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Abstract

We propose a new problem formulation which
is similar to, but more informative than, the bi-
nary multiple-instance learning problem. In this
setting, we are given groups of instances (de-
scribed by feature vectors) along with estimates
of the fraction of positively-labeled instances per
group. The task is to learn aninstance levelclas-
sifier from this information. That is, we are try-
ing to estimate the unknown binary labels of in-
dividuals from knowledge of group statistics. We
propose a principled probabilistic model to solve
this problem that accounts for uncertainty in the
parameters and in the unknown individual labels.
This model is trained with an efficient MCMC
algorithm. Its performance is demonstrated on
both synthetic and real-world data arising in gen-
eral object recognition.

1 Introduction

Learning models of the relationship between attributes of
individuals and the decisions they make is relevant in many
contexts. For example, based on factors such as age, edu-
cation, religion and education it could be of interest to learn
the probability of an individual

• voting for the ‘purple’ party,
• buying ‘Brand X’ dish-washing detergent,
• moving to another city within the next 5 years.

Having such models allows us to gain an understanding of
the motivations behind those decisions, which could for in-
stance help to inform political or marketing strategies.

Unfortunately, it is extremely rare that we have direct in-
formation on individual decisions. An expensive solution
is to conduct surveys to gather this data, which is not al-
ways feasible. In this paper, we propose the use ofindirect
information about the individual decisions, which is often
available in the form of group statistics. For instance, we
might know that 73% of the people in districtA voted ‘pur-

ple’, but only 25% of the inhabitants of districtB and 85%
in districtC.

We propose an approach in whichgroup statistics in con-
junction with pre-existing information about the individu-
als within the groups are used to learn models relatingindi-
vidual propertiesto individual decisions. One good exam-
ple of such pre-existing information is the publicly acces-
sible PUMS (public use microdata sample) data [16] made
available by the U.S. Census Bureau, which provides de-
tailed (albeit anonymized) information about individuals in
each census tract. It includes data about age, education, in-
come, health and many other continuous and discrete prop-
erties of the individuals.

To make our setting more precise, our probabilistic model
assumes that individuals can be described by feature vec-
tors. Each individual has an unknown binary label (i.e., the
decision in our above example) and, for each group, we
are given an estimate of the fraction of individuals with a
positive label in the group.

The proposed learning approach is not limited to analyzing
human behavior; it also applies to other concept learning
tasks arising in artificial intelligence. We provide an exam-
ple in the context of object class recognition.

The learning problem we are facing in this setting is closely
related to the multiple instance (MI) learning problem,
which was first introduced by Dietterich et al. in [3]. In the
classical MI formulation, binary labels are given for groups
of individuals. The binary label of a group is taken to be the
disjunction of the unknown individual binary labels. That
is, a positive group label indicates thatat least oneof the in-
dividuals in the group has a positive label while a negative
label implies thatall individuals in the group have a neg-
ative label. Since it was first introduced, this problem has
received a lot of attention, and many different algorithms
have been proposed for learning in the MI setting (for ex-
ample [11, 19, 1, 4]).

Several researchers have proposed generalizations of the
MI formulation. In [17] and [14] the assumed mapping
from individual binary labels to the group label is changed



from the logical conjunction used in the classical MI set-
ting to more general threshold functions. A positive group
label then indicates that the number of positive instances
in the group lies within a certain range. This restriction on
the number of positive individual labels in a positive group
is similar in spirit to the estimate of the fraction of positive
instances in our setting. However, a major difference is that
in [17, 14] there is one global threshold or range, whereas
we have a different estimate of the ratio of positives for
each group and therefor significantly more information.

Most of the published research on MI learning has focused
on learning classifiers forgroups. In [9] a fully probabilis-
tic approach for learninginstance level classifiersfrom MI
data is presented. Here we adapt the model and learning
algorithm presented in [9] to the more informative setting,
in which a real valuem ∈ [0, 1] indicating the fraction of
individuals with a positive label is provided for each group.
To the best of our knowledge, there has not been any previ-
ously published work on learning in this setting.

