
Fast Computational Methods for Visually Guided Robots∗

Maryam Mahdaviani, Nando de Freitas, Bob Fraser and Firas Hamze
Computer Science Department
University of British Columbia

{maryam,nando,robertf,fhamze}@cs.ubc.ca

Abstract— This paper proposes numerical algorithms for
reducing the computational cost of semi-supervised and active
learning procedures for visually guided mobile robots from
O(M3) to O(M), while reducing the storage requirements
from M2 to M . This reduction in cost is essential for
real-time interaction with mobile robots. The considerable
speed ups are achieved using Krylov subspace methods and
the fast Gauss transform. Although these state-of-the-art
numerical algorithms are known, their application to semi-
supervised learning, active learning and mobile robotics is
new and should be of interest and great value to the robotics
community. We apply our fast algorithms to interactive object
recognition on Sony’s ERS-7 Aibo. We provide comparisons
that clearly demonstrate remarkable improvements in com-
putational speed.

Index Terms— Visually guided mobile robots, interactive
robots, learning, Krylov subspace methods, fast Gauss trans-
form.

I. INTRODUCTION

Fig. 1. Aibo is an interactive robot that learns to recognize objects
using semi-supervised input from a portable computer. Aibo also
uses active learning to prompt the user for labels. In the image
we see Aibo correctly identifying the ball and the banana.

In this paper, we introduce fast algorithms for semi-
supervised and active learning in visually guided robots
[17], [18]. These algorithms make it possible to apply
these computationally intensive learning tools in interactive
robotics. In particular, they reduce the computational cost
of learning from O(M3) to O(M) and the storage require-
ments from M2 to M , where M is the number of features.
Our application involves an ERS-7 Aibo that learns basic
object discriminants using semi-supervised input from the

∗This work is supported by NSERC and IRIS-ROPAR.

user, as shown in Fig. 1. That is, the user provides labels
for some of the image regions observed by Aibo. Aibo
then labels the rest of the image regions as well as all new
images in its video input. In this fashion, the user teaches
Aibo to recognize multiple objects.

When Aibo is confused about the label of an object, it
employs the active learning algorithms [18] to prompt the
user for new labels. Initially, a simple interface is used to
teach Aibo to recognize a few objects in its environment.
Subsequently, Aibo “asks questions” only when it “thinks”
the answers could improve its recognition performance sig-
nificantly within a Bayesian decision theoretic framework.
This application allows humans to train visually guided
entertainment robots in a fun and interactive way that
places minimal burden on the human teacher. After learn-
ing to recognize several objects in its environment, Aibo
can use some of these objects as navigation landmarks.
Conceivably, it can also use the recognition models and
algorithms to carry out simple tasks, such as fetching balls.

II. SEMI-SUPERVISED AND ACTIVE LEARNING USING
GAUSSIAN FIELDS

We begin with a description of the semi-supervised
learning problem and the solution proposed in [17]. We
are given N feature vectors x ∈ R

d as shown for d = 2 in
Fig. 2. Some of the points have labels. In the figure, two
points have the labels yl = 1 and yl = 0. The rest of the
points have unknown labels yu. The goal is to compute the
unknown labels.

x

w
i

ij

j

x

Fig. 2. Input data. Two points (×) and (o) have labels yl = 1
and yl = 0 respectively. The remaining points are unlabelled
yu =?, but their topology is essential to the construction of a
good classifier.

A human would classify all the points in the outer ring
as 1 and the points in the inner circle as 0. We want an
algorithm that reproduces this perceptual grouping. We do
this by considering each point xi as a node in a fully

connected undirected graph. The edges of the graph have
weights corresponding to a similarity kernel. In our case,
the weight between points xi and xj is

wij = exp

(
− 1

σ
‖xi − xj‖2

)
,

where ‖ · ‖ denotes the L2 norm. Hence, points that are
close together will have high similarity (high w), whereas
points that are far apart will have low similarity.

