
Toward Practical N 2 Monte Carlo: the Marginal Particle Filter

Mike Klaas
Computer Science Dept.

University of British Columbia
klaas@cs.ubc.ca

Nando de Freitas
Computer Science Dept.

University of British Columbia
nando@cs.ubc.ca

Arnaud Doucet
Signal Processing Group

Cambridge University
ad2@eng.cam.ac.uk

Abstract

Sequential Monte Carlo techniques are useful for
state estimation in non-linear, non-Gaussian dy-
namic models. These methods allow us to ap-
proximate the joint posterior distribution using
sequential importance sampling. In this frame-
work, the dimension of the target distribution
grows with each time step, thus it is neces-
sary to introduce some resampling steps to en-
sure that the estimates provided by the algorithm
have a reasonable variance. In many applica-
tions, we are only interested in the marginal fil-
tering distribution which is defined on a space of
fixed dimension. We present a Sequential Monte
Carlo algorithm called the Marginal Particle Fil-
ter which operates directly on the marginal distri-
bution, hence avoiding having to perform impor-
tance sampling on a space of growing dimension.
Using this idea, we also derive an improved ver-
sion of the auxiliary particle filter. We show the-
oretic and empirical results which demonstrate a
reduction in variance over conventional particle
filtering, and present techniques for reducing the
cost of the marginal particle filter with N parti-
cles from O(N2) to O(N log N).

1 Introduction

Bayesian state estimation is ubiquitous in the AI commu-
nity, being one of the most popular techniques for perform-
ing inference in dynamic models. Examples of its use in-
clude tracking, diagnosis, and control. An unobserved sig-
nal (latent states xt ∈ X) is assumed to exist, and evolves
according to a (typically Markovian) dynamic model. Ad-
ditionally, Bayesian filtering assumes the existence of ob-
servations (yt) which are conditionally independent given
the process. An observation model specifies the generation
of observations given a specified latent state. Of interest is
estimating a distribution of the latent state at time t given

the observations up to that time; this is known as the filter-
ing distribution p(xt|y1:t).

In some cases this model can be solved using exact in-
ference, for instance using the Kalman or HMM filters.
Unfortunately, real-world models are rarely simple enough
to be solved exactly, often containing non-linearity, non-
Gaussianity, or hybrid combinations of discrete and contin-
uous variables which lead to high-dimensional intractable
integrals. Since these integrals cannot be solved analyti-
cally, approximation techniques are required.

One of the most successful and popular approximation
techniques is Sequential Monte Carlo (SMC), which is re-
ferred to as Particle Filtering (PF) in the Bayesian filtering
domain [2, 13, 3]. In its most basic form, particle filters
work by starting with a sample from the posterior at time
t − 1, predicting the state at time t, then updating the im-
portance weights based on the observation yt. These sam-
ples form an approximation of the joint density p(x1:t|y1:t)
at time t. Often, however, it is the filtering distribution
p(xt|y1:t) that is desired. This is approximated by drop-
ping samples of the states x1 . . .xt−1 at time t (often im-
plicitly). The tradeoff for doing the importance sampling
sequentially when the marginal is of interest is that the par-
ticle filter is performing importance sampling in a higher-
dimensional state space X t than is necessary, which results
in higher variance of the importance weights and requires
the use of resampling steps.

In this paper, we develop two particle filtering algo-
rithms which performs importance sampling directly in the
marginal space X of p(xt|y1:t). We show using syn-
thetic and real-world experiments that these algorithms
improve significantly over Sequential Importance Sam-
pling/Resampling (SIR) and Auxiliary Particle Filtering
(ASIR) in terms of importance weight variance. The main
disadvantage of doing importance sampling in the marginal
space is its O(N2) cost, where N is the number of parti-
cles used. We demonstrate how this cost can be reduced
to O(N log N) or even O(N) using methods from N -body
learning [4, 11].

2 Bayesian filtering with SMC

The unobserved signal {xt}, xt ∈ X , is modelled as a
Markov process of initial distribution p (x1) and transition
prior p (xt|xt−1). The observations {yt}, yt ∈ Y , are
assumed to be conditionally independent given the process
{xt} and of marginal distribution p (yt|xt). Hence, the
model is described by

p(xt|xt−1) t ≥ 1, and
p(yt|xt) t ≥ 1.

We denote by x1:t , {x1, ...,xt} and y1:t , {y1, ...,yt},
respectively, the signal and the observations up to time t,
and define p(x1|x0) , p(x1) for notational convenience.