2 Probabilistic classification

Our goal is to learn a probabilistic model of the relationship
between properties of individuals and their binary labels.
The conditional probability of interest isPr(y = 1|x,D),
wherex is the feature vector describing an individual,y is
the binary label andD is the given training data. In or-
der to represent this probability distribution, we adopt a
parametrized probabilistic modelPr(y = 1|x,θ), where
θ represents the set of model parameters. Instead of find-
ing the one set of parametersθML which best matches the
given training data, we take the more principled Bayesian
approach and integrate out the uncertainty in the parame-
ters

Pr(y = 1|x,D) =
∫

Pr(y = 1|x,θ) p(θ| D) dθ. (1)

This marginalization approach is more robust than the max-
imum likelihood method because the posterior distribution
p(θ| D) is highly multi-modal in our setting.

In Section 3, we first explain our probabilistic model. Sec-
tion 4 describes the learning algorithm used to compute the
posterior distributionp(θ| D) which then allows us to per-
form probabilistic classification using Equation (1). In Sec-
tion 5, we present results on both synthetic and real-world
data before we conclude in Section 6.

3 Probabilistic model

Our hierarchical probabilistic model is shown in Figure 1.
We describe its components subsequently.

The predictive distribution is represented using a real val-
ued functionf with parametersθ = {β,γ} whose output
is mapped to a probability as follows:

Pr(y = 1|x,β,γ) = Φ(f(x,β,γ)), (2)
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Figure 1: The full graphical model using plate notation. Ele-
ments in the outer plate are instantiated for each of theG groups
while variables in the inner plate are instantiated for theng indi-
viduals in a group. The observations are the individual featuresx
and the estimate of the ratio of positives per groupm. z denotes
the latent output of a kernel machine with coefficientsβ and ker-
nel selection variablesγ for input x. This output is mapped to a
discrete classification labely. The hyper-parametersτ andδ2 reg-
ularize the model. Finally,λ denotes the unknown actual fraction
of positives per group. Solid arrows indicate probabilistic depen-
dencies while dashed arrows represent deterministic relationships.

whereΦ is the cumulative distribution function (cdf) of
the univariate Normal distributionN (0, 1). Φ provides a
continuous and monotonic mapping fromR to the range
[0, 1], thus producing a valid probability. The functionΦ
in this context is called theprobit link. Often, thelogistic
link function is used instead, however the probit link is an
equally valid choice and its connection to the standard uni-
variate normal distribution will lead to an efficient sampler
for our model.

Following Tam, Doucet and Kotagiri [15], the unknown
function f is represented with a sparse kernel ma-
chine with basis functions centered at the feature vectors
{x1, . . . ,xN} of instances from allG groups in the given
training data:

f(x,β,γ) =
N∑

i=1

γiβiK(x,xi). (3)

HereK is a kernel function, for example a Gaussian ker-
nel K(x,xi) = e−σ‖x−xi‖2 . β ∈ RN is aN -dimensional
vector of kernel weights andγ ∈ {0, 1}N aN -dimensional
kernel selection vector. For an instance with indexi in the
training data set,γi controls whether the kernel basis func-
tion located at the corresponding point in feature space is
active, andβi controls its weight. In the semi-parametric
modeling approach of Equation (3), features are mapped to
a high-dimensional nonlinear kernel manifold. Here, there
are as many parameters as data instances. However, the



information in the prior and data will force most of the ker-
nel selection variablesγi to be zero and, hence, result in a
much lower dimensional manifold.

During training, Equation (2) needs to be evaluated only at
the N training data pointsX = {x1, . . . ,xN}. It is then
convenient to express Equation (2) using matrix notation

Pr(yi = 1|β,γ) = Φ(Ψγi βγ) (4)

whereΨ ∈ RN×N is the Gram matrix with entriesΨi,j =
K(xi, xj). Ψγ is a reduced version ofΨ, containing only
the columns corresponding to active kernels (γi = 1) and
Ψγj is thej-th row of this matrix.βγ is the reduced version
of β containing only the coefficients of the active kernels.
In the following we never actually use the full vectorβ and
for notational simplicity will therefore drop the subscript
and from here on useβ to meanβγ .