It is sensible to minimize the following error function to
compute the unknown labels yu:

E(yu) =
1

2

∑

i∈L,j∈L

wij(y
l
i − yl

j)
2 + 2

∑

i∈U,j∈L

wij(y
u
i − yl

j)
2

+
∑

i∈U,j∈U

wij(y
u
i − yu

j)2

 ,

where L is the set of labelled points and U is the set of
unlabelled points. If two points are close then w will be
large. Hence, the only way to minimize the error function
is to make these two nearby points have the same label y.
Let us introduce the adjacency matrix W with entries wij

and let D = diag(di) where di =
∑

j wij . That is, D is
a diagonal matrix whose i-th diagonal entry is the sum of
the entries of row i of W. Let the vector yu contain all
the unknown labels yu and similarly let yl contain all the
labels yl. Then, the error function can be written in matrix
notation as follows:

E(yu)= yT
u (Duu−Wuu)yu−2yT

l Wulyu+yT
l (Dll−Wll)yl,

where Wuu denotes the entries wij with i, j ∈ U . Differ-
entiating this error function and equating to zero, gives us
our solution in terms of a linear system of equations:

(Duu − Wuu)yu = Wulyl, (1)

where 0 ≤ yu ≤ 1. A naive solution would cost O(M 3),
where M = |U | is the number of unlabelled points, since
|L| is significantly smaller than |U |.

Once we have labels for all N points in the training data,
a new point xk in the test set data is classified using the
following classical kernel discriminant

yk =

∑N

i=1 wikyi∑N

i=1 wik

. (2)

As shown in [18], one can use Bayesian decision theory
to extend this semi-supervised learning approach to the
active learning domain. In this approach, the class pos-
terior probabilities p(yu

i |yl,x) are approximated with the
estimates 0 ≤ yu

i ≤ 1, yielding the following expression
for the posterior risk of the Bayes classifier:

R(yu) =

M∑

i=1

min(yu
i , 1 − yu

i).

To decide which unlabelled point xj requires a label yj ,
we first solve the linear system (1) to obtain yu. Adding

the new label yj to the training set forces us to have to
solve (1) again. Fortunately, we can recompute the labels
efficiently using the matrix inversion lemma as outlined
in [18, Appendix B]. Let the field obtained by adding the
point (xj , yj) be denoted by y

+(xj ,yj)
u . Then, the posterior

risk is:

R(y+(xj ,yj)
u) =

M−1∑

i=1

min
(
y
+(xj ,yj)
i , 1 − y

+(xj ,yj)
i

)
.

Of course, before querying the user, we do not know the
label yj , so we have to use the expected posterior risk:

E[R(y+(xj ,yj)
u)] = (1 − yu

i)R(y+(xj ,0)
u) + yu

i R(y+(xj ,1)
u)

After computing this expression, we pick the index j that
minimizes it and ask the user to enter a label for xj . The
pseudo-code is shown in Fig. 3. Its application to a simple
synthetic dataset is shown in Fig. 4.

Input: L, U and W

WHILE more labels are required:
• Compute yu using (1).
• Find the best query j using the expected posterior

risk.
• Query point xj and receive answer yj .
• Add (xj , yj) to L and remove xj from U .

Fig. 3. The active learning algorithm proposed in [18].

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
Input Data

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
First Query

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
Second Query

−10 −5 0 5 10
−6

−4

−2

0

2

4

6
Result

Fig. 4. Active learning: The top-left plot shows the initial data
x, where only two points have been labelled. Note that a naive
supervised classifier that uses only the labelled data would most
likely produce the wrong discriminant boundary. By running the
active learning algorithm, the computer asks the user to enter
the label for a point that could minimize the Bayes risk the most
(the square in the top-right plot). The process is then repeated in
the bottom-left plot. The final classification using only these four
labels is perfect as shown in the bottom-right plot.

One key thing to note is that the active learning algorithm
still requires that we solve the system of equations (1).

In this paper, we will show that the O(M 3) cost can be
dramatically reduced to O(M). The storage requirements
(using the FGT as described in Section IV) are also reduced
from M2 to M .

The first thing to notice when trying to speed up the
algorithm is that equation (1) can be solved in O(M 2)
steps per iteration using the following fixed point updates:

y(t+1)
u = D−1

uu

[
Wuuy

(t)
u + Wulyl

]
.

This update is similar to the Jacobi and Gauss Seidel
iterations [5]. The problem with these strategies is that the
new estimate only depends on the previous estimate and,
hence, it might take too many iterations to converge. It
is well accepted in the numerical computation field that
Krylov methods [5], which make use of the entire history
of solutions, converge at a faster rate. We introduce these
methods in the following section.