Our aim is to estimate sequentially in time the filtering dis-
tribution p (xt|y1:t) and the expectations

I (ft) = Ep(xt|y1:t) [ft (xt)] ,
∫

ft (xt) p (xt|y1:t) dxt

(1)
for some function of interest ft : X → Rnft inte-
grable with respect to p (xt|y1:t). Examples of appropri-
ate functions include the conditional mean, in which case
ft (xt) = xt, or the conditional covariance of xt where
ft (xt) = xtxT

t − Ep(xt|y1:t) [xt]ET
p(xt|y1:t)

[xt].

2.1 Sequential importance sampling

If we had a set of samples (or particles)
{
x(i)

t

}N

i=1
from

p(xt|y1:t), we could approximate the distribution with the
Monte Carlo estimator

p̂(dxt|y1:t) =
1
N

N∑

i=1

δ
x

(i)
t

(dxt)

where δ
x

(i)
t

(dxt) denotes the delta Dirac function. This
can be used to approximate the expectations of interest in
equation (1) with

Î(ft) =
1
N

N∑

i=1

ft

(
x(i)

t

)
.

This estimate converges almost surely to the true expecta-
tion as N goes to infinity. Unfortunately, one cannot easily
sample from the marginal distribution p(xt|y1:t) directly.
Instead, we draw particles from p(x1:t|y1:t) and samples
x1:t−1 are ignored. To draw samples from p(x1:t|y1:t), we
sample from a proposal distribution q and weight the parti-
cles according to the following importance ratio:

wt(x1:t) =
p(x1:t|y1:t)
q(x1:t|y1:t)

The proposal distribution is constructed sequentially

q(x1:t|y1:t) = q(x1:t−1|y1:t−1)q(xt|yt,xt−1)

and, hence, the importance weights can be updated recur-
sively

wt(x1:t) =
p(x1:t|y1:t)

p(x1:t−1|y1:t−1) q(xt|yt,xt−1)
wt−1(x1:t−1).

(2)

Given a set of N particles
{
x(i)

1:t−1

}N

i=1
, we obtain a set of

particles
{
x(i)

1:t

}N

i=1
by sampling from q(xt|yt,x

(i)
t−1) and

applying the weights of equation (2).

The familiar particle filtering equations for this model are
obtained by remarking that

p(x1:t|y1:t) ∝ p (x1:t,y1:t) =
t∏

k=1

p(yk|xk)p(xk|xk−1),

given which, equation (2) becomes

w̃
(i)
t ∝ p(yt|x(i)

t)p(x(i)
t |x(i)

t−1)

q
(
x(i)

t

∣∣∣yt,x
(i)
t−1

) w̃
(i)
t−1.

This iterative scheme produces a weighted measure{
x(i)

1:t, w
(i)
t

}N

i=1
, where w

(i)
t = w̃

(i)
t /

∑
j w̃

(j)
t , and is

known as Sequential Importance Sampling (SIS). A resam-
pling (selection) step may be included at this point that
chooses the fittest particles (this is the SIR algorithm [10]).

Figure 2 contains pseudo-code for the algorithm. Note this
is the procedure in common use by practitioners. It can
be deceptive: although only the state xt is being updated
every round, the algorithm (as we have presently derived)
is nonetheless importance sampling in the joint space X t.

X × X × X · · · = X t

x
(i)
1:t

Figure 1: Sequential importance sampling.

3 Marginal Particle Filter
Sequential importance sampling estimates p(x1:t|y1:t) by
taking an estimate of p(x1:t−1|y1:t−1) and augmenting it
with a new sample xt at time t. Each particle at time t is
a draw over the joint space p(x1:t|y1:t), sampled sequen-
tially, thus can be thought of as a path through the state
space at times 1 . . . t (Figure 1). At each time step, the di-
mension of the sampled paths is increased by the dimension
of the state space at time t, quickly resulting in a very high
dimensional space. The sequential nature of the algorithm
means that the variance is high, leading to most paths hav-
ing vanishingly small probability. This problem is known
as degeneracy of the weights, and usually leads to weights
whose variance tends to increase without bound.