We follow a hierarchical Bayesian strategy, where the un-
known parametersβ and γ are drawn from appropriate
prior distributions. We place a regularized maximum en-
tropy g-prior [18] on the regression coefficients

p(β|γ, δ2) = N
(
0, δ2(ΨT

γ Ψγ)−1
)

(5)

and assign an inverse Gamma prior to the regularization
parameterδ2

p(δ2) = IG
(µ

2
,
ν

2

)
(6)

with fixed hyper-parametersµ, ν typically set to near-
uninformative values (for exampleµ = ν = 1). Eachγi

follows a Bernoulli distribution with success rateτ ∈ [0, 1],
which in turn follows a Beta distribution with parameters
a, b ≥ 1. This allows the model to adapt to the data while
giving the user some control over the desired fraction of
active kernels. By integrating outτ we get:

p(γ) =
∫

p(γ|τ)p(τ)dτ =
Γ(k + a) Γ(N − k + b)

Γ(N + a + b)
,

(7)
wherek =

∑
i γi is the number of active kernels, i.e. the

number of non zero elements inγ.

The intuition behind this hierarchical Bayesian approach
is that by increasing the levels of inference, we can make
the higher level priors increasingly more diffuse (vague).
That is, we avoid having to specify sensitive parameters
and, therefore, are more likely to obtain results that are in-
dependent of parameter tuning.

To facilitate efficient computation, we employ the data aug-
mentation trick first introduced by Nobel laureate Daniel
McFadden [12], which in the context of this specific model
was also used in [15]. The probabilistic model discussed so
far is augmented by introducing the continuous latent vari-
ablez ∈ R, which can be seen as a continuous version of
the binary labely satisfyingy = sign(z). It then follows,
from the choice of the probit link in Equation (2), that in or-
der to keep the marginal distribution of the other variables

invariant,z has to be distributed as

z ∼ N (f(x,β,γ), 1)

The joint distribution for the full set of augmentation vari-
ablesZ = {z1, . . . , zN} for theN instances in the training
data is then

p(Z|β,γ,X) = N (Ψγ βγ , IN ), (8)

whereIN is theN -dimensional identity matrix. It will be
shown in Section 4 that conditioning onZ makes the poste-
rior of the high-dimensional coefficientsβ a Gaussian dis-
tribution that can be obtained analytically. Hence this aug-
mentation strategy replaces the problem of sampling from
a high dimensional, highly correlated, distribution with the
much simpler problem of sampling lower dimensional vari-
ables.

3.1 Bringing in the evidence

The model discussed up to this point is nearly identical with
the one presented in [15], where it is used in the super-
vised classification context, in which the individual labels
Y = {y1, . . . , yN} are given for the training instances. In
[9] we adapted the model to the multiple instance setting.
Here, instead of a binary label, we are givenmj ∈ [0, 1], an
estimate of the fraction of positive instances for each group
in the training data. Additionally, we have a parameterχ
quantifying the confidence in these guesses. Higher values
indicate higher confidence, whileχ = 0 indicates a com-
plete lack of confidence. Our training data is thus given
by

D = {X,M , χ} = {Xg1 , . . . ,XgG
,m1, . . . ,mG, χ},

whereXgj
is the set of feature vectors describing the in-

stances in groupj. Note that while we use a global confi-
dence parameterχ here, it is straightforward to modify our
model and training algorithm to deal with separate confi-
dence estimates for each group, should they be available.
The given estimatemj for a groupj is modeled as a noisy
measurement of the unknown actual ratio of positives (de-
noted λj) in that group. This models measurement er-
rors (such as miscounts of election votes) as well as other
sources of uncertainty. The valueλj is deterministically
computed fromZgj , the set of augmentation variables for
the instances in groupj

λj =
1

ngj

∑
i∈gj

I(0,∞)(zi), (9)

wherengj is the number of instances in groupj. Note that
we implicitely integrated outy in Equation 9. The Beta
distribution was chosen to model the measurement process
producing the estimatemj . Its two parameters are deter-
ministically computed fromχ andλj such that the mode of



the distribution is located atλj whileχ controls the peaked-
ness.

p(mj |λj , χ) = B
(
χλj + 1 , χ(1− λj) + 1

)
∝ mj

χλj (1−mj)χ(1−λj).