III. KRYLOV SUBSPACE ITERATION

The intuition behind Krylov subspace methods is to use
the history of what we have already learned. We formulate
this intuition in terms of projecting an M -dimensional
problem into a lower dimensional subspace. Given a matrix
(Duu − Wuu) and a vector b , Wulyl, the associated
Krylov matrix is:

K = [b (Duu − Wuu)b (Duu − Wuu)2b . . .].

The Krylov subspaces are the spaces spanned by the
column vectors of this matrix.

In order to find a new estimate of y
(t)
u we could

project onto the Krylov subspace. However, K is a poorly
conditioned matrix. (As in the power method, (Duu −
Wuu)tb is converging to the eigenvector corresponding
to the largest eigenvalue of (Duu − Wuu).) We therefore
need to construct a well-conditioned orthogonal matrix
Q(t) = [q(1) · · ·q(t)] that spans the Krylov space. That is,
the leading t columns of K and Q span the same space. It
is not hard to show that this can be done, in Gram-Schmidt
fashion, using the following recurrence [5], [6]:

β(t)q(t+1) = (Duu −Wuu)q(t) −β(t−1)q(t−1) −α(t)q(t),

where β(t) is the normalizing constant at iteration t. Since
the q’s are orthonormal, multiplying both sides of our
recurrence yields an estimate

α(t) = q(t)T (Duu − Wuu)q(t).

This is essentially the Lanczos iteration, which produces
the augmented Schuur factorization

(Duu − Wuu)Q(t) = Q(t+1)H̃(t),

where H̃(t) is the tridiagonal Hessenberg matrix:

H̃(t) =

α(1) β(1) 0 · · · 0
β(1) α(2) β(2) · · · 0

...
...

...
...

...
0 · · · 0 β(t−1) α(t)

0 · · · 0 0 β(t)

.

The eigenvalues of the smaller (t + 1) × t Hessenberg
matrix approximate the eigenvalues of (Duu −Wuu) as t
increases.

To solve the system of equations (1), we adopt the
MINRES algorithm [5], [6]. We could use conjugate gra-
dients as our matrix is positive definite, but in order to
treat more general matrices (symmetric, but not necessarily
positive definite) in the future we use MINRES. At step t,
we approximate the solution by the vector in the Krylov
subspace y

(t)
u ∈ K(t) that minimizes the norm of the

residual: r(t) , b − (Duu − Wuu)y
(t)
u . Since y

(t)
u is

in the Krylov subspace, it can be written as a linear
combination of the columns of the Krylov matrix K(t). Our
problem therefore reduces to finding the vector c ∈ R

t that
minimizes

‖(Duu − Wuu)K(t)c − b‖.

As before, stability considerations force us to use the QR
decomposition of K(t). That is, instead of using a linear
combination of the columns of K(t), we use a linear
combination of the columns of Q(t). So our least squares
problem becomes

min
c

‖(Duu − Wuu)Q(t)c − b‖.

Since (Duu − Wuu)Q(t) = Q(t+1)H̃(t), we only need to
solve a problem of dimensions (t + 1) × t:

min
c

‖Q(t+1)H̃(t)c − b‖.

Keeping in mind that the columns of the projection matrix
Q are orthonormal, we can rewrite this least squares prob-
lem as minc ‖H̃(t)c − Q(t+1)T b‖. We start the iterations
with q(1) = b/‖b‖ and hence Q(t+1)T b = ‖b‖e1, where
e1 is the unit vector with a 1 in the first entry. The final
form of our least squares problem at iteration t is:

min
c

∥∥∥H̃(t)c − ‖b‖e1

∥∥∥ ,

with solution y
(t)
u = Q(t)c. The algorithm is shown in

Fig. 5. At each step, MINRES minimizes the norm of the

Initialization: β(0) = 0, q(0) = 0, q(1) = b/‖b‖

FOR t = 1, 2, 3, . . .