Sequential importance sampling step

• For i = 1, ..., N , sample from the proposal

x
(i)
t ∼ q

�
xt

���yt,x
(i)
t−1

�

• For i = 1, ..., N , evaluate the importance weights

ew(i)
t =

p
�
yt

���x(i)
t

�
p
�
x

(i)
t

���x(i)
t−1

�

q
�
x

(i)
t

���yt,x
(i)
t−1

� ew(i)
t−1

• Normalise the importance weights

w
(i)
t =

ew(i)
tPN

j ew(j)
t

Selection step

• Resample the discrete weighted measuren
x

(i)
t , w

(i)
t

oN

i=1
to obtain an unweighted measure

n
x

(i)
t , 1

N

oN

i=1
of N new particles.

Figure 2: Particle filtering algorithm at time t.

One strategy employed is to use a resampling step after up-
dating the particle weights to multiply particles (paths) with
high probability and prune particles with negligible weight
(the SIR algorithm).

The Marginal Particle Filter (MPF) uses a somewhat more
principled approach. We perform particle filtering directly
on the marginal distribution p(xt|y1:t) instead of on the
joint space.

The predictive density is obtained by marginalizing

p(xt|y1:t−1) =
∫

p(xt|xt−1) p(xt−1|y1:t−1) dxt−1 (3)

hence, the filtering update becomes

p(xt|y1:t) ∝ p(yt|xt) p(xt|y1:t−1)

= p(yt|xt)
∫

p(xt|xt−1) p(xt−1|y1:t−1) dxt−1.

The integral in equation (3) is generally not solveable
analytically, but since we have a particle approxima-
tion of p(xt−1|y1:t−1)

(
namely,

{
x(i)

t−1, w
(i)
t−1

})
, we

can approximate (3) as the weighted kernel estimate∑N
j=1 w

(j)
t−1p

(
xt

∣∣∣x(j)
t−1

)
.

While we are free to choose any proposal distribution that
has appropriate support, it is convenient to assume that the

proposal takes a similar form, namely

q(xt|y1:t) =
N∑

j=1

w
(j)
t−1q

(
xt

∣∣∣yt,x
(j)
t−1

)
. (4)

The importance weights are now on the marginal space

wt =
p(xt|y1:t)
q(xt|y1:t)

.

Pseudo-code for the algorithm is given in Figure 3.

Marginal Particle Filter (MPF)

• For i = 1, ..., N , sample from the proposal

x
(i)
t ∼

NX
j=1

w
(j)
t−1q

�
xt

���yt,x
(j)
t−1

�

• For i = 1, ..., N , evaluate the importance weights

ew(i)
t =

p
�
yt

���x(i)
t

�PN
j=1 w

(j)
t−1p

�
x

(i)
t

���x(j)
t−1

�

PN
j=1 w

(j)
t−1q

�
x

(i)
t

���yt,x
(j)
t−1

�

• Normalise the importance weights

w
(i)
t =

ew(i)
tP

j ew(j)
t

Figure 3: The MPF algorithm at time t.

3.1 Auxiliary Variable MPF

The auxiliary particle filter (ASIR), introduced by Pitt and
Shepard [12, 1], is designed to improve the performance of
sequential Monte Carlo in models with peaked likelihoods
(which is another source of importance weight variance).
In this section, we derive an algorithm that combines both
approaches.

When the likelihood is narrow, it is desirable to choose a
proposal distribution that samples particles which will be
in high-probability regions of the observation model. The
auxiliary particle filter works by re-weighting the particles
at time t− 1 to boost them in these regions.

We are interested in sampling from the following target dis-
tribution

p̂ (xt|y1:t) ∝ p (yt|xt)
N∑

j=1

w
(j)
t−1p

(
xt|x(j)

t−1

)
(5)

=
N∑

j=1

w
(j)
t−1p

(
yt|x(j)

t−1

)
p

(
xt|x(j)

t−1,yt

)
.

The auxiliary PF uses the following joint distribution:

p(k,xt|y1:t) = w
(k)
t−1p

(
yt

∣∣∣x(k)
t−1

)
p
(
xt

∣∣∣x(k)
t−1,yt

)
.

k is known as an auxiliary variable and is an index into the
mixture of equation (5). Thus,

p̂ (k|y1:t) ∝ w
(k)
t−1p

(
yt

∣∣∣x(k)
t−1

)
. (6)

= w
(k)
t−1

∫
p(yt|xt) p

(
xt

∣∣∣x(k)
t−1

)
dxt

Since the exact evaluation of (6) is usually impossible, we
approximate this via what is known as a simulation step.
For each index k at time t − 1, we choose µ

(k)
t associ-

ated with the distribution p(xt|x(k)
t−1) in some deterministic

fashion (µ(k)
t could be the expected value, for instance).

We define the simulation weight1 for index k to be

λ
(k)
t−1 ,

w
(k)
t−1p

(
yt

∣∣∣µ(k)
t

)

∑N
j=1 w

(j)
t−1p

(
yt

∣∣∣µ(j)
t

) .

Using these weights, the auxiliary particle filter defines the
following joint proposal distribution:

q (k,xt|y1:t) = q (k|y1:t) q (xt|y1:t, k)

where

q (k|y1:t) = λ
(k)
t−1,

q (xt|y1:t, k) = q
(
xt|x(k)

t−1,yt

)
.

The importance weight is given by

w (k,xt) =
p̂ (k,xt|y1:t)
q (k,xt|y1:t)

(7)

∝
w

(k)
t−1p

(
yt|x(k)

t−1

)
p

(
xt|x(k)

t−1,yt

)

λ
(k)
t−1q

(
xt|x(k)

t−1,yt

) .

In the marginal particle filter, we use the same impor-
tance distribution but instead of performing importance
sampling between p̂ (k,xt|y1:t) and q (k,xt|y1:t), we di-
rectly perform importance sampling between p̂ (xt|y1:t)
and q (xt|y1:t) to compute the weights

w (xt) =
p̂ (xt|y1:t)
q (xt|y1:t)

(8)

∝
∑N

j=1 w
(j)
t−1p

(
yt|x(j)

t−1

)
p

(
xt|x(j)

t−1,yt

)

∑N
j=1 λ

(j)
t−1q

(
xt|x(j)

t−1,yt

) .

This leads to the auxiliary marginal particle filter (AMPF)
which is described in Figure 4.

1To prevent this step from introducing bias, the simulation
weights are chosen independently from x

(i)
t .

Auxiliary Marginal Particle Filter (AMPF)

• For i = 1, . . . , N , choose simulation µ
(i)
t and cal-

culate mixture weights

µ
(i)
t ←d p

�
xt

���x(i)
t−1

�

eλ(i)
t−1 = w

(i)
t−1p

�
yt

���µ(i)
t

�
λ

(i)
t−1 =

eλ(i)
t−1PN

j
eλ(j)

t−1

• For i = 1, ..., N , sample from the proposal

x
(i)
t ∼

NX
j=1

λ
(j)
t−1q

�
xt

���yt,x
(j)
t−1

�

• For i = 1, ..., N , evaluate the importance weights

ew(i)
t =

p
�
yt

���x(i)
t

�PN
j=1 w

(j)
t−1p

�
x

(i)
t

���x(j)
t−1

�

PN
j=1 λ

(j)
t−1q

�
x

(i)
t

���yt,x
(j)
t−1

�

• Normalise the importance weights

w
(i)
t =

ew(i)
tPN

j=1 ew(j)
t

Figure 4: The AMPF algorithm at time t. The ←d symbol
denotes the deterministic selection of a likely value from
the distribution, such as the mean or a mode of the density.

We expect that performing importance sampling directly
between the distributions of interest will lead to a reduction
in variance. It is not hard to show that it can be no worse.

Proposition 1. The variance of the AMPF importance
sampling weights w(xt) is less than or equal to ASIR’s im-
portance weights w(k,xt).

Proof. By the variance decomposition lemma, we have

var [w (k,xt)] = var [E (w (k,xt)|xt)]
+ E [var (w (k,xt)|xt)]

= var [w (xt)] + E [var (w (k,xt)|xt)] .

Hence, as
E [var (w (k,xt)|xt)] ≥ 0

it follows that

var [w (xt)] ≤ var [w (k,xt)] .

3.2 Discussion

Since the particles at time t are sampled from a much lower
dimensional space in the marginal filter algorithms, we ex-
pect that the variance in the weights will be significantly
less than that of (A)SIR for the same number of particles.

(a) (A)SIR samples a mixture component and uses this to
compute importance sampling weights.

(b) Marginal filtering uses the entire mixture.
Figure 5: Predictive density p(xt|y1:t−1) in (A)SIR and
Marginal PF. By using a single mixture component, the
(A)SIR estimate ignores important details of the distribu-
tion; a particle lying in the left mode should be given less
weight than one lying in the right mode.

Proposition 1 proves that it is no greater in the auxiliary
variable setting, and a similar result holds for SIR.