4 Computation

In order to perform probabilistic inference on individuals,
we need a way to evaluate Equation (1). However, for the
model discussed in the previous section, the integral in-
volved turns out to be intractable.

Instead, we use Monte Carlo simulation to generate sam-
ples{θ(1), . . . ,θ(T )} from the posterior distribution of the
model parameters

θ(t) ∼ p(θ|D)

which allows us to approximate Equation (1) as

Pr(y = 1|x,D) ≈ 1
T

T∑
t=1

Pr(y = 1|x,θ(t)). (10)

This approximation converges to the true solution by the
Strong Law of Large Numbers.

Although we are only interested inθ(t) = {β(t),γ(t)}, in-
tegrating out all other latent variables turns out to be in-
tractable. Instead, we sample from the full joint posterior
p(β,γ,Z, δ2|D) and then marginalizeZ andδ2 by simply
ignoring these components in the generated samples. Note
thatτ was already integrated out in Equation (7) and bothλ
andy follow deterministically fromZ and thus do not need
to be sampled.

Gibbs sampling [6] is a well known MCMC technique in
which the individual variables are sampled in turn from
their full conditional distributions. As in [15], we are us-
ing ablockedGibbs sampler, in which{γ,β} are sampled
together as one block and{δ2,Z} as a second block. Sam-
pling variables jointly in blocks results in a sampler with
much better mixing probabilities by reducing the correla-
tion amongst samples [10, 7].

The joint conditional distribution for{γ,β} factors as

p(β,γ|δ2,Z,X) = p(β|γ, δ2,Z,X)p(γ|δ2,Z,X).

It should be noted by looking at the graphical model in Fig-
ure 1 thatδ2 andZ are conditionally independent, givenβ
andγ. We use this fact when sampling{δ2,Z} as

p(δ2,Z|β,γ,X,m) = p(δ2|β,γ)p(Z|γ,β,X,M).

While the observationmj introduces conditional depen-
dencies amongst the augmentation variablesZgj in group

1 initialize γ(0), δ2 (0),Z(0)

2 for t = 1 to T:
3 Sample:

4 γ(t) ∼ p(γ|δ2 (t−1),Z(t−1),X)

5 β(t) ∼ p(β|γ(t), δ2 (t−1),Z(t−1),X)

6 δ2(t) ∼ p(δ2|β(t), γ(t))
7 for j = 1 to G:

8 Z
(t)
gj ∼ p(Zgj |γ(t), β(t),Xgj , mj)

Listing 1: Blocked Gibbs sampler for sampling from the
joint posterior distributionp(β,γ,Z, δ2|D).

j, the augmentation variables of different groups are inde-
pendent

p(Z|γ,β,X,M) =
G∏

j=1

p(Zgj
|γ,β,Xgj

,mj).

The overall blocked Gibbs sampler is given in Listing 1.
In the following, we provide the conditional distributions
involved (lines 4 to 8) and outline the techniques for sam-
pling from them.

Sampling theN -dimensional binary kernel selection vector
γ is the most involved and computational intensive part of
the overall Gibbs sampler. Its conditional distribution is

p(γ|δ2,Z,X) ∝(1 + δ2)−
K
2 e

1
2

(
δ2

1+δ2 ZT Ψγ(ΨT
γ Ψγ)−1ΨT

γ ZT
)

× Γ(K + a) Γ(N −K + b)
Γ(N + a + b)

. (11)

We use an efficient Metropolis Hastings within Gibbs sam-
pler very similar to the one described in [15] for sampling
from this distribution. A detailed description of this sam-
pler and the full derivation of Equation (11) can be found
in [8].

The full conditional distribution for the kernel weightsβ
follows from Bayes rule:

p(β|γ, δ2,Z,X) ∝ p(Z|β,γ,X)p(β|γ, δ2).