• v = (Duu − Wuu)q(t)

• αn = q(t)T v

• v = v − β(t−1)q(t−1) − α(t)q(t)

• βn = ‖v‖ and q(t+1) = v/βn

• Find c to minimize
∥∥∥H̃(t)c − ‖b‖e1

∥∥∥ and set

y
(t)
u = Q(t)c

Fig. 5. MINRES algorithm.

residual over all vectors y
(t)
u ∈ K(t). The least squares

problem of size (t + 1)× t to compute c can be solved in
O(t) steps using Givens rotations [5].

IV. THE FAST GAUSS TRANSFORM

The expensive step in the MINRES algorithm is the
operation v = (Duu − Wuu)q(t). This step requires that
we solve two O(M2) kernel estimates:

di =

M∑

j=1

1 exp

(
− 1

σ
‖xi − xj‖2

)

and

gi =

M∑

j=1

q
(t)
j exp

(
− 1

σ
‖xi − xj‖2

)

for i = 1, 2, . . . ,M . These expressions also appear when
computing the kernel discriminant (2). Both of these ex-
pressions can be written in the generic form:

fi =

M∑

j=1

fj exp

(
− 1

σ
‖xi − xj‖2

)
i = 1, 2, . . . ,M.

It is possible to reduce the storage and computational cost
to O(M) at the expense of a small specified error ε, say
10−6, using the fast Gauss transform (FGT) algorithm [10],
[11], [1]. This algorithm is an instance of more general
fast multipole methods for solving M -body interactions [9].
We present a brief overview of this algorithm subsequently
and direct the reader to [3] for a more detailed tutorial on
fast multipole methods and the fast Gauss transform. The
integration of Krylov methods and a simpler O(N log N)
version of the FGT has been previously studied in [2].

X X
X

1 2

3

_7 X

X

X

X
X C

4

5

X
_

B

6

Fig. 6. Illustration of the fast Gauss transform. The contribution
of points x1:3 in box B is summarized by a single Hermite
expansion about xB . This expansion is then translated to xC

and Taylor expanded to x4:7.

The intuition behind the FGT is illustrated by Fig. 6.
To evaluate the interaction between M points, we first
partition the space. Then instead of considering the indi-
vidual contribution of each point in a partition, we only
consider a single aggregated contribution at the centroid
of the partition. In this way, if there is a cluster of points
far away, this cluster can be interpreted as a single point
summarizing the contribution of all the points in the cluster.
As shown in Fig. 6 the partition could be a square grid.
This is acceptable if the problem is low dimensional, say
xk ∈ R

3. However, to attack larger dimensions one can
adopt clustering-based partitions as shown in [15].

More precisely, the FGT works by carrying out a Her-
mite expansion about the centroid in each partition and
then transferring the aggregated effect to other partitions
via a Taylor series expansion. Hence, at each source box B,
we expand the Gaussian field with a multivariate Hermite
series of p terms:

fB(x) =

NB∑

j=1

fj exp

(
1

σ
‖x − xj‖2

)

=
∑

α≤p

Aα(B)hα

(
x − xB√

σ

)
+ O(ε),

where α is a multidimensional index, hα(·) is a Hermite
basis function, NB is the number of points in partition B,
xB is the centroid of partition B and Aα(B) are the series
coefficients given by

Aα(B) =
1

α!

NB∑

j=1

qj

(
xj − xB√

σ

)α

.

We can precompute these Hermite expansions for all boxes
in O(pdN) operations using the original algorithm or
O(dpN) operations using the algorithm in [15], where d
is the dimension of x and p is the number of terms in the
expansion. The assumption of a single variance parameter
σ can be easily relaxed [15].

For each target box C, we transform the Hermite expan-
sions into a single Taylor expansion:

fi =
∑

B

NB∑

j=1

fj exp

(
1

σ
‖xi − xj‖2

)

=
∑

β≤p

Cβ

(
xi − xC√

σ

)β

+ O(ε),

where Cβ =
(−1)|β|

β!

∑

B

∑

α≤p

Aα(B)hα+β

(
xB − xC√

σ

)
.

Evaluating these Taylor series takes again O(dpN) oper-
ations. Further substantial computational gains can be ob-
tained by making use of the fact that Gaussian interactions
decay exponentially fast [15], [8]. The improvements in
[15] enable us to use the fast Gauss transform for up to
10 dimensions. For larger dimensions, we conjecture that
metric trees [13] and dual tree recursions [7] will result in
more efficient solutions.

