution is the distri-
bution of interest, can suffer from slow convergence to stationarity and high correlation
between samples at stationarity, while the latter is not guaranteed to give the right answer
or always converge. When performing learning in such models however, a more serious
problem arises: the parameter update equations involve the normalization constant of the
joint model at the current value of parameters, from here on called the partition function.
MCMC offers no obvious way of approximating this wildly intractable sum [5, 8]. Al-
though there exists a polynomial time MCMC algorithm for simple graphs with binary
nodes, ferromagnetic potentials and uniform observations [9], this algorithm is hardly ap-
plicable to the complex models encountered in practice. Of more interest, perhaps, are
the theoretical results that show that Gibbs sampling and even Swendsen-Wang[10] can
mix exponentially slowly in many situations [11]. This paper introduces a new sequential
Monte Carlo method for approximating expectations of a pairwise graph’s variables (of
which beliefs are a special case) and of reasonably estimating the partition function. Intu-
itively, the new method uses interacting parallel chains to handle multimodal distributions,
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Figure 1: A small example of the type of graphical model treated in this paper. The observations
correspond to the two shaded nodes.

with communicating chains distributed across the modes. In addition, there is no require-
ment that the chains converge to equilibrium as the bias due to incomplete convergence is
corrected for by importance sampling.

Formally, given hidden variables x and observations y, the model is specified on a graph
G(V , E), with edges E and M nodes V by:

π(x,y) =
1

Z

∏

i∈V
φ(xi, yi)

∏

(i,j)∈E
ψ(xi, xj)

where x = {x1, . . . , xM}, Z is the partition function, φ(·) denotes the ob-
servation potentials and ψ(·) denotes the pair-wise interaction potentials, which
are strictly positive but otherwise arbitrary. The partition function is: Z =∑

x

∏
i∈V φ(xi, yi)

∏
(i,j)∈E ψ(xi, xj),where the sum is over all possible system states.

We make no assumption about the graph’s topology or sparseness, an example is in Fig-
ure 1. We present experimental results on both fully-connected graphs (cases where each
node neighbors every other node) and sparse graphs.

Our approach belongs to the framework of Sequential Monte Carlo (SMC), which has
its roots in the seminal paper of [12]. Particle filters are a well-known instance of SMC
methods [13]. They apply naturally to dynamic systems like tracking. Our situation is
different. We introduce artificial dynamics simply as a constructive strategy for obtaining
samples of a sequence of distributions converging to the distribution of interest. That is,
initially we sample from and easy-to-sample distribution. This distribution is then used as
a proposal mechanism to obtain samples from a slightly more complex distribution that is
closer to the target distribution. The process is repeated until the sequence of distributions
of increasing complexity reaches the target distribution. Our algorithm has connections
to a general annealing strategy proposed in the physics [14] and statistics [15] literature,
known as Annealed Importance Sampling (AIS). AIS is a special case of the general SMC
framework [16]. The term annealing refers to the lowering of a “temperature parameter,”
the process of which makes the joint distribution more concentrated on its modes, whose
number can be massive for difficult problems. The celebrated simulated annealing (SA)
[17] algorithm is an optimization method relying on this phenomenon; presently, however
we are interested in integration and so SA does not apply here.

Our approach does not use a global temperature, but sequentially introduces dependencies
among the variables; graphically, this can be understood as “adding edges” to the graph.
In this paper, we restrict ourselves to discrete state-spaces although the method applies to
arbitrary continuous distributions.

For our initial distribution we choose a spanning tree of the variables, on which analytic
marginalization, exact sampling, and computation of the partition function are easily done.
After drawing a population of samples (particles) from this distribution, the sequential
phase begins: an edge of the desired graph is chosen and gradually added to the current one
as shown in Figure 2. The particles then follow a trajectory according to some proposal



mechanism. The “fitness” of the particles is measured via their importance weights. When
the set of samples has become skewed, that is with some containing high weights and
many containing low ones, the particles are resampled according to their weights. The
sequential structure is thus imposed by the propose-and-resample mechanism rather than by
any property of the original system. The algorithm is formally described after an overview
of SMC and recent work presenting a unifying framework of the SMC methodology outside
the context of Bayesian dynamic filtering[16].

Figure 2: A graphical illustration of our algorithm. First we construct a spanning tree, of which a
population of iid samples can be easily drawn using the forward filtering/backward sampling algo-
rithm for trees. The tree then becomes the proposal mechanism for generating samples for a graph
with an extra potential. The process is repeated until we obtain samples from the target distribution
(defined on a fully connected graph in this case). Edges can be added “slowly” using a coupling
parameter.

2 Sequential Monte Carlo
As shown in Figure 2, we consider a sequence of auxiliary distributions
π̃1(x1), π̃2(x1:2), . . . , π̃n(x1:n), where π̃1(x1) is the distribution on the weighted
spanning tree. The sequence of distributions can be constructed so that it satisfies
π̃n(x1:n) = πn(xn)π̃n(x1:n−1|x1:n). Marginalizing over x1:n−1 gives us the target
distribution of interest πn(xn) (the distribution of the graphical model that we want to
sample from as illustrated in Figure 2 for n = 4). So we first focus on sampling from
the sequence of auxiliary distributions. The joint distribution is only known up to a
normalization constant: π̃n(x1:n) = Z−1

n fn(x1:n), where Zn ,
∫
fn(x1:n)dx1:n is the

partition function. We are often interested in computing this partition function and other
expectations, such as I(g(xn)) =

∫
g(xn)πn(xn)dxn, where g is a function of interest

(e.g. g(x) = x if we are interested in computing the mean of x).

If we had a set of samples {x(i)
1:n}Ni=1 from π̃, we could approximate this integral with the

following Monte Carlo estimator: ̂̃πn(dx1:n) = 1
N

∑N
i=1 δx(i)

1:n
(dx1:n), where δ

x
(i)
1:n

(dx1:n)

denotes the delta Dirac function, and consequently approximate any expectations of inter-
est. These estimates converge almost surely to the true expectation as N goes to infinity. It
is typically hard to sample from π̃ directly. Instead, we sample from a proposal distribution
q and weight the samples according to the following importance ratio

wn =
fn(x1:n)

qn(x1:n)
=
fn(x1:n)

qn(x1:n)

qn−1(x1:n−1)

fn−1(x1:n−1)
wn−1

The proposal is constructed sequentially: q(x1:n) = qn−1(x1:n−1)qn(xn|x1:n−1). Hence,
the importance weights can be updated recursively

wn =
fn(x1:n)

qn(xn|x1:n−1)fn−1(x1:n−1)
wn−1 (1)

Given a set of N particles x
(i)
1:n−1, we obtain a set of particles x

(i)
n by sampling from

qn(xn|x(i)
1:n−1) and applying the weights of equation (1). To overcome slow drift in the

particle population, a resampling (selection) step chooses the fittest particles (see the intro-
ductory chapter in [13] for a more detailed explanation). We use a state-of-the-art minimum
variance resampling algorithm [18].

The ratio of successive partition functions can be easily estimated using this algorithm as
follows:

Zn
Zn−1

=

∫
fn(x1:n)dx1:n

Zn−1
=

∫
ŵn π̃n−1(x1:n−1)qn(xn|x1:n−1)dx1:n ≈

N∑

i=1

ŵ(i)
n w̃

(i)
n−1,



where w̃(i)
n−1 = w

(i)
n−1/

∑
j w

(j)
n−1, ŵn = fn(x1:n)

qn(xn|x1:n−1)fn−1(x1:n−1) and Z1 can be easily
computed as it is the partition function for a tree.

We can choose a (non-homogeneous) Markov chain with transition kernel Kn(xn−1,xn)
as the proposal distribution qn(xn|x1:n−1). Hence, given an initial proposal
distribution q1(·), we have joint proposal distribution at step n: qn(x1:n) =
q1(x1)

∏n
k=2 Kk(xk−1,xk). It is convenient to assume that the artificial distribution

π̃n(x1:n−1|xn) is also the product of (backward) Markov kernels: π̃n(x1:n−1|xn) =∏n−1
k=1 Lk(xk+1,xk) [16]. Under these choices, the (unnormalized) incremental impor-

tance weight becomes:

wn ∝
fn(xn)Ln−1(xn,xn−1)

fn−1(xn−1)Kn(xn−1,xn)
(2)

Different choices of the backward KernelL result in different algorithms [16]. For example,
the choice: Ln−1(xn,xn−1) = fn(xn−1)Kn(xn−1,xn)

fn(xn) results in the AIS algorithm, with

weights wn ∝ fn(xn−1)
fn−1(xn−1) . However, we should point out that this method is more general

as one can carry out resampling. Note that in this case, the importance weights do not
depend on xn and, hence, it is possible to do resampling before the importance sampling
step. This often leads to huge reduction in estimation error [19]. Also, note that if there
are big discrepancies between fn(·) and fn−1(·) the method might perform poorly. To
overcome this, [16] use variance results to propose a different choice of backward kernel,
which results in the following incremental importance weights:

wn ∝
fn(xn)∫

fn−1(xn−1)Kn(xn−1,xn)dxn−1
(3)

The integral in the denominator can be evaluated when dealing with Gaussian or reasonable
discrete networks.

3 The new algorithm
We could try to perform traditional importance sampling by seeking some proposal distri-
bution for the entire graph. This is very difficult and performance degrades exponentially
in dimension if the proposal is mismatched [20]. We propose, however, to use the samples
from the tree distribution (which we call π0) as candidates to an intermediate target dis-
tribution, consisting of the tree along with a “weak” version of a potential corresponding
to some edge of the original graph. Given a set of edges G0 which form a spanning tree
of the target graph, we can can use the belief propagation equations [21] and bottom-up
propagation, top-down sampling [22], to draw a set of N independent samples from the
tree. Computation of the normalization constant Z1 is also straightforward and efficient in
the case of trees using a sum-product recursion. From then on, however, the normalization
constants of subsequent target distributions cannot be analytically computed.

We then choose a new edge e1 from the set of “unused” edges E − G0 and add it to G0
to form the new edge set G1 = e1 ∪ G0. Let the vertices of e1 be u1 and v1. Then,
the intermediate target distribution π1 is proportional to π0(x1)ψe1 (xu1 , xv1). In doing
straightforward importance sampling, using π0 as a proposal for π1, the importance weight
is proportional to ψe1(xu1 , xv1). We adopt a slow proposal process to move the population
of particles towards π1. We gradually introduce the potential between Xu1 and Xv1 via
a coupling parameter α which increases from 0 to 1 in order to “softly” bring the edge’s
potential in and allow the particles to adjust to the new environment. Formally, when
adding edge e1 to the graph, we introduce a number of coupling steps so that we have the
intermediate target distribution:

π0(x0) [ψe1(xu1 , xv1)]
αn

where αn is defined to be 0 when a new edge enters the sequence, increases to 1 as the
edge is brought in, and drops back to zero when another edge is added at the following
edge iteration.



At each time step, we want a proposal mechanism that is close to the target distribution.
Proposals based on simple perturbations, such as random walks, are easy to implement, but
can be inefficient. Metropolis-Hastings proposals are not possible because of the integral
in the rejection term. We can, however, employ a single-site Gibbs sampler with random
scan whose invariant distribution at each step is the the next target density in the sequence;
this kernel is applied to each particle. When an edge has been fully added a new one is
chosen and the process is repeated until the final target density is the full graph. We use an
analytic expression for the incremental weights corresponding to Equation (3).

To alleviate potential confusion with MCMC, while any one particle obviously forms a
correlated path, we are using a population and are making no assumption or requirement
that the chains have converged as is done in MCMC as we are correcting for incomplete
convergence with the weights.

4 Experiments and discussion
Four approximate inference methods were compared: our SMC method with sequential
edge addition (Hot Coupling (HC)), a more typical annealing strategy with a global tem-
perature parameter(SMCG), single-site Gibbs sampling with random scan and loopy belief
propagation. SMCG can be thought of as related to HC but where all the edges and local
evidence are annealed at the same time.

The majority of our experiments were performed on graphs that were small enough for
exact marginals and partition functions to be exhaustively calculated. However, even in toy
cases MCMC and loopy can give unsatisfactory and sometimes disastrous results. We also
ran a set of experiments on a relatively large MRF.

For the small examples we examined both fully-connected (FC) and square grid (MRF)
networks, with 18 and 16 nodes respectively. Each variable could assume one of 3 states.
Our pairwise potentials corresponded to the well-known Potts model: ψi,j(xi, xj) =

e
1
T Jijδxi,xj , φi(xi) = e

1
T Jδxi (yi). We set T = 0.5 (a low temperature) and tested models

with uniform and positive Jij , widely used in image analysis, and models with Jij drawn
from a standard Gaussian; the latter is an instance of the much-studied spin-glass models
of statistical physics which are known to be notoriously difficult to simulate at low temper-
atures [23]. Of course fully-connected models are known as Boltzmann machines [4] to the
neural computation community. The output potentials were randomly selected in both the
uniform and random interaction cases. The HC method used a linear coupling schedule for
each edge, increasing from α = 0 to α = 1 over 100 iterations; our SMCG implementation
used a linear global cooling schedule, whose number of steps depended on the graph in
order to match those taken by SMCG.

All Monte Carlo algorithms were independently run 50 times each to approximate the vari-
ance of the estimates. Our SMC simulations used 1000 particles for each run, while each
Gibbs run performed 20000 single-site updates. For these models, this was more than
enough steps to settle into local minima; runs of up to 1 million iterations did not yield a
difference, which is characteristic of the exponential mixing time of the sampler on these
graphs. For our HC method, spanning trees and edges in the sequential construction were
randomly chosen from the full graph; the rationale for doing so is to allay any criticism that
“tweaking” the ordering may have had a crucial effect on the algorithm. The order clearly
would matter to some extent, but this will be examined in later work. Also in the tables
by “error” we mean the quantity |â−a|a where â is an estimate of some quantity a obtained
exactly (say Z).

First, we used HC, SMCG and Gibbs to approximate the expected sum of our graphs’ vari-
ables, the so-called magnetization: m = E[

∑M
i=1 xi]. We then approximated the partition

functions of the graphs using HC, SMCG, and loopy.1We note again that there is no obvi-
ous way of estimating Z using Gibbs. Finally, we approximated the marginal probabilities
using the four approximate methods. For loopy, we only kept the runs where it converged.

1Code for Bethe Z approximation kindly provided by Kevin Murphy.



MRF Random Ψ MRF Homogeneous Ψ FC Random Ψ FC Homogeneous Ψ
Method Error Var Error Var Error Var Error Var

HC 0.0022 0.012 0.0251 0.17 0.0016 0.0522 0.0036 0.038
SMCG 0.0001 0.03 0.2789 10.09 0.127 0.570 0.331 165.61
Gibbs 0.0003 0.014 0.4928 200.95 0.02 0.32 0.3152 201.08

Figure 3: Approximate magnetization for the nodes of the graphs, as defined in the text, calculated
using HC, SMCG, and Gibbs sampling and compared to the true value obtained by brute force.
Observe the massive variance of Gibbs sampling in some cases.

MRF Random Ψ MRF Homogeneous Ψ FC Random Ψ FC Homogeneous Ψ
Method Error Var Error Var Error Var Err Var

HC 0.0105 0.002 0.0227 0.001 0.0043 0.0537 0.0394 0.001
SMCG 0.004 0.005 6.47 7.646 1800 1.24 1 29.99
loopy 0.005 - 0.155 - 1 - 0.075 -

Figure 4: Approximate partition function of the graphs discussed in the text calculated using HC,
SMCG, and Loopy Belief Propagation (loopy.) For HC and SMCG are shown the error of the sample
average of results over 50 independent runs and the variance across those runs. loopy is of course a
deterministic algorithm and has no variance. HC maintains a low error and variance in all cases.

Figure 3 shows the results of the magnetization experiments. On the MRF with random
interactions, all three methods gave very accurate answers with small variance, but for the
other graphs, the accuracies and variances began to diverge. On both positive-potential
graphs, Gibbs sampling gives high error and huge variance; SMCG gives lower variance
but is still quite skewed. On the fully-connected random-potential graph the 3 methods give
good results but HC has the lowest variance. Our method experiences its worst performance
on the homogeneous MRF but it is only 2.5% error!

Figure 4 tabulates the approximate partition function calculations. Again, for the MRF with
random interactions, the 3 methods give estimates of Z of comparable quality. This exam-
ple appeared to work for loopy, Gibbs, and SMCG. For the homogeneous MRF, SMCG
degrades rapidly; loopy is still satisfactory at 15% error, but HC is at 2.7% with very
low variance. In the fully-connected case with random potentials, HC’s error is 0.43%
while loopy’s error is very high, having underestimated Z by a factor of 105. SMCG fails
completely here as well. On the uniform fully-connected graph, loopy actually gives a
reasonable estimate of Z at 7.5%, but is still beaten by HC.

Figure 5 shows the variational (L1) distance between the exact marginal for a randomly
chosen node in each graph and the approximate marginals of the 4 algorithms, a common
measure of the “distance” between 2 distributions. For the Monte Carlo methods (HC,
SMCG and Gibbs) the average over 50 independent runs was used to approximate the
expected L1 error of the estimate. All 4 methods perform well on the random Ψ MRF.
On the MRF with homogeneous Ψ, both loopy and SMCG degrade, but HC maintains
a low error. Among the FC graphs, HC performs extremely well on the homogeneous
Ψ and surprisingly loopy does well too. In the random Ψ case, loopy’s error increases
dramatically.

Our final set of simulations was the classic Mean Squared reconstruction of a noisy im-
age problem; we used a 100x100 MRF with a noisy “patch” image (consisting of shaded,
rectangular regions) with an isotropic 5-state prior model. The object was to calculate the
pixels’ posterior marginal expectations. We chose this problem because it is a large model
on which loopy is known to do well on, and can hence provide us with a measure of qual-
ity of the HC and SMCG results as larger numbers of edges are involved. From the toy
examples we infer that the mechanism of HC is quite different from that of loopy as we
have seen that it can work when loopy does not. Hence good performance on this problem
would suggest that HC would scale well, which is a crucial question as in the large graph
the final distribution has many more edges than the initial spanning tree. The results were
promising: the mean-squared reconstruction error using loopy and using HC were virtually
identical at 9.067 × 10−5 and 9.036 × 10−5 respectively, showing that HC seemed to be
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Figure 5: Variational(L1) distance between estimated and true marginals for a randomly chosen
node in each of the 4 graphs using the four approximate methods (smaller values mean less error.)
The MRF-random example was again “easy” for all the methods, but the rest raise problems for all
but HC.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

S
am

pl
e 

A
ve

ra
ge

Iteration
0 2 4 6 8 10

x 105

0

10

20

30

40

50

60

Iteration

S
am

pl
e 

A
ve

ra
ge

Figure 6: An example of how MCMC can get “stuck:” 3 different runs of a Gibbs sampler estimating
the magnetization of FC-Homogeneous graph. At left are shown the first 600 iterations of the runs;
after a brief transient behaviour the samplers settled into different minima which persisted for the
entire duration (20000 steps) of the runs. Indeed for 1 million steps the local minima persist, as
shown at right.

robust to the addition of around 9000 edges and many resampling stages. SMCG on the
large MRF did not fare as well.

It is crucial to realize that MCMC is completely unsuited to some problems; see for exam-
ple the “convergence” plots of the estimated magnetization of 3 independent Gibbs sampler
runs on one of our “toy” graphs shown in Figure 6. Such behavior has been studied by
Gore and Jerrum [11] and others, who discuss pessimistic theoretical results on the mixing
properties of both Gibbs sampling and the celebrated Swendsen-Wang algorithm in sev-
eral cases. To obtain a good estimate, MCMC requires that the process “visit” each of the
target distribution’s basins of energy with a frequency representative of their probability.
Unfortunately, some basins take an exponential amount of time to exit, and so different fi-
nite runs of MCMC will give quite different answers, leading to tremendous variance. The
methodology presented here is an attempt to sidestep the whole issue of mixing by permit-
ting the independent particles to be stuck in modes, but then considering them jointly when
estimating. In other words, instead of using a time average, we estimate using a weighted



ensemble average. The object of the sequential phase is to address the difficult problem
of constructing a suitable proposal for high-dimensional problems; to this the resampling-
based methodology of particle filters was thought to be particularly suited. For the graphs
we have considered, the single-edge algorithm we propose seems to be preferable to global
annealing.
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