Thanks to the data augmentation trick, both the likelihood
and prior (Equations (8) and (5)) are Normal distributions.
Therefore the posterior can be computed analytically and
efficiently sampled from, as

β ∼ N
(

δ2

1 + δ2
(ΨT

γ Ψγ)−1ΨT
γ Z ,

δ2

1 + δ2
(ΨT

γ Ψγ)−1

)
Similarly, for the conditional distribution of the regulariza-
tion parameterδ2 we have

p(δ2|β,γ) ∝ p(β|γ, δ2)p(δ2).

Since the inverse gamma distribution ofp(δ2) is conjugate
to the Normal distribution ofp(β|γ, δ2) (Equations (5) and



(6)), the posterior can be computed analytically and sam-
pled from using a standard inverse gamma sampler

δ2 ∼ IG
(

1
2
(
µ + K + 1

)
,
1
2
(
ν + ‖Ψγβ‖2

))
.

The joint conditional distribution of the augmentation vari-
ablesZgj for the instances in groupj has the form

p(Zgj |mj ,Xgj ,β,γ) ∝ p(mj |Zgj )p(Zgj |Xgj ,β,γ)
= B(χλj + 1 , χ(1− λj) + 1)

×
∏
i∈gj

p(zi|xi,β,γ),

where λj is computed fromZgj using Equation (9).
This posterior distribution is ang-dimensional multivariate
Gaussian, which is scaled by different constants in different
orthants of the space. The orthants which correspond to the
guessed fraction of positives,mj , will have larger scaling
factors than those that do not. Since the prior and likelihood
do not combine, we cannot directly sample from this distri-
bution. Instead we use a Metropolis within Gibbs sampler
with an isotropic Normal distribution as proposal. That is,
a new set of candidate valuesZ′gj

is generated based on the

previous sampleZ(t)
gj using

Z′gj
∼ q
(
Z(t)

gj
,Z′gj

)
= N

(
Z(t)

gj
, c2 I

)
,

wherec controls the variance of the proposal. The proposal
is accepted with acceptance rate

A = min

(
1,

p(Z′gj
|mj ,Xgj ,β,γ)

p(Z(t)
gj |mj ,Xgj

,β,γ)

)

We use a value ofc = 2.4 n
− 1

2
gj for the proposal variance,

which was shown to be optimal for sampling from the unit
variance multivariate normal distribution [5]. While this
only implies optimality for the limiting case ofχ = 0, this
proposal distribution does result in reasonable acceptance
rates in practice.

In the special casesmj = 1 andmj = 0 it follows from
the properties of the Beta distribution thatλj = mj . As a
consequence, allzi for instances in the group are enforced
to be positive (resp. negative) formj = 1 (resp.mj = 0)
and are sampled independently from truncated univariate
Normal distributions as described in [9]. A value ofmj =
0 thus is equivalent to a negative group label in the multiple
instance setting.

5 Experiments

We demonstrate the performance of our proposed prob-
abilistic model and training algorithm on both synthetic
and real-world data. In all these experiments we actually
know the binary labels of the individual instances and use

them for evaluating the learned probabilistic classifiers. We
would like to stress however, that our learning algorithm
doesnot have access to these labels but is only given the
fraction of positives per group (or an estimate thereof).

5.1 Synthetic data

In our first experiment we tested our proposed approach
on the simple synthetic dataset shown in Figure 2(a). In
this example, the individuals are described by 2D feature
vectors. The dataset consists of only 3 groups, the statistics
of which are given in Table 1.

A B C
No. of instancesngj 19 16 20
Positive fractionmj 0.73 0.25 0.85

Table 1:Group statistics for the dataset in Figure 2(a).

Note that each of the groups contains a mixture of positive
and negative instances, which is typical for many practical
applications. In an election, for example, it is extremely
unlikely that everybody votes identically in a district. In
the multiple instance framework, each group would hence
have a positive label and this MI data thus would thus be
uninformative when trying to infer the labels of individuals.