V. EXPERIMENTS

In order to run the semi-supervised learning algorithm
on Aibo, we extended the CMU Tekkotsu application
available at http://www-2.cs.cmu.edu/∼tekkotsu/index.html.
Using the semi-supervised algorithms, Aibo learns new
objects and identifies them in different settings. The user
is able to train Aibo by interacting with the frame captured
by Aibo’s camera. The user teaches Aibo new objects by
highlighting some regions of the object and the background
image in the frame to provide positive and negative training
examples, as shown in Fig. 7 and Fig. 8. In this simple
setting, we use the 3D average colour of pixels in square

Fig. 7. By typing “ball”, as the name of a new object, in the
entry field and selecting “GO,” the application creates a new
classifier and opens up the “Learning Window”. In the “Learning
Window,” the user highlights some parts of the image and labels
the highlighted points by selecting “In Object” and “Not in
Object.” After labelling training examples, the user is able to open
“Object Detection Window” and observe how Aibo identifies the
object in the video stream.

patches as features. The sizes of the patches can be
modified for different levels of accuracy. Our focus thus
far has been on improving computational efficiency and
reducing storage requirements, but having accomplished
this, our algorithms will allow us to easily incorporate
richer features, such as SIFT [12].

As shown in Fig. 9, the system allows for the user to
create multiple object categories. When Aibo is “confused”,
that is it needs more data, it uses the interactive learning
component to prompt the user for labels on the laptop
interface as shown in Fig. 10. Here, the Aibo was trained to
recognize a red ball, but was not given labels for the dark
orange ring, which is close to the ball in colour space. Aibo
recognizes the ball without a problem but is confused about
the ring, so it prompts the user to enter labels for this new
object.

Fig. 8. Aibo is able to identify the object in different settings.

To demonstrate the efficiency of the MINRES algorithm
with the FGT (MINRES-FGT) over other approaches,

Fig. 9. Aibo can learn several objects and classify them at the
same time. In this picture, Aibo learns “book” as a new object
and identifies the book and ball.

Fig. 10. Interactive learning. Here Aibo was trained to recognize
the ball. As shown on the right hand image, Aibo recognizes the
ball without a problem (black patches), but it is confused about
a new object (ring) that is close to the ball in feature space. It
therefore automatically prompts the user to enter labels (using
the white patches) for this new object in the scene.

we compared the MINRES-FGT, MINRES, and NAIVE
O(M3) algorithms in Matlab using images with different
numbers of patches. Fig. 11 summarizes the resulting
training times: both MINRES and MINRES-FGT perform
dramatically faster even in small data sets with less than
50 points. The MINRES-FGT algorithm outperforms MIN-
RES in data sets with more than 2000 data points. Although
the error given by the error function in Section 2 is lower
in the naive method, MINRES and MINRES-FGT result in
less than 0.02 RMS error. Moreover, the difference between
the MINRES and MINRES-FGT estimates is less than
0.0001.

We also compared the algorithms directly on the Aibo
platform (implemented in C). Table I shows that for a
reasonably large training set of 960 patches, MINRES-
FGT is a factor of 10 times faster than MINRES, while
it becomes computationally prohibitive to run the naive
algorithms for more than 480 patches. Again, we empha-
size that MINRES-FGT has a storage requirement of M
instead of M2. Table II shows that the FGT also leads
to significant speed-ups in the kernel discriminant applied
to test set images. For reasonable grid sizes, say 4160 or
8320, MINRES-FGT is the only method that can provide
fast enough solutions for real-time interaction.

VI. CONCLUSION

In this paper, we presented powerful numerical algo-
rithms for semi-supervised and active learning that reduce
the computational cost from O(M 3) to O(M) and the stor-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

100

200

300

400

500

600

700

Data Set Size

Ti
m

e
(s

ec
)

NAIVE

MINRES
MINRES−FGT

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

50

100

150

200

250

Data Set Size

Ti
m

e
(s

ec
) MINRES

MINRES−FGT

Fig. 11. MINRES-FGT provides a dramatic improvement in
computational time as the data set increases in size. The top plot
compares the 3 methods, while the bottom plot provides a zoom
in view of the MINRES and MINRES-FGT methods.

age requirements from M2 to M . We hope that bringing
these techniques to the attention of the robotics community
will lead to faster, real-time solutions to other problems in
robotics. It is clear that the techniques are immediately
applicable to other problems such as image segmentation
[14], SLAM, Gaussian processes, dimensionality reduction
[4] and ranking problems [16]. Our experience shows that
efficient semi-supervised and active learning algorithms can
result in compelling interactive environments for entertain-
ment robotics. In the future, we plan to present results using
SIFT features [12] and a comparison between the FGT and
the dual tree recursion methods of [8].

