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Abstract

We propose a new problem formulation which
is similar to, but more informative than, the bi-
nary multiple-instance learning problem. In this
setting, we are given groups of instances (de-
scribed by feature vectors) along with estimates
of the fraction of positively-labeled instances per
group. The task is to learn amstance levetlas-
sifier from this information. That is, we are try-
ing to estimate the unknown binary labels of in-
dividuals from knowledge of group statistics. We
propose a principled probabilistic model to solve
this problem that accounts for uncertainty in the
parameters and in the unknown individual labels.
This model is trained with an efficient MCMC
algorithm. Its performance is demonstrated on
both synthetic and real-world data arising in gen-
eral object recognition.

Introduction

ple’, but only 25% of the inhabitants of distri&t and 85%
in district C.

We propose an approach in whighoup statistics in con-
junction with pre-existing information about the individu-
als within the groups are used to learn models reldtidg
vidual propertiedo individual decisionsOne good exam-

ple of such pre-existing information is the publicly acces-
sible PUMS (public use microdata sample) data [16] made
available by the U.S. Census Bureau, which provides de-
tailed (albeit anonymized) information about individuals in
each census tract. It includes data about age, education, in-
come, health and many other continuous and discrete prop-
erties of the individuals.

To make our setting more precise, our probabilistic model
assumes that individuals can be described by feature vec-
tors. Each individual has an unknown binary label (i.e., the
decision in our above example) and, for each group, we
are given an estimate of the fraction of individuals with a
positive label in the group.

The proposed learning approach is not limited to analyzing
human behavior; it also applies to other concept learning

Learning models of the relationship between attributes ofasks arising in artificial intelligence. We provide an exam-
individuals and the decisions they make is relevant in manyle in the context of object class recognition.
Cor?‘eth-l_F,Of exacrjnp(lje, based on fﬁjcgors fs_uch as agle, 0§ learning problem we are facing in this setting is closely
cation, religion and education It could be of interestto leaMyg|ateq to the multiple instance (MI) learning problem,
the probability of an individual

e voting for the ‘purple’ party,
e buying ‘Brand X’ dish-washing detergent,
e moving to another city within the next 5 years.

which was first introduced by Dietterich et al. in [3]. In the

classical Ml formulation, binary labels are given for groups
of individuals. The binary label of a group is taken to be the
disjunction of the unknown individual binary labels. That
is, a positive group label indicates tlteast onef the in-

Having such models allows us to gain an understanding ofjiiquals in the group has a positive label while a negative
the motivations behind those decisions, which could for iNapel implies thall individuals in the group have a neg-

stance help to inform political or marketing strategies.

ative label. Since it was first introduced, this problem has

Unfortunately, it is extremely rare that we have direct in-received a lot of attention, and many different algorithms
formation on individual decisions. An expensive solution have been proposed for learning in the Ml setting (for ex-
is to conduct surveys to gather this data, which is not alample [11, 19, 1, 4]).

ways feasible. In this paper, we propose the usadifect

information about the individual decisions, which is often MI formulation.

Several researchers have proposed generalizations of the
In [17] and [14] the assumed mapping

available in the form of group statistics. For instance, Wegom individual binary labels to the group label is changed
might know that 73% of the people in distridtvoted ‘pur-



from the logical conjunction used in the classical Ml set-
ting to more general threshold functions. A positive group

label then indicates that the number of positive instances

in the group lies within a certain range. This restriction on | 0 0
the number of positive individual labels in a positive group
is similar in spirit to the estimate of the fraction of positive @<
instances in our setting. However, a major difference is that

in [17, 14] there is one global threshold or range, whereas v

we have a different estimate of the ratio of positives for
each group and therefor significantly more information.

Most of the published research on Ml learning has focused v
on learning classifiers fagroups In [9] a fully probabilis-
tic approach for learninmstance level classifiefsom Ml
data is presented. Here we adapt the model and learning —

algorithm presented in [9] to the more informative setting,
in which a real valuen € [0, 1] indicating the fraction of G

individuals with a positive label is provided for each group.