Figure 5 demonstrates this with an example. Consider a
multi-modal state estimate at time t − 1, and a Gaussian
transition prior. In (A)SIR, a particle’s transition likelihood
is relative to the tail end of a path (5(a)), while the marginal
PF calculates the true marginal transition density (5(b)).

The marginal PF improves over (A)SIR whenever a parti-
cle has high marginal probability but low joint probability
along its path. This can occur due to heavy-tailed impor-
tance distributions or models with narrow or mis-specified
transition priors. On the other hand, the improvement of
MPF over SIR will not be very pronounced if the observa-
tion model is peaked (i.e., if likelihood is highly concen-
trated), as this will influence the importance weights more
than the effect of sampling in the joint space. In these cases,
AMPF should be used. Figure 6 demonstrates the two types
of variance reduction.

Finally, it should be noted that sequential Monte Carlo ap-
plies to domains outside of Bayesian filtering, and an anal-
ogous marginal SMC algorithm can be straightforwardly
derived in a general SMC context.

Note that the evaluation of the proposal (equation (4)) must
be performed for each sample, thus both MPF and AMPF
incur an N2 cost. As we later show, this can be improved
substantially.

3.3 Cases of equivalence

There is one case where SIR and marginal PF are equiv-
alent [8, 7]. When the transition prior is used as the pro-
posal distribution, then the MPF weight update equation

0 10 20 30 40
0

0.5

1

1.5

2
x 10

−3

Timestep

Particle weight variance

SIR
Auxiliary marginal PF
Marginal PF
ASIR

Figure 6: Importance weights variance reduction. “Spikes”
in weight variance are caused by unlikely observations.
ASIR (red) is successful in smoothing these occurrences
when using SIR (green). The marginal PF (black) reduces
overall variance by sampling in a smaller-dimensional
space, but still suffers from spikes. AMPF (blue) gains the
advantages of both approaches.

becomes:

w
(i)
t ∝

p
(
yt

∣∣∣x(i)
t

) ∑N
j=1 w

(j)
t−1p

(
x(i)

t

∣∣∣x(j)
t−1

)

∑N
j=1 w

(j)
t−1p

(
x(i)

t

∣∣∣x(j)
t−1

)

= p
(
yt

∣∣∣x(i)
t

)
.

When using SIR, particles are resampled after being
weighted, but this is precisely equivalent to sampling from
the marginal proposal distribution

∑N
j w

(j)
t−1p

(
xt

∣∣∣x(j)
t−1

)
.

The SIR weight update equation is

w
(i)
t ∝

p
(
yt

∣∣∣x̃(i)
t

)
p
(
x̃(i)

t

∣∣∣x(i)
t−1

)

p
(
x̃(i)

t

∣∣∣x(i)
t−1

) w
(i)
t−1 = p

(
yt

∣∣∣x̃(i)
t

)
,

since w
(i)
t−1 is set to N−1 after resampling. In both cases,

the conventional likelihood-weighted filter is recovered.

Similarly, when performing auxiliary filtering, it may
be possible to sample exactly from the optimal pro-
posal q(xt|yt, k) = p(xt|yt,x

(k)
t) and exactly evaluate

p(yt|x(k)
t−1) (equation (6)). In this case the importance

weight variance is zero, thus no marginal filtering improve-
ment is possible.

4 Efficient Implementation

The marginal particle filter as presented has a significant
disadvantage: it has O(N2) complexity. In this section,

we show how to apply powerful techniques from N -body
learning [4] to reduce this cost to O(N log N), and in some
cases O(N). N -body problems involve a set of sources
X , {xj} with associated weights {ωj}, a set of targets
Y , {yi},2 and an influence function K(xj , yi).

The goal is to find the influence qi at each target yi, ie.

∀i, qi =
N∑

j=1

ωjK(xj , yi)

to within a specified error ε. This is the weighted Ker-
nel Density Estimation (KDE) problem, and costs O(N2)
when implemented directly. The mapping to marginal fil-
tering is direct. For instance, equation (4) can be formu-
lated as a weighted KDE problem as follows:

{
xj

}
,

{
x(j)

t−1

}
,

{
yi

}
,

{
x(i)

t

}
, and

K(xj , yi) , q(xt = yi|xt−1 = xj ,yt) .

We give a brief overview of the methods involved. For an
empirical comparison of the methods, see [11].