Using the MCMC algorithm described in Section 4, we
generated 1000 samples fromPr(θ|D) after a burn in pe-
riod of 1000 simulation steps. We chose a Gaussian ker-
nel, uninformative hyper-parameter valuesa = b = µ =
ν = 1.0 and a confidence value ofχ = 1000. The run
time for the simulation was 6 seconds on a 2.6 Ghz Pen-
tium 4. Figure 2(b) shows the learned predictive distribu-
tion Pr(y = 1|x,D) evaluated using Equation (10) and the
generated samples. The distribution correctly assigns high
probability to regions of the feature space containing pre-
dominantly positive instances. The flexibility of our semi-
parametric model allows to recover the non-linear decision
manifold in this example. At the same time, the hierar-
chical priors regularize the solution and prevent excessive
complexity. The computed solution is fairly sparse with on
average 15 active kernels.

In a second experiment shown in Figure 3 we generated
a synthetic 2D dataset, in which we actually have a large
number of groups with exclusively negative instances and
a small number of groups with both positive and negative
instances. In this example, the positive and negative in-
stances are not nicely separated in the feature space. In-
stead, a few positive instances are embedded in a large dif-
fuse mass of negatives as shown in Figure 3(a). This prop-
erty is typical of many real-world concept learning prob-
lems in the multiple instance setting. Figure 3(b) visual-
izes the semi-supervised information provided by the bi-
nary group labels. The predictive distribution learned from
this multiple instance data using the approach described in
[9] with a Gaussian kernel is shown in Figure 3(c). Fig-



(a) Synthetic dataset consisting of 2D feature vectors be-
longing to 3 groups (A, B and C). Each instance has a
positive (bold blue letters) or negative (red italicized) label.

(b) The predictive distributionPr(y = 1|x,D) learned by
our approach for the data set shown in (a). The location
of the positive (blue triangles) and negative (red circles) in-
stances are shown superimposed.

Figure 2: Experiment on a small synthetic dataset with 3 groups of 2D instances. Our learning algorithm learned the predictive
distribution shown in (b) from the location of the instances in the 3 groups shown in (a) and the group statistics given in Table 1.Without
knowledge of the instance labelsit managed to reconstruct a predictive distribution which correctly assigns high probability to regions
of the feature space containing predominantly positive instances.

ure 3(d) on the other hand shows the distribution learned by
the approach described in this paper (with the same Gaus-
sian kernel) when additionally the fractions of positivesmj

were provided for all groups. Clearly, the additional infor-
mation helped to learn a much improved predictive distri-
bution in which the cluster of positive instances is nicely
reconstructed.

5.2 Learning object recognition models from
annotated images

Finally, we explore the performance of the proposed ap-
proach when applied to the task of learning models for ob-
ject class recognition from images with annotations. Our
training data in this experiment consists of 200 annotated
images from the Corel database. Each image is segmented
into on average about 10 image regions using NCuts [13]
and a feature vector describing each region is computed
(for more details see [8, 9]). The goal is to learn a proba-
bilistic image region classifierfor one annotation word/ob-
ject class at a time. Consider for example the object class
‘fox’. Such a classifier allows us to label individual im-
age regions as ‘fox’ or ‘not fox,’ making it possible to not
only detect but also locate a fox in an image. Learning
such a classifier from annotated images constitutes a multi-
ple instance learning problem, in which images are treated
as groups of image regions. The binary labels of the im-

age regions (does an image region show a fox or not?) are
generally unknown, but the binary labels of whole images
are provided by the annotations. This learning problem is
similar to the synthetic dataset in Figure 3 in that positive
and negative instances can not be expected to be neatly sep-
arated in the feature space. Nevertheless, the probabilistic
MI learning approach proposed in [9], managed to learn
classifiers from this data, which performed quite well.