To the best of our knowledge, there has not been any prevfFigure 1: The full graphical model using plate notation. Ele-

: PR ; ; ments in the outer plate are instantiated for each of¥tgroups
ously published work on learning in this setting. while variables in the inner plate are instantiated forst@endi-

A g . viduals in a group. The observations are the individual features
2 Probabilistic classification and the estimate of the ratio of positives per greupz denotes
the latent output of a kernel machine with coefficiefitand ker-

Our goal is to learn a probabilistic model of the relationshipnel selection variables for input x. This output is mapped to a

between properties of individuals and their binary Iabtalls.O':SC,rete ﬁ'aSSigc?tigh '6}|l3y§|dThe hyp%r-pareknmetemndaffreg-.

o o - - _ ularize the model. Finally\ denotes the unknown actual fraction
T?]e Con.d't'ﬁnil probability ofdlnter_e;t Br(y.*d_l |_)(;’ Di)’ of po§itives_per group. Solid arrows indicate pr_oba_bilistic.depe_n-
wherex Is the feature vector describing an individugls  dencies while dashed arrows represent deterministic relationships.
the binary label and® is the given training data. In or-

der to represent this probability distribution, we adopt a . _ o _
parametrized probabilistic modétr(y = 1|x, 8), where where ® is the cumulative distribution function (cdf) of
6 represents the set of model parameters. Instead of findhe univariate Normal distributiof/(0, 1). ¢ provides a
ing the one set of parametes;;, which best matches the Ccontinuous and monotonic mapping frdinto the range
given training data, we take the more principled Bayesiarl0; 1], thus producing a valid probability. The functidn

approach and integrate out the uncertainty in the parameD this context is called thprobit link. Often, thelogistic
ters link function is used instead, however the probit link is an

equally valid choice and its connection to the standard uni-
Pr(y =1|x,D) = /Pr(y =1/x,0)p(0|D)d6. (1) variate normal distribution will lead to an efficient sampler
for our model.
This marginalization approach is more robust than the max:

imum likelihood method because the posterior distributionFOHO\.NIng T"?‘m’ Doucet and K.Otag'” [15], the unknown
. . ) ) function f is represented with a sparse kernel ma-
p(0] D) is highly multi-modal in our setting.

chine with basis functions centered at the feature vectors
In Section 3, we first explain our probabilistic model. Sec-{x;,...,xx} of instances from alZ groups in the given
tion 4 describes the learning algorithm used to compute thé&raining data:

posterior distributiorp( 8| D) which then allows us to per-
form probabilistic classification using Equation (1). In Sec-
tion 5, we present results on both synthetic and real-world
data before we conclude in Section 6.

N
F66,8,7) = D 1Bk (x,%,). 3)
=1

Here K is a kernel function, for example a Gaussian ker-
3 Probabilistic model nel K (x,x;) = e~l*=xl” 3 ¢ RV is a N-dimensional
vector of kernel weights angl € {0, 1}V a N-dimensional
Our hierarchical probabilistic model is shown in Figure 1. kernel selection vector. For an instance with indéx the
We describe its components subsequently. training data sety; controls whether the kernel basis func-
I_tion located at the corresponding point in feature space is
active, andg; controls its weight. In the semi-parametric
modeling approach of Equation (3), features are mapped to
a high-dimensional nonlinear kernel manifold. Here, there
Pr(y = 1x,8,v) = (f(x,8,7)), (2) are as many parameters as data instances. However, the

The predictive distribution is represented using a real va
ued functionf with parameter® = {3, v} whose output
is mapped to a probability as follows:



information in the prior and data will force most of the ker- invariant,z has to be distributed as
nel selection variables; to be zero and, hence, resultin a
much lower dimensional manifold. z~N(f(x,8,7),1)

During training, Equation (2) needs to be evaluated only atry,q joint distribution for the full set of augmentation vari-

the N tfa'”'”g data pointX = {x1,.. '.’ Xy} IF IS ther_l ablesZ = {zi,...,zy} for the N instances in the training
convenient to express Equation (2) using matrix notation ..~ ic then