ACKNOWLEDGEMENT

We would like to thank Ramani Duraiswami and Chen
Greif for insightful discussions and Eric Brochu for his
brilliant photography. We also thank Peter Carbonetto,
David Lowe and Robert Sim for improvements on this
manuscript.

REFERENCES

[1] B J C Baxter and G Roussos, A new error estimate of the fast Gauss
transform, SIAM Journal of Scientific Computing 24 (2002), no. 1,
257–259.

TABLE I
TRAINING SET TIME COMPARISON

M
Computational time (seconds)

Naive MINRES MINRES-FGT

60 0.521703 0.119514 0.312126

120 4.23732 0.250050 0.518589

240 78.7864 0.729464 0.791181

480 501.46 2.56246 1.165930

960 — 63.9487 2.02537

1920 — 497.59 3.97674

TABLE II
TEST SET TIME COMPARISON

N
Computational time (seconds)

Naive FGT

260 0.036083 0.035944

520 0.128507 0.113086

1040 0.458446 0.178275

2080 1.69306 0.321210

4160 6.62728 0.682747

8320 20.56953 0.858313

[2] R K Beatson, J B Cherrie, and C T Mouat, Fast fitting of radial
basis functions: Methods based on preconditioned GMRES iteration,
Advances in Computational Mathematics 11 (1999), 253–270.

[3] R K Beatson and L Greengard, A short course on fast multipole
methods, Multilevel Methods and Elliptic PDEs (M Ainsworth,
J Levesley, W Light, and M Marletta, eds.), Oxford University Press,
1997, pp. 1–37.

[4] M Belkin and P Niyogi, Laplacian eigenmaps for dimensionality
reduction and data representation, Neural Computation 15 (2003),
no. 6, 1373–1396.

[5] J W Demmel, Applied numerical linear algebra, SIAM, 1997.
[6] G H Golub and C F Van Loan, Matrix computations, third ed., Johns

Hopkins University Press, Baltimore, 1996.
[7] A G Gray and A W Moore, ‘N-Body’ problems in statistical

learning, NIPS, 2000, pp. 521–527.
[8] A G Gray and A W Moore, Rapid evaluation of multiple density

models, Artificial Iintelligence and Statistics, 2003.
[9] L Greengard and V Rokhlin, A fast algorithm for particle simula-

tions, Journal of Computational Physics 73 (1987), 325–348.
[10] L Greengard and J Strain, The fast Gauss transform, SIAM Journal

of Scientific Statistical Computing 12 (1991), no. 1, 79–94.
[11] L Greengard and X Sun, A new version of the Fast gauss transform,

Documenta Mathematica ICM (1998), no. 3, 575–584.
[12] D G Lowe, Object recognition from local scale-invariant features,

ICCV, 1999.
[13] A W Moore, The Anchors Hierarchy: Using the triangle inequality

to survive high dimensional data, Uncertainty in Artificial Intelli-
gence, AAAI Press, 2000, pp. 397–405.

[14] J Shi and J Malik, Normalized cuts and image segmentation, IEEE
Conference on Computer Vision and Pattern Recognition, 1997,
pp. 731–737.

[15] C Yang, R Duraiswami, N A Gumerov, and L S Davis, Improved fast
Gauss transform and efficient kernel density estimation, International
Conference on Computer Vision (Nice), 2003.

[16] D Zhou, J Weston, A Gretton, O Bousquet, and B Scholkopf,
Ranking on data manifolds, NIPS, 2004.

[17] X Zhu, J Lafferty, and Z Ghahramani, Combining active learning
and semi-supervised learning using Gaussian fields and harmonic
functions, ICML, 2003, pp. 58–65.

[18] , Semi-supervised learning using Gaussian fields and har-
monic functions, ICML, 2003, pp. 912–919.