Even though in this setting we do not know which fraction
of the image regions in a given ‘fox’ image actually show a
fox, we can make an educated guess based on the number
of image regions and the number of words in the image’s
annotation: We work from the simplifying assumption that
the regions in an image are equally distributed amongst the
image’s annotation words. That is, for an image where the
word ‘fox’ appears in the annotation as one ofw words,
we choose the estimate of the fraction of positive image re-
gions to bemj = 1

w . Of course this only provides us with
a crude estimate of the real fraction of positives. As the
results in Figure 4 demonstrate, using these guessed frac-
tions of positives in the approach presented in this paper
resulted in improved classification performance for most
object categories when compared to the classifiers learned
from MI data. The additional information also seems to
have the effect of reducing the variance across runs. Both
learning algorithms in this comparison were run with the
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(a) Labeled instances in a synthetic dataset with 600 2D in-
stances. Positive (blue triangles) and negative instances (red
circles) were generated from 2 Gaussians. The two classes
are not nicely separated in feature space but a cluster of pos-
itive instances is embedded in a large diffuse mass of nega-
tives.

−3 −2 −1 0 1 2 3 4 5 6
−4

−2

0

2

4

6

8

(b) The instances are arranged into 75 groups of 8 instances
each. This figure shows the semi-supervised information
provided by the binary group labels in the MI setting. For
the 62 negative groups, all instances are known to be neg-
ative (red circles). The instances in the 13 positive groups
can be either positive or negative (black dots).

(c) The predictive distribution learned from binary group la-
bels using the MI learning algorithm proposed in [9]. The
locations of the labeled training data instances are superim-
posed. The learned distribution does not quite manage to re-
construct the positive cluster which indicates that the binary
group labels do not provide sufficient information about the
individual instance labels.

(d) The predictive distribution learned using the approach
described in this paper when the fractions of positivesmj

for each group are given. A confidence value ofχ = 1000
was used. The additional information clearly helps to recon-
struct a better predictive distribution in this case. The pos-
itive cluster is nicely separated from the surrounding nega-
tive instances.

Figure 3: Experiment on a synthetic 2D data set demonstrating the benefit of using information about the fractions of positives as
compared to binary group labels. In the synthetic data set used here most of the groups contain exclusively negative instances (Figures
(a)(b)). The binary group labels given in multiple instance learning do not provide sufficient information about the individual instance
labels in this case, as can be seen in (c). If, on the other hand, for each group, the fraction of positive instances in the group is known, a
good probabilistic classifier can be learned from this information using the approach described in this paper as shown in (d).



Figure 4:Probabilistic image region classifiers were learned for
different object classes/annotation words from a set of 200 anno-
tated images with in total 2070 image regions. The chart com-
pares the performance of classifiers learned from binary group
labels using the approach described in [9] with classifiers learned
from guessed fractions of positive regions per image using the ap-
proach presented in this paper. The classification performance is
measured using AUC (area under the receiver operator curve) on
a test set of about 1000 manually labeled image regions. AUC
is a widely recognized measure for comparing the performance
of probabilistic classifiers independent of a fixed decision thresh-
olds [2]. A value of 1 indicates perfect classification performance
while 0.5 corresponds to random guessing. The columns display
the mean AUC value averaged across 10 runs while the error bars
show 1 standard deviation. Although the fractions of positive in-
stances are estimated based on a rather crude assumption and thus
tend to not be very accurate, they still lead to improved proba-
bilistic classifiers for most object classes.

same hyper-parameters and sigmoidal kernel. 10 000 sam-
ples were collected after a 10 000 step burn in period which
took between 5-10 minutes (depending on the object cate-
gory) with both approaches.

6 Conclusion

We have introduced a novel problem formulation with
relevant real-world applications in social sciences, demo-
graphic analysis and marketing research as well as cog-
nitive vision. In this setting we take advantage of group
statistics to infer information about the individuals in the
groups.

We developed a principled probabilistic model which fully
accounts for the uncertainty in the binary labels of indi-
viduals. It has significant modeling power due to a semi-
parametric representation while achieving sparsity using a
hierarchical prior. An efficient MCMC sampler for training
this model was presented.

The problem formulation we introduce can be seen as a
more informative variant of the multiple instance learning
problem, and we verify on synthetic and real world data
that our learning approach effectively leverages this advan-
tage into better probabilistic classifiers. Also, we demon-
strated our ability to learn complex predictive distributions
on individuals from the given group statistics.
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