4.1 Dual-tree methods

Dual-tree recursion requires a kernel parameterized by a
distance function: K(x, y) , K(δ(x, y)). This encom-
passes most continuous densities and some discrete distrib-
utions (in the latter case, it usually depends on the parame-
ters of the distribution). This method first builds a spacial
tree3 on both the source and target points. We can bound
the kernel response of a node of source points to a node of
target points based on the node-node distances (Figure 7).
The bounds can be tightened by recursing on both trees.
Gray and Moore [5] give a thorough exposition.

δmin

δmax

Figure 7: Dual-tree bounding.

4.2 Gaussian kernel methods

If the kernel is Gaussian, then the fast Gauss Transform [6]
and Improved-FGT [14] can be used to perform weighted
KDE in O(N). These methods work by partitioning the
space in which the data lie into clusters, and approximating
the Gaussian sum from one cluster to another with a Her-
mite polynomial (FGT) or Taylor series expansion (IFGT).
While the IFGT is generally faster, it is unknown how to
tune the parameters to guarantee the error bound while
maintaining acceptable performance.

2Note: xj , yi, and ωj defined here are not to be confused with
the xt, yt, and wt used earlier in the paper.

3A popular choice is a kd-tree, though metric trees are pre-
ferred in high dimensional spaces.

5 Experiments

We present several examples of using the Marginal Par-
ticle Filter for Bayesian filtering. We compare the algo-
rithms in several respects: the error of the state estimate
to the ground truth (when known); the variance of the im-
portance weights; and unique particle count. High vari-
ance is indicative of degeneracy of the importance sam-
pling weights, and affects the precision and variance of the
estimator. Unique particle count is a measure of the diver-
sity of the particles. The latter two are both important: it is
trivial to construct an algorithm which performs well under
either of these measures individually, but the construction
will behave pathologically under the other measure.

5.1 Multi-modal non-linear time series

Consider the following reference model [2]:

xt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ cos(1.2t) +N (0, σx)

yt =
x2

t

20
+N (0, σy) .

The posterior distribution is bi-modal and non-linear; this
is a standard example of a difficult filtering workload.

Method RMS Error variance Weight var.
SIR 2.902 1.03 0.000163
MPF 2.344 0.06 0.000025

Table 1: 1-D time series: RMS error and weight variance.

Table 1 and Figures 8, 9, and 10 summarize the results.
The Marginal Particle Filter improves over SIR slightly in
terms of RMSE, and produces a substantial reduction in
importance weight variance.

0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

Timestep

State estimate

SIR
Marg PF
True state

Figure 8: 1-D time series; state estimate.

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

Timestep

Particle weight variance

SIR
Marg PF

Figure 9: 1-D time series; variance of the importance
weights. The spikes are the result of unlikely data—MPF
does particularly better than SIR in these cases.

0 10 20 30 40 50
0

100

200

300

400

500

600
Unique particles (max = 500)

Timestep

SIR
Marg PF

Figure 10: 1-D time series; unique particle count. Although
the Marginal PF generally better diversity, an unlikely ob-
servation can still cause problems (such as at t = 8).

5.2 Stochastic Volatility

Monte Carlo methods are often applied to the analysis of
the variance of financial returns as the models involved can-
not be solved analytically. One commonly used model is
stochastic volatility [9], which is summarized as:

yt = εtβ exp {xt/2}
xt = φxt−1 + ηt

where ηt ∼ N (0, ση), εt ∼ N (0, 1), and x1 ∼
N (

0, σ2
η/(1− φ2)

)
. We analyze the weekday close of the

U.K. Sterling/U.S. Dollar exchange rate from 1/10/81 to
28/6/85. There are 946 timesteps, but we limit analysis to
the first 200 for readability, and use the model parameters
fit to the data using MCMC in [9]. We use as proposal the
transition prior with heavier tails to test the marginal filter’s
ability to compensate for poor proposals.

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

Timestep

State estimate

SIR
Auxiliary marginal PF
Marginal PF
ASIR
Observations

Figure 11: Stochastic volatility model; state estimate.

0 50 100 150 200
0

0.5

1

1.5

2
x 10

−3

Timestep

Particle weight variance

SIR
Auxiliary marginal PF
Marginal PF
ASIR

Figure 12: Stochastic volatility model; importance weight
variance. Marginal filtering consistently achieves lower
variance. See Figure 6 for a closer view of the first twenty
timesteps, which more clearly illustrates the interaction
among SIR, AMPF, and ASIR.