Pr(yi = 1|/8a'7) = (D(\I/'yi /6'7) (4)

where? € RV*V is the Gram matrix with entrie§; ; = _ _ _ S _ _

K (z4,x;). V., is a reduced version of, containing only WhereI_N is th_eN-dlmensmn_a_I |d_ent|ty matrix. It will be
the columns corresponding to active kernefs € 1) and ~ Shown in Section 4 that conditioning @makes the poste-
., ; is thej-th row of this matrix.3, is the reduced version rior of the high-dimensional coefficiena Gaussian dis-

of 3 containing only the coefficients of the active kernels. tribution that can be obtained analytically. Hence this aug-
In the following we never actually use the full vecfdiand ~ Mentation strategy replaces the problem of sampling from

for notational simplicity will therefore drop the subscript & high dimensional, highly correlated, distribution with the
and from here on usé to mean3,. much simpler problem of sampling lower dimensional vari-

ables.
We follow a hierarchical Bayesian strategy, where the un-

known parameterg and~ are drawn from appropriate 3.1 Bringing in the evidence
prior distributions. We place a regularized maximum en-

p(Z‘/@,’Y’X> :N(\IJ’Yﬂ’Y’IN)7 (8)

tropy g-prior [18] on the regression coefficients The model discussed up to this point is nearly identical with
) o T the one presented in [15], where it is used in the super-
p(Blv,6%) =N (O, 0" (V5 Wy) ) () vised classification context, in which the individual labels

and assign an inverse Gamma prior to the regularizatio

r?] = {y1,...,yn} are given for the training instances. In
parametep? 9]

we adapted the model to the multiple instance setting.
) wov Here, instead of a binary label, we are given € [0, 1], an
p(6%) =16 (5’ 5) (6) estimate of the fraction of positive instances for each group
in the training data. Additionally, we have a parameter
guantifying the confidence in these guesses. Higher values
indicate higher confidence, while = 0 indicates a com-
plete lack of confidence. Our training data is thus given

with fixed hyper-parameterg, v typically set to near-
uninformative values (for example = v = 1). Each~y;
follows a Bernoulli distribution with success rate= [0, 1],
which in turn follows a Beta distribution with parameters
a,b > 1. This allows the model to adapt to the data while y
giving the user some control over the desired fraction of

active kernels. By integrating outwe get: D={X,M,x} ={Xg,;---, Xg,m1,....ma, X},

D(k+a)T(N — k+b) whereX  is the set of feature vectors describing the in-
p(y) = /P(’Y|T)P(T)d7 = TN +a+b) stances in group. Note that while we use a global confi-
dence parametey here, it is straightforward to modify our
wherek = 3, v, is the number of active kernels, i.e. the model and training algorithm to deal with separate confi-
number of non zero elements4n dence estimates for each group, should they be available.

o ] o ) ) The given estimate; for a group; is modeled as a noisy
The intuition behind this hierarchical Bayesian approachyeasurement of the unknown actual ratio of positives (de-

is that by increasing the levels of inference, we can make,yiaq A;) in that group. This models measurement er-
the higher level priors increasingly more diffuse (vague).qqs (such as miscounts of election votes) as well as other
That is, we avoid having to specify sensitive parametergqrces of uncertainty. The valug is deterministically

and, therefore, are more likely to obtain results that are i”tomputed fromiZ,,. , the set of augmentation variables for
dependent of parameter tuning. the instances in Sjroujo

To facilitate efficient computation, we employ the data aug- 1

mentation trick first introduced by Nobel laureate Daniel Aj= — Z T(0,00) (2i), (9)
McFadden [12], which in the context of this specific model Ngj
was also used in [15]. The probabilistic model discussed so

far is augmented by introducing the continuous latent variwhereng; is the number of instances in grogipNote that
ablez € R, which can be seen as a continuous version ofve implicitely integrated oug in Equation 9. The Beta
the binary label satisfyingy = sign(z). It then follows, distribution was chosen to model the measurement process
from the choice of the probit link in Equation (2), that in or- producing the estimate:;. Its two parameters are deter-
der to keep the marginal distribution of the other variablesministically computed frony and); such that the mode of

€8,



the distribution is located &; while x controls the peaked- = ;oo ~(0) §20) 7(0)

ness. 2 for t=1t T:
3 Sample:

p(mj|Aj, x) = B(xA; + 1, x(1—=X;) +1) . A (62D, 20D X)
o m XN (1 — my ) X290, 5 BY ~p(Bly", 521, 707D X)
: 50 ~ p(@?18, )
_ 7 for j=1t0 G:
4 Computation 8 Z) ~ p(Zg, |7, B, Xg,, m;)

Listing 1: Blocked Gibbs sampler for sampling from the

In order to perform probabilistic inference on individuals, éomt posterior distribution(3, 7. Z, 6| D).

we need a way to evaluate Equation (1). However, for th
model discussed in the previous section, the integral in-

volved turns out to be intractable.

rr{)’ the augmentation variables of different groups are inde-

Instead, we use Monte Carlo simulation to generate sa Sendent

ples{0™), ... 8™} from the posterior distribution of the
model parameters G
p(Zly, B, X, M) = [ [ p(Zg, |7, B, Xg,, m;).

0" ~ p(6|D) i=1

which allows us to approximate Equation (1) as The overall blocked Gibbs sampler is given in Listing 1.
In the following, we provide the conditional distributions
involved (lines 4 to 8) and outline the techniques for sam-

Pr(y =1lx, D) pling from them.

Pr(y = 1|x,0").  (10)

HMH

) o _ Sampling theéV-dimensional binary kernel selection vector
This approximation converges to the true solution by they js the most involved and computational intensive part of
Strong Law of Large Numbers. the overall Gibbs sampler. Its conditional distribution is

Although we are only interested #*) = {3("), ()1 in- g 3(2, 27w, (wTw,) 1wT )
tegrating out all other latent variables turns out t0 be inp(v[62,Z,X) (1 4 62)" 5 e2 \Tr5z 2 V(¥ ¥a) 052
tractable. Instead, we sample from the full joint posterior INK+a)T(N - K +b)
»(8,~,Z,5%D) and then marginaliz& ands? by simply X TN +at0) . (11
ignoring these components in the generated samples. Note

thatr was already integrated out in Equation (7) and both  We use an efficient Metropolis Hastings within Gibbs sam-
andy follow deterministically fromZ and thus do not need pler very similar to the one described in [15] for sampling
to be sampled. from this distribution. A detailed description of this sam-

. . . . . pl d the full derivati f Equation (11 be found
Gibbs sampling [6] is a well known MCMC technigue in ﬁ]e[;]an e full derivation of Equation (11) can be foun

which the individual variables are sampled in turn from
their full conditional distributions. As in [15], we are us- The full conditional distribution for the kernel weigh
ing ablockedGibbs sampler, in whick~, 3} are sampled follows from Bayes rule:

together as one block ar{d?, Z} as a second block. Sam- ) 0

pling variables jointly in blocks results in a sampler with p(Blv,6%,Z, X) < p(Z|B,~, X)p(Blv, 7).

much better mixing probabilities by reducing the correla-
tion amongst samples [10, 7].

Thanks to the data augmentation trick, both the likelihood

and prior (Equations (8) and (5)) are Normal distributions.

The joint conditional distribution fof~, 3} factors as Therefore the posterior can be computed analytically and
efficiently sampled from, as

B~N ( S(wlv)~elz, 5 (@3@7)—1>

It should be noted by looking at the graphical model in Fig-
ure 1 thats? andZ are conditionally independent, givgh

and~y. We use this fact when samplirg?, Z} as Similarly, for the conditional distribution of the regulariza-

tion parameted? we have
p(6%, Z|8,v, X, m) = p(6*8,7)p(Zl~, B, X, M). p(62|8,7) < p(Bly, 62)p(5?).

While the observationn; introduces conditional depen- Since the inverse gamma distributionygf?) is conjugate
dencies amongst the augmentation varialllgsin group  to the Normal distribution of(3|~, §?) (Equations (5) and



(6)), the posterior can be computed analytically and samthem for evaluating the learned probabilistic classifiers. We

pled from using a standard inverse gamma sampler would like to stress however, that our learning algorithm
doesnot have access to these labels but is only given the
1 1 i iti i
§2 ~ IG (2(M LK+ 1)7 §(V T ||\I/7[3||2)> ) fraction of positives per group (or an estimate thereof).

5.1 Synthetic data

The joint conditional distribution of the augmentation vari-

ablesz, for the instances in grouphas the form In our first experiment we tested our proposed approach

on the simple synthetic dataset shown in Figure 2(a). In
P(Zg,Im;, Xg,, B,7) < p(m;|Zg, )p(Zg, | Xg,, B 7) this example, the individuals are described by 2D feature
— B+ 1, x(1—A) +1) vectors. The dataset consists of only 3 groups, the statistics
XAj » X J of which are given in Table 1.
X H p(zz‘xz7ﬁ77)7

iz, A BJ[C
No. of instances; | 19 | 16 | 20
where \; is computed fromZg, using Equation (9). Positive fractionn; | 0.73| 0.25| 0.85

This posterior distribution is ag-dