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Abstract

The Bayesian Logic (BLOG) language was re-
cently developed for defining first-order proba-
bility models over worlds with unknown num-
bers of objects. It handles important problems
in AI, including data association and population
estimation. This paper extends BLOG by adopt-
ing generative processes over function spaces —
known as nonparametrics in the Bayesian liter-
ature. We introduce syntax for reasoning about
arbitrary collections of objects, and their prop-
erties, in an intuitive manner. By exploiting
exchangeability, distributions over unknown ob-
jects and their attributes are cast as Dirichlet pro-
cesses, which resolve difficulties in model selec-
tion and inference caused by varying numbers of
objects. We demonstrate these concepts with ap-
plication to citation matching.

1 Introduction
Probabilistic first-order logic has played a prominent role
in recent attempts to develop more expressive models in
artificial intelligence [3, 4, 6, 8, 15, 16, 17]. Among these,
the Bayesian logic (BLOG) approach [11] stands out for
its ability to handle unknown numbers of objects and data
association in a coherent fashion, and it does not assume
unique names and domain closure.

A BLOG model specifies a probability distribution over
possible worlds of a typed, first-order language. That is,
it defines a probabilistic model over objects and their at-
tributes. A model structure corresponds to a possible world,
which is obtained by extending each object type and inter-
preting each function symbol. Objects can either be “guar-
anteed”, meaning the extension of a type is fixed, or they
can be generated from a distribution. For example, in the
aircraft tracking domain [11] the times and radar blips are
known, and the number of unknown aircraft may vary in
possible worlds. BLOG as a case study provides a strong
argument for Bayesian hierarchical methodology as a basis
for probabilistic first-order logic.

BLOG specifies a prior over the number of objects. In
many domains, however, it is unreasonable for the user to
suggest such a proper, data-independent prior. An inves-
tigation of this issue was the seed that grew into our pro-
posal for Nonparametric Bayesian Logic, or NP-BLOG,
a language which extends the original framework devel-
oped in [11]. NP-BLOG is distinguished by its ability to
handle object attributes that are generated by unbounded
sets of objects. It also permits arbitrary collections of at-
tributes drawn from unbounded sets. We extend the BLOG
language by adopting Bayesian nonparametrics, which are
probabilistic models with infinitely many parameters [1].

The statistics community has long stressed the need for
models that avoid commiting to restrictive assumptions re-
garding the underlying population. Nonparametric models
specify distributions over function spaces — a natural fit
with Bayesian methods, since they can be incorporated as
prior information and then implemented at the inference
level via Bayes’ theorem. In this paper, we recognize that
Bayesian nonparametric methods have an important role to
play in first-order probabilistic inference as well. We start
with a simple example that introduces some concepts nec-
essary to understanding the main points of the paper.

Consider a variation of the problem explored in [11]. You
have just gone to the candy store and have bought a box
of Smarties(or M&Ms), and you would like to discover
how many colours there are (while avoiding the temptation
to eat them!). Even though there is an infinite number of
colours to choose from, the candies are coloured from a fi-
nite set. Due to the manufacturing process, Smarties may
be slightly discoloured. You would like to discover the un-
known (true) set of colours by randomly picking Smarties
from the box and observing their colours. After a certain
number of draws, you would like to answer questions such
as: How many different colours are in the box? Do two
Smarties have the same colour? What is the probability
that the first candy you select from a new box is a colour
you have never seen before?

The graphical representation of the BLOG model is shown
in Fig. 1a. The number of Smarties of different colours,
n(Smartie), is chosen from a Poisson distribution with



Figure 1:(a) The BLOG and(b) NP-BLOG graphical mod-
els for counting Smarties. The latter implements a Dirichlet
process mixture. The shaded nodes are observations.

mean γSmartie. A colour for each Smarties is drawn
from the distributionHColourDist. Then, for every drawd,
zSmartieDrawn[d] is drawn uniformly from the set of Smar-
ties{1, . . . , n(Smartie)}. Finally, we sample the observed,
noisy colour of each draw conditioned onzSmartieDrawn[d]
and the true colours of the Smarties.

The NP-BLOG model for the same setting is shown in
Fig. 1b. The true colours of an infinite sequence of Smar-
ties s are sampled fromHColourDist. πSmartie is a distri-
bution over the choice of coloured Smarties, and is sam-
pled from a uniform Dirichlet distribution with parameter
αSmartie. Once the Smarties and their colours are gener-
ated, the true Smartie for drawd, represented by the indi-
catorzSmartieDrawn[d] = s, is sampled from the distribution
of SmartiesπSmartie. The last step is to sample the observed
colour, which remains the same as in the BLOG model.

One advantage of the NP-BLOG model is that it determines
a posterior over the number of Smarties colours without
having to specify a prior overn(Smartie). This is impor-
tant since this prior is difficult to specify in many domains.
A more significant advantage is that NP-BLOG explicitly
models a distribution over the collection of Smarties. This
is not an improvement in expressiveness — one can always
reverse engineer a parametric model given a target nonpara-
metric model in a specific setting. Rather, nonparametrics
facilitate the resolution of queries on unbounded sets, such
as the colours of Smarties. This plays a key role in mak-
ing inference tractable in sophisticated models with object
properties that are themselves unbounded collections of ob-
jects. This is the case with the citation matching model in
Sec. 3.1, in which publications have collections of authors.

The skeptic might still say, despite these advantages, that

it is unreasonable to expect a domain expert to implement
nonparametrics considering the degree of effort required
to grasp these abstract notions. We show that Bayesian
nonparametrics lead to sophisticated representations that
can beeasierto implement than their parametric counter-
parts. We formulate a language that allows one to specify
nonparametric models in an intuitive manner, while hiding
complicated implementation details from the user. Sec. 3
formalizes our proposed language extension as a set of
rules that map code to a nonparametric generative process.
We emphasize that NP-BLOG is an extension to the BLOG
language, so it retains all the functionality specified in [11].

We focus on an important class of nonparametric methods,
the Dirichlet process (DP), because it handles distributions
over unbounded sets of objects as long as the objects them-
selves are infinitely exchangeable, a notion formalized in
Sec. 3.4. The nonparametric nature of DPs makes them
suitable for solving model selection problems that arise
in the face of identity uncertainty and unknown numbers
of objects. Understanding the Dirichlet process is inte-
gral to understanding NP-BLOG, so we devote a section
to it. Sec. 3.5 shows how DPs can characterize collec-
tions of objects. Models based on DPs have been shown
to be capable of solving a variety of difficult tasks, such
as topic-document retrieval [2, 21]. Provided the necessary
expert knowledge, our approach can attack these applica-
tions, and others. We conduct a citation matching experi-
ment in Sec. 4, demonstrating accurate and efficient proba-
bilistic inference in a real-world problem.

2 Dirichlet processes
A Dirichlet processG |α,H ∼ DP (α,H), with parameter
α and base measureH, is the unique probability measure
definedG on the space of all probability measures(Φ,B),
whereΦ is the sample space, satisfying

(G(β1), ..., G(βK))∼Dirichlet(αH(β1), ..., αH(βK)) (1)

for every measurable partitionβ1, . . . , βK of Φ. The base
measureH defines the expectation of each partition, andα
is a precision parameter. One can consider the DP as a gen-
eralization of the Dirichlet distribution to infinite spaces.

In Sec. 3.4, we formalize exchangeability of unknown ob-
jects. In order to explain the connection between exchange-
ability and the DP, it is instructive to construct DPs with
the Ṕolya urn scheme [5]. Consider an urn with balls of
K possible colours, in which the probability of the first
ball being colourk is given by Hk. We draw a ball
from the urn, observe its colourφ1, then return it to the
urn along with another ball of the same colour. We then
make another draw, observing its colour with probability
p(φ2 =k|φ1)=(αHk+δ(α1 =k))/(α+1). After N obser-
vations, the colour of the next ball is distributed as

P (φN+1 =k|φ1:N ) =
αHk

α + N
+

∑N
i=1 δ(φi =k)

α + N
. (2)



The marginalP (φ1:N ) of this process, obtained by apply-
ing the chain rule to successive predictive distributions,can
be shown to satisfy the infinite mixture representation

P (φ1:N ) =

∫

M(Φ)

(

K
∏

k=1

π
P

N

i=1
δ(φi=k)

k

)

DPα,H(dπ), (3)

where theπk are multinomial success rates of each colour
k. This result, a manifestation of de Finetti’s theorem, es-
tablishes the existence and uniqueness of the DP prior for
the Ṕolya urn scheme [5]. In the Ṕolya urn setting, obser-
vationsφi are infinitely exchangeable and independently
distributed given the measureG. Thus, what we have es-
tablished here in a somewhat cursory fashion is the appro-
priateness of the DP for the case when the observationsφi

are infinitely exchangeable.

Analogously, if the urn allows for infinitely many colours,
then for any measurable intervalβ of Φ we have

p(φN+1 ∈ β|φ1:N ) =
αH(β)

α + N
+

1

α + N

N
∑

i=1

δ(φi ∈ β).

The first term in this expansion corresponds to prior knowl-
edge and the second term corresponds to the empirical dis-
tribution. Larger values ofα indicate more confidence
in the prior H. Note that, asN increases, most of the
colours will be repeated. Asymptotically, one ends up sam-
pling colours from a possibly large but finite set of colours,
achieving a clustering effect. Nonetheless, there is always
some probability of generating a new cluster.

DPs are essential building blocks in our formulation of non-
parametric first-order logic. In the literature, these blocks
are used to construct more flexible models, such as DP mix-
tures and hierarchical or nested DPs [2, 21]. Since observa-
tions are provably discrete, DP mixtures add an additional
layerxi ∼ P (xi|φi) in order to model continuous drawsxi

from discrete mixture componentsφi.

In the Ṕolya urn scheme,G is integrated out and theφi’s are
sampled directly fromH. Most algorithms for sampling
DPs are based on this scheme [2, 13, 21]. In the hierarchies
constructed by our language, however, we rely on an ex-
plicit representation of the measureG since it is not clear
we can always integrate it out, even when the measures
are conjugate. This compels us to use the stick-breaking
construction [19], which establishes thati.i.d. sequences
wk ∼ Beta(1, α) andφk ∼ H can be used to construct
the equivalent empirical distributionG =

∑∞

k=1 πkδ(φk),
where the stick-breaking weightsπk = wk

∏k−1
j=1 (1 − wj)

and can be shown to sum to unity. We abbreviate the sam-
pling of the weights asπk ∼ Stick(α). This shows thatG
is an infinite sum of discrete values. The DP mixture due
to the stick-breaking construction is

φi |H ∼ H π |α ∼ Stick(α)
zi |π ∼ π xi |φi, zi ∼ p(xi|φzi

),
(4)

wherezi = k indicates that samplexi belongs to compo-
nentk. The Smarties model (Fig. 1b) is in fact an example
of a DP mixture, where the unbounded set of colours isΦ.
By grounding on the support of the observations, the true
number of coloursK is finite. At the same time, the DP
mixture is open about seeing new colours as new Smarties
are drawn. In NP-BLOG, the unknown objects are the mix-
ture components.

NP-BLOG semantics (Sec. 3) define arbitrary hierarchies
of Dirichlet process mixtures. By the stick-breaking con-
struction (4), every random variablexi has a countable set
of ancestors (the unknown objects), hence DP mixtures pre-
serve the well-definedness of BLOG models.

To infer the hidden variables of our models, we employ
the efficient blocked Gibbs sampling algorithm developed
in [7] as one of the steps in the overall Gibbs sampler. One
complication in inference stems from the fact that a product
of Dirichlets is difficult to simulate. Tehet al. [21] provide
a solution using an auxiliary variable sampling scheme.

3 Syntax and semantics
This section formalizes the NP-BLOG language by speci-
fying a procedure that takes a set of statementsLΨ in the
language and returns a modelΨ. A model comprises a set
of types, function symbols, and a distribution over possible
worldsω ∈ ΩΨ. We underline that our language retains all
the functionality of BLOG. Unknown objects must be in-
finitely exchangeable, but this trivially the case in BLOG.
Sec. 3.4 elaborates on this.

We illustrate the concepts introduced in this section with
an application to citation matching. Even though our cita-
tion matching model doesn’t touch upon all the interesting
aspects of NP-BLOG, the reader will hopefully find it in-
strumental in understanding the semantics.

3.1 Citation matching
One of the main challenges in developing an automated ci-
tation matching system is the resolution of identity uncer-
tainty: for each citation, we would like to recover its true
title and authors. For instance, the following citations from
the CiteSeer database probably refer to the same paper:

Kozierok, Robin, and Maes, Pattie, A Learning Interface Agent
for Meeting Scheduling, Proceedings of the 1993 International
Workshop on Intelligent user Interfaces, ACM Press, NY.

R. Kozierok and P. Maes. A learning interface agent for
scheduling meetings. In W. D. Gray, W. E. Heey, and D. Mur-
ray, editors, Proc. of the Internation al Workshop on Intelligent
User Interfaces, Orlando FL, New York, 1993. ACM Press.

Even after assuming the title and author strings have been
segmented into separate fields (an open research problem
itself!), citation matching still exhibits serious challenges:
two different strings may refer to the same author (e.g.
J.F.G. de Freitas and Nando de Freitas) and, conversely,
the same string may refer to different authors (e.g. David
Lowe in vision and David Lowe in quantum field theory).



01 type Author; type Pub; type Citation;

02 guaranteed Citation;

03 #Author ∼ NumAuthorsDist();

04 #Pub ∼ NumPubsDist();

05 Name(a) ∼ NameDist();

06 Title(p) ∼ TitleDist();

07 NumAuthors(p) ∼ NumAuthorsDist();

08 RefAuthor(p, i) if Less(i, NumAuthors(p))

then ∼ Uniform(Author a);

09 RefPub(c) ∼ Uniform(Pub p);

10 CitedTitle(c) ∼ TitleStrDist(Title(RefPub(c)));

11 CitedName(c, i) if Less(i, NumAuthors(RefPub(c)))

then ∼ NameStrDist(Name(RefAuthor(RefPub(c), i)));

Figure 2: BLOG model for citation matching [10].

01 type Author; type Pub;

02 type Citation; type AuthorMention;

03 guaranteed Citation; guaranteed AuthorMention;

04 Name(a) ∼ NameDist{};

05 Title(p) ∼ TitleDist{};

06 CitedTitle(c) ∼ TitleStrDist{Title(RefPub(c))};

07 RefAuthor(u) ∼ PubAuthorsDist(RefPub(CitedIn(u)));

08 CitedName(u) ∼ NameStrDist{Name(RefAuthor(u))};

Figure 3: NP-BLOG model for citation matching.

There are a number of different approaches to this problem.
Pasulaet al. incorporate unknown objects and identity un-
certainty into a probabilistic relational model [14]. Wellner
et al. resolve identity uncertainty by computing the opti-
mal graph partition in a conditional random field [22]. We
elaborate on the BLOG model presented in [10] in order to
contrast it with the one we propose. The BLOG model is
shown in Fig. 2 with cosmetic modifications and the func-
tion declaration statements omitted.

The BLOG model describes a generative sampling process.
Line 1 declares the object types, and line 2 declares that
the citations are guaranteed (hence are not generated by a
number statement). Lines 3 and 4 are number statements,
and lines 5-11 are dependency statements; their combina-
tion defines a generative process. The process starts by
choosing a certain number of authors and publications from
their respective prior distributions. Then it samples au-
thor names, publication titles and the number of authors
per publication. For each author stringi in a citation, we
choose the referring author from the set of authors. Finally,
the properties of the citation objects are chosen. For exam-
ple, generating an interpretation ofCitedTitle(c) for citation
c requires values forRefPub(c) and estimates of publication
titles. TitleStrDist(s) can be interpreted as a measure that
adds noise in the form of perturbations to input strings.

The NP-BLOG model in Fig. 3 follows a similar generative
approach, the key differences being that it samples collec-
tions of unknown objects from DPs, and it allows for un-
certainty in the order of authors in publications. But what
do we gain by implementing nonparametrics? The advan-

Figure 4: Three representations of lines 5-6 in Fig. 3: as
an NP-BLOG program, as a generative process, and as a
graphical model. Darker, hatched nodes are fixed or gener-
ated from other lines and shaded nodes are observed. Note
the similarity between the graphical model and Fig. 1b.
Lines 5-6 describe a DP mixture (4) over the publications
p, where the base measure isφTitleDist, πTitle is the hidden
distribution over publication objects, the indicators arethe
true publicationszRefPub[c] corresponding to the citationsc,
and the continuous observations are the titlesφCitedTitle[c].

tage lies in the ability to capture sophisticated models of
unbounded sets of objects in a high-level fashion, and the
relative ease of conducting inference, since nonparametrics
can deal gracefully with the problem of model selection.

One can view a model such as the automatic citation
matcher from three perspectives: it is a set of statements
in the language that comprise a program; from a statisti-
cian’s point of view, the model is a process that samples
the defined random variables; and from the perspective of
machine learning, it is a graphical model. Fig. 3 interprets
lines 5-6 of Fig. 4 in three different ways. The semantics,
as we will see, formally unify all three perspectives.

Both BLOG and NP-BLOG can answer the following
queries: Is the referring publication of citationc the same
as the referring publication of citationd? How many au-
thors are there in the given citation database? What are
the names of the authors of the publication referenced by
citation c? How many publications contain the authora,
wherea is one of the authors in the publication referenced
by citationc? And what are the titles of those publications?
However, only NP-BLOG can easily answer the following
query: what group of researchers do we expect to be au-
thors in a future, unseen publication?

3.2 Objects and function symbols
This section is largely devoted to defining notation so that
we can properly elaborate on NP-BLOG semantics in Sec-
tions 3.3 to 3.5. The notation as it appears in these sections
makes the connection with both first-order logic and the
Dirichlet process mixture presented in Sec. 2.



The set of objects of a typeτ is called theextensionof
τ , and is denoted by[τ ]. In BLOG, extensions associated
with unknown (non-guaranteed) types can vary over possi-
ble worldsω, so we sometimes write[τ ]ω. The size of[τ ]ω

is denoted bynω(τ).1 Note that objects may be unknown
even if there is a fixed number of them. Guaranteed objects
are present in all possible worlds. We denoteΩΨ to be the
set of possible worlds for modelΨ.

A model introduces a set of function symbols indexed by
the objects. For conciseness, we treat predicates as Boolean
functions and constants as zero-ary functions. For exam-
ple, the citation matching model (Fig. 3) has the function
symbolsName andCitedTitle, among others, so there is a
Name(a) for every authora andCitedTitle(c) for every ci-
tationc. By assigning numbers to objects as they are gener-
ated, we can consider logical variablesa andc to be indices
on the set of natural numbers. Since BLOG is a typed lan-
guage, the range of interpretations of a function symbolf
is specified by its type signature. For example, the inter-
pretation ofRefAuthor(u), for eachu ∈ [AuthorMention]=
{1, 2, . . . , n(AuthorMention)}, takes a value on the range
[Author]. Likewise,Title(p) ranges over the set of strings
[String]. Figures 2 and 3 omit function declaration state-
ments, which specify type signatures. Nonetheless, this
should not prevent the reader from deducing the type signa-
tures of the functions via the statements that generate them.

Nonparametric priors define distributions over probability
measures, so we need function symbols that uniformly re-
fer to them. LettingX and Y be object domains (e.g.
X = [Author]), we defineMD(X |Y) to be the set of con-
ditional probability densitiesp(x ∈ X | y ∈ Y) following
the class of parameterizationsD. We can extend this logic,
denotingMD′(MD(X |Y) | Z) to be the set of probability
measuresp(d ∈ D | z ∈ Z) over the choice of parameteri-
zationsd ∈ D, conditioned onZ. And so on. For peace of
mind, we assume each class of distributionsD is defined on
a measurableσ-field and the densities are integrable over
the range of the sample space. Note thatY or Z, but not
X , may be a Cartesian product over sets of objects. BLOG
does not allow return types that are tuples of objects, so
we restrict distributions of objects accordingly. One can
extend the above reasoning to accommodate distributions
over multiple unknown objects by adopting slightly more
general notation involving products of sets of objects.

We assign symbols to all the functions defined in the lan-
guageLΨ. For instance, the range ofNameDist in Fig. 3
is M([String]) for some specified parameterization class.
SinceNameDist is not generated in another line, it must
be fixed over all possible worlds. For each publicationp,
the interpretation of symbolPubAuthorsDist(p) is assigned
a value on the spaceMMultinomial([Author]). That is, the

1Even though the DP imposes a distribution over an infinite set
of unknown objects,nω(τ) is still finite since it refers to the es-
timated number of objects inω. n(τ) corresponds to the random
variables of the DP mixture, as explained in Sec. 3.5.

function symbol refers to adistributionover author objects.
How the model chooses the success rate parameters for this
multinomial distribution, given that it is not on the left side
of any generating statement, is the subject of Sec. 3.5.

NP-BLOG integrates first-order logic with Bayesian non-
parametric methods, but we have left out one piece of the
puzzle: how to specify distributions such asNameDist, or
classes of distributions. This is an important design deci-
sion, but an implementation level detail, so we postpone it
to future work. For the time being, one can think of param-
eterizations as object classes in a programming language
such as Java that generate samples of the appropriate type.
We point out that there is already an established language
for constructing hierarchical Bayesian models, BUGS [20].

The truth of any first-order sentence is determined by a
possible world in the corresponding language. A possible
world ω ∈ ΩΨ consists of an extension[τ ]ω for each typeτ
and an interpretation for each function symbolf . Sec. 3.5
details how NP-BLOG specifies a distribution overΩΨ.

3.3 Dependency statements for known objects
The dependency statement is the key ingredient in the spec-
ification of a generative process. We have already seen sev-
eral examples of dependency statements, and we formalize
them here. It is well explained in [11], but we need to ex-
tend the definition in the context of nonparametrics.

In BLOG, a dependency statement looks like

f(x1, . . . , xL) ∼ g(t1, . . . , tN ); (5)

where f is a function symbol,x1, . . . , xL is a tuple of
logical variables representing arguments to the function,
g is a probability density conditioned on the arguments
t1, . . . , tN , which are terms or formulae in the language
LΨ in which the logical variablesx1, . . . , xL may appear.
The dependency statement carries out a generative pro-
cess. For an example, let’s look at the dependency state-
ment on line 10 of Fig. 2. Following the rules of seman-
tics [11], line 10 generates assignments for random vari-
ablesφCitedTitle[c], for c = 1, . . . , n(Citation), from prob-
ability densityg conditioned on values forzRefPub[c] and
φTitle[p], for all p = 1, . . . , n(Pub). As in [11], we use
square brackets to index random variables, instead of the
statistics convention of using subscripts.

In NP-BLOG, the probability densityg is itself a function
symbol, and the dependency statement is given by

f(x1, . . . , xL) ∼ g(t1, . . . , tM ){tM+1, . . . , tM+N}; (6)

wheref and g are function symbols, andt1, . . . , tM+N

are formulae of the language as in (5). For this to be a
valid statement,g(t1, . . . , tM ) must be defined on the range
M(X |Y), whereX is the range off(x1, . . . , xL) andY is
the domain of the input arguments within the curly braces.
The firstM terms inside the parentheses are evaluated in
possible worldω, and their resulting values determine the



choice of measureg. The terms inside the curly braces
are evaluated inω and the resulting values are passed to
distributiong(t1, . . . , tM ). When all the logical variables
x1, . . . , xL refer to guaranteed objects, the semantics of the
dependency statement are given by [11]. The curly brace
notation is used to disambiguate the two roles of input ar-
gument variables. The arguments inside parentheses are
indices to function symbols (e.g. thec in RefPub(c) in
Fig. 3), whereas the arguments inside curly braces serve
as input to probability densities (e.g. the term inside the
curly braces inTitleStrDist{Title(RefPub(c))}). This new
notation is necessary when a distribution takes both types
of arguments. We don’t have such an example in citation
matching, so we borrow one from an NP-BLOG model in
the aircraft tracking domain:2

State(a, t) if t = 0 then ∼ InitState{}
else ∼ StateTransDist(a){State(a, t − 1)};

The state of the aircrafta at time t is anR6Vector object
which stores the aircraft’s position and velocity in space.
Whent > 0, the state is generated from the transition dis-
tribution of aircrafta given the state at the previous time
step. StateTransDist(a) corresponds to a measure on the
spaceM([R6Vector] | [R6Vector]).

For example, in line 6 of Fig. 3, the citation objects are
guaranteed. Following the rules of semantics, line 6 defines
a random variableφCitedTitle[c] corresponding to the inter-
pretation of function symbolCitedTitle(c) for every citation
c. Given assignments toφTitleStrDist, zRefPub[c] (we usez
to be consistent with the notation of the semantics used in
this paper, although it makes no difference in BLOG) and
φTitle[p] for all p ∈ [Pub] — assignments that are either
observed or generated from other statements — the depen-
dency statement defines the generative process

φCitedTitle[c] ∼ φTitleStrDist(φTitle[p]) s.t.p = zRefPub[c].

BLOG allows for contingencies in dependency state-
ments. These can be subsumed within our formal
framework by defining a new measureφ′(c, t) =
∑

i δ(ci)φi(ti,1, ti,2, . . .), whereδ(·) is the indicator func-
tion, ci is the conditioni which must be satisfied in order to
sample from the densityφi, c andt are the complete sets of
terms and conditions, and the summation is over the num-
ber of clauses. Infinite contingencies and their connection
to graphical models are discussed in [12].

3.4 Exchangeability and unknown objects
Unknown objects are precisely those which are not guar-
anteed. In this section, we formalize some important prop-
erties of generated objects in BLOG. We adopt the notion
of exchangeability [1] to objects in probabilistic first-order
logic. We start with some standard definitions.

2In which aircraft in flight appear as blips on a radar screen,
and the objectives are to infer the number of aircraft and their
flight paths and to resolve identity uncertainty, arising because
a blip might not represent any aircraft or, conversely, an aircraft
might produce multiple detections [10].

Definition 1. The random variablesx1, . . . , xN are
(finitely) exchangeable under probability density function
p if p satisfiesp(x1, . . . , xN ) = p(xπ(1), . . . , xπ(N)) for
all permutationsπ on{1, . . . , N} [1].

Whenn is finite, the concept of exchangeability is intuitive:
the ordering is irrelevant since possible worlds are equally
likely. The next definition extends exchangeability to un-
bounded sequences of random variables.

Definition 2. The random variablesx1, x2, . . . are in-
finitely exchangeable if every finite subset is finitely ex-
changeable[1].

Exchangeability is useful for reasoning about distributions
over properties on sets of objects in BLOG. From Defini-
tions 1 and 2, we have the following result.

Proposition 1. It is possible to defineg in the dependency
statements(5) and (6) such that the sequence of objects
x1, . . . , xL is finitely exchangeable if and only if the terms
t1, . . . , tM+N do not contain any statements referring to a
particular xl.

For example, the distribution of hair colours of two people,
Eric and Mike, is not exchangeable given evidence that Eric
is the father of Mike. What about sequences of objects such
as time? As long as we do not set the predecessor function
beforehand, any sequence is legally exchangeable.

In this paper, models are restricted toinfinitely exchange-
able unknown objects. We can interpret this presupposition
this way: if we reorder a sequence of objects, then their
probability remains the same. If we add another object to
the sequence at some arbitrary position, both the original
and new sequence with one more object are exchangeable.
We can then appeal to de Finetti’s theorem (3), and hence
the Dirichlet process. Therefore, the order of unknown ob-
jects is not important, and we can reason about set of ob-
jects rather than sequences. While there are many domains
in which one would like to infer the presence of objects
that are not infinitely exchangeable, this constraint leaves
us open to modeling a wide range of interesting domains.

Unknown or non-guaranteed objects are assignednon-rigid
designators; a symbol in different possible worlds does not
necessarily refer to the same object, and so it does not
make sense to assign it a rigid label. This consideration
imposes a constraint: we can only refer to a publication
p via a guaranteed object, such as a citationc that refers
to it. While we cannot form a query that addresses a spe-
cific unknown object, or a subset of unknown objects, we
can pose questions about publications using existential and
universal quantifiers (resolved using Skolemization, for in-
stance). We could ask, for instance, how many publications
have three or more authors.

3.5 Dependency statements for unknown objects
Sec. 3.2 formalized the notion of type extensions and func-
tion symbols in NP-BLOG programs. Sec. 3.3 served up
the preliminaries of syntax and semantics in dependency



statements. The remaining step to complete the full pre-
scription of the semantics as a mapping from the language
LΨ to a distribution over possible worlds. This is accom-
plished by constructing a Bayesian hierarchical model over
random variables{φ,n,γ}, such that the set of random
variablesφ is in one-to-one correspondence with the set of
function interpretations,n refers to the sizes of the type ex-
tensions, andγ is a set of auxiliary random variables such
that

∫

p(φ,n,γ)dγ =p(φ,n). One might wonder why we
don’t dispense of function symbols entirely and instead de-
scribe everything using random variables, as in [18]. The
principal reason is to establish the connection with first-
order logic. Also, we want to make it clear that some ran-
dom variables do not map to any individual in the domain.
What follows is aproceduraldefinition of the semantics.
We now define distributions over the random variables, and
their mapping to the symbols of the first-order logic.

In order to define the rules of semantics, we collect de-
pendency and number statements according to their input
argument types. If the collection of statements includes
a number statement, then the rules of semantics are given
in [11]. Otherwise, we describe how the objects and their
properties are implicitly drawn from a DP. Consider a set of
K dependency statements such that the generated functions
f1, . . . , fK all require a single input of typeυ, and[υ]ω can
vary over possible worldsω. We denotex to be the logical
variable that ranges over[υ]. (The output types of thefk ’s
are not important.) TheK dependency statements look like

f1(x)∼g1(t1,1, . . . , t1,M1
){t1,M1+1, . . . , t1,M1+N1

};
...

...
fK(x)∼gK(tK,1, ..., tK,MK

){tK,MK+1, ..., tK,MK+NK
};

(7)

whereMk andNk are the number of input arguments to
gk(·) andgk{·}, respectively, andtk,i is a formula in the
language in whichx may appear. As in BLOG, eachfk(x)
is associated with a random variableφfk

[x]. The random
variablesφg1

, . . . , φgK
, including all those implicated in

the terms, must have been generated by other lines or are
observed. Overloading the notation, we define the terms
tk,i to be random variables that depend deterministically
on other generated or observed random variables. The set
of statements (7) defines the generative process

πυ ∼ Stick(αυ) (8)

φfk
[x] ∼ φgk

[tk,1, ..., tk,Mk
](tk,Mk+1, ..., tk,Mk+Nk

), (9)

for k = 1, . . . ,K, x = 1, . . . ,∞, whereαυ is the user-
defined DP concentration parameter andπυ is a multino-
mial distribution such that each success rate parameterπυ,x

determines the probability of choosing a particular object
x. NP-BLOG infers a distributionπ over objects of type
υ following the condition of infinite exchangeability. For
example, applying rules (8,9) to line 4 of Fig. 3, we get

πAuthor ∼ Stick(αAuthor)

φName[a] ∼ φNameDist, for a = 1, . . . ,∞

If an object type does not have any dependency or number
statements, then no distribution over its extension is intro-
duced (e.g. strings in the citation matching model).

The implementation of the DP brings about an important
subtlety: ifx takes on a possibly infinite different set of val-
ues, how do we recover the true number of objectsn(τ)?
The idea is to introduce a bijection from the subset of pos-
itive natural numbers that consists only ofactiveobjects to
the set{1, . . . , n(τ)}. An object is active in possible world
ω if and only if at least one random variable is assigned to
that object inω. In the above example,n(Author) is the
number of author objects that are mentioned in the cita-
tions. Of course, in practice we do not sample an infinite
series of random variablesφName[a].

If we declare a function symbolf with a return typeτ rang-
ing over a set of unknown objects, then there exists the de-
fault generating process

zf [x] ∼ πτ . (10)

We usezf [x] instead ofφf [x] to show that the random vari-
ables are the indicators of the DP mixture (4). For example,
eachzRefPub[c] in line 6 in Fig. 3 is independently drawn
from the distribution of publicationsπPub. We can view
line 6 as constructing a portion of the hierarchical model,
as shown in Fig. 4. The number of publicationsn(Pub) is
set to the number of different values assigned tozRefPub[c].

NP-BLOG allows for the definition of a symbolf that cor-
responds to a multinomial distribution over[τ ], so its range
is MMultinomial([τ ]). It exhibits the default prior

φf [x] ∼ Dirichlet(αfπτ ), (11)

analogous to (10).αf is a user-defined scalar. We define
nf [x] to be the true number of objects associated with col-
lectionf(x). This is useful for modeling collections of ob-
jects such as the authors of a publication. Applying rules
(8,9,11) to the statements in Fig. 3 involving publication
objects, we arrive at the generative process

πPub ∼ Stick(αPub)

φTitle[p] ∼ φTitleDist, for p = 1, . . . , n(Pub)

φPubAuthorsDist[p] ∼ Dirichlet(αPubAuthorsDistπAuthor) .

Most of the corresponding graphical model is shown in
Fig. 4. Only the φPubAuthorsDist[p]’s are missing, and
they are shown in Fig. 5. The true number of authors
nPubAuthorsDist[p] in publicationp comes from the support
of all random variables that refer to it, andn(Pub) is deter-
mined bynPubAuthorsDist. While this paper focuses on the
Dirichlet process, our framework allows for other classes
of nonparametric distributions. One example can be found
in the aircraft tracking domain from Sec. 3.2, in which the
generation of aircraft transition tables might be specified
with the statementStateTransDist(a) ∼ StateTransPrior{}.

In both cases (10) and (11), one can override the defaults
by including appropriate dependency statements forf , in



Figure 5: The white nodes are the portion of the graphical
model generated in lines 7 and 8 of Fig. 3. See Fig. 4 for
an explanation of the darkened nodes.

which case we getφf [x] ∼ φg, following rule (9). For ex-
ample, lines 7 and 8 in Fig. 3 specify the generative process
for the author mention objects,

zRefAuthor[u] ∼ φPubAuthorsDist[p]
φCitedName[u] ∼ φNameStrDist(φName[a]) ,

s.t.p = zRefPub[c], c = φCitedIn[u], a = zRefAuthor[u].

Fig. 5 shows the equivalent graphical model.

The generative process (8,9) is a stick-breaking construc-
tion over the unknown objects and their attributes. When
the objectsx range over the set of natural numbers, (8,9) is
equivalent to the Dirichlet process

Gυ ∼ DP (αυ,Hυ,1 × · · · × Hυ,K) , (12)

whereGυ ,
∑∞

x=1 πυ,xδ(φf1
[x]) × · · · × δ(φfK

[x]), and
Hυ,k is the base measure over the assignments toφfk

, de-
fined bygk conditioned on the termstk,1, . . . , tk,Mk+Nk

.

Since BLOG is a typed, free language, we need to allow
for the null assignment toφf [x] when it is implicitly drawn
from πτ in (10). We permit the clause

f(x) ∼ if cond then null; (13)

which definesφf [x] ∼ δ(null)δ(cond)+πτ (1− δ(cond)).
This statement is necessary to take care of the situation
when an object’s source can be of different types, as in the
aircraft tracking domain with false alarms [10].

Next, we briefly describe how to extend the rules of se-
mantics to functions with multiple input arguments. Let’s
consider the case of two inputs with an additional logical
variabley ∈ [ν]. Handling an additional input argument
associated with known (guaranteed) objects is easy. We
just duplicate (8,9) for every instance ofy in the guaran-
teed type extension. This is equivalent to adding a finite
series of plates in the graphical model. Otherwise, we as-
sume the unknown objects are drawn independently. That
is, π(υ,ν) = πυπν . Multiple unknown objects as input does
cause some superficial complications with the interpreta-
tion of (8,9) as a DP, principally because we need to define
new notation for products of measures over different types.

Face Reinforce. Reason. Constraint
Num. citations 349 406 514 295

Num. papers 246 149 301 204
Phrase matching0.94 0.79 0.86 0.89

RPM+MCMC 0.97 0.94 0.96 0.93
CRF-Seg(N = 9) 0.97 0.94 0.94 0.95

NP-BLOG 0.93 0.84 0.89 0.86

Table 1: Citation matching results for the Phrase Match-
ing [9], RPM [14], CRF-Seg [22] and NP-BLOG models.
Performance is measured by counting the number of publi-
cation clusters that are recovered perfectly. The NP-BLOG
column reports an average over 1000 samples.

The DP determines an implicit distribution of unknown, in-
finitely exchangeable objects according to their properties.
That is, the DP distinguishes unknown objects solely by
their attributes. However, this is not always desirable —
for instance, despite being unable to differentiate the in-
dividual pieces, we know a chess board always has eight
black pawns. This is precisely why we retain the original
number statement syntax of BLOG which allows the user
to specify a prior over the number of unknown objects, in-
dependent of their properties. In the future, we would like
to experiment with priors that straddle these two extremes.
This could possibly be accomplished by setting a prior on
the Dirichlet concentration parameter,α.

By tracing the rules of semantics, one should see that only
thing the citation matching model does not generate is val-
ues forCitedIn(u). Therefore, they must be observed. We
can also provide observations from any number of object
attributes, such asCitedTitle(c) andCitedName(u), which
would result in unsupervised learning. By modifying the
set of evidence, one can also achieve supervised or semi-
supervised learning. Moreover, the language can cap-
ture both generative and discriminative models, depending
whether or not the observations are generated.

To summarize, the rules given by (7-11,13), combined
with the number statement [11], construct a distribution
p(φ,z,n,γ) such that the set of auxiliary variables is
γ = {π,α}, {φ,z} is in one-to-one correspondence with
the interpretations of the function symbols, then are the
sizes of the[τ ], and an assignment to{φ,z,n} completely
determines the possible worldω ∈ Ω. The rules of seman-
tics assemble models that are arbitrary hierarchies of DPs.

4 Experiment
The purpose of this experiment is to show that the NP-
BLOG language we have described realizes probabilistic
inference on a real-world problem. We simulate the cita-
tion matching model in Fig. 3 on the CiteSeer data set [9],
which consists of manually segmented citations from four
research areas in AI.

We use Markov Chain Monte Carlo (MCMC) to simulate
possible worlds from the model posterior given evidence in
the form of cited authors and titles. Sec. 2 briefly describes



Figure 6: Estimated (solid blue) and true (dashed red line)
number of publications for the Face and Reasoning data.

Figure 7: Estimated distribution of the hidden number of
authors for the Face and Reasoning data sets.

the inference engine. Table 1 compares the performance
of the NP-BLOG model to [14, 22] and the greedy ag-
glomerative clustering method [9] (implemented by [14]).
We achieve respectable matching accuracy, even though the
specification of the model requires only a few lines in NP-
BLOG, implements naive string metrics (the Jaro metric
for author surnames and the standard TF-IDF information
retrieval metric for distances between titles), and requires
no supervision. By comparison, [22] uses as many as 9 dif-
ferent citation fields, and [14] tunes the parameters of the
distributions using an alternate, labeled data set. (These
richer attributes, with the exception of the random field im-
plemented in [22], could be incorporated into NP-BLOG.)
Since the segmented data is not publicly available, the our
version of the data might be slightly different. Our NP-
BLOG Gibbs sampling scheme is efficient; we found 1000
iterations was more than sufficient for data sets with as
many as 500 exemplars. We caution, however, that deter-
mining a suitable stopping point for the Markov chain is, at
the present state of research, more an art than a science.

In Figures 6 and 7, we plot the Monte Carlo estimate of
the numbers of publication and author clusters for two data
sets. The posteriors over the number of publications are
highly peaked, and they closely match the ground truth.

5 Conclusions
This paper presented novel semantics for modeling collec-
tions of objects and their properties in arbitrary hierarchies
by extending the BLOG probabilistic first-order language.
We demonstrated that NP-BLOG models complex domains
while concealing many implementation details from the
user. We adopted Bayesian nonparametric methods, and
notably Dirichlet processes, for defining distributions over
collections of infinitely exchangeable unknown objects and
their properties. Significantly, Dirichlet processes cohe-
sively and efficiently handle model selection of unbounded
sets of objects in first-order probabilistic inference.

There is much future work on this topic. An important di-
rection is the development of efficient, flexible and on-line
inference methods for hierarchies of Dirichlet processes.
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