The results are summarized in Figures 11, 12, and 13. All
results are means over five runs.

0 50 100 150 200
150

200

250

300

350

400
Unique particles

Timestep

SIR
Auxiliary marginal PF
Marginal PF
ASIR

Figure 13: Stochastic volatility, unique particle count.

5.3 Fast implementation

We compared the MPF implemented naı̈vely to an imple-
mentation using the fast Gauss Transform (FGT), as it is
conceivable that the error introduced by the FGT would
offset the variance-reduction benefits that MPF provides.
The results in Table 2 indicate that we can increase the pre-
cision sufficiently to render this issue moot. (Additionally,
we performed all the experiments in the previous section
using the approximation techniques.)

ε N time(s) speedup RMSE
1e-3 500 naı̈ve 0.300 1.2684

FGT 0.181 1.66 1.2685
1e-3 1500 naı̈ve 2.568 1.2469

FGT 0.310 8.28 1.2542
1e-7 5000 naı̈ve 28.14 1.2466

FGT 1.482 19.0 1.2466

Table 2: Fast methods applied to the marginal particle fil-
ter. All reported results are the mean values over ten runs.
The FGT enables a substantial improvement in speed at the
cost of a slight increase in error. For the last test, we sub-
stantially decreased the error tolerance of the FGT approx-
imation (which increases the runtime), and were still able
to achieve a considerable speedup and RMSE within the
variance of the test to the naı̈ve. This suggests that the er-
ror introduced by the FGT approximation can be made less
than the inherent error caused by Monte Carlo variance.

6 Conclusions

Particle filtering involves importance sampling in the
high-dimensional joint distribution even when the lower-
dimensional marginal distribution is desired. We have in-

troduced marginal importance sampling which overcomes
this deficiency, and have derived two new particle filtering
algorithms using marginal importance sampling that im-
prove over SIR and ASIR, respectively. We have presented
theoretical and empirical results which show that MPF and
AMPF achieve a significant reduction in importance weight
variance over the joint algorithms, and have shown how the
computational burden can be drastically reduced.

Acknowledgements

Special thanks to Frank Dellaert for important initial dis-
cussions on some of the ideas in this paper and to Gareth
Peters for his invaluable suggestions.

References
[1] C Andrieu, M Davy, and A Doucet. Improved auxiliary par-

ticle filtering: Application to time-varying spectral analysis.
In IEEE SCP 2001, Signapore, August 2001.

[2] A Doucet, N de Freitas, and N J Gordon, editors. Sequential
Monte Carlo Methods in Practice. Springer-Verlag, 2001.

[3] P Fearnhead. Sequential Monte Carlo Methods in Filter
Theory. PhD thesis, Department of Statistics, Oxford Uni-
versity, England, 1998.

[4] A Gray and A Moore. ‘N-Body’ problems in statistical
learning. In NIPS, pages 521–527, 2000.

[5] A Gray and A Moore. Nonparametric density estimation:
Toward computational tractability. In SIAM International
Conference on Data Mining, 2003.

[6] L Greengard and X Sun. A new version of the Fast
gauss transform. Documenta Mathematica, ICM(3):575–
584, 1998.

[7] Z. Khan, T. Balch, and F. Dellaert. An MCMC-based parti-
cle filter for tracking multiple interacting targets. 2004.

[8] Z. Khan, T. Balch, and F. Dellaert. A Rao-Blackwellized
particle filter for EigenTracking. 2004.

[9] S Kim, N Shephard, and S Chib. Stochastic volatility: Like-
lihood inference and comparison with ARCH models. Re-
view of Economic Studies, 65(3):361–93, 1998.

[10] G Kitagawa. Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models. Journal of Com-
putational and Graphical Statistics, 5:1–25, 1996.

[11] D Lang, M Klaas, and N de Freitas. Empirical testing of fast
kernel density estimation algorithms. Technical Report TR-
2005-03, Dept of Computer Science, UBC, February 2005.

[12] M K Pitt and N Shephard. Filtering via simulation: Auxil-
iary particle filters. JASA, 94(446):590–599, 1999.

[13] C P Robert and G Casella. Monte Carlo Statistical Methods.
Springer-Verlag, New York, 1999.

[14] C Yang, R Duraiswami, N A Gumerov, and L S Davis. Im-
proved fast Gauss transform and efficient kernel density es-
timation. In ICCV, Nice, 2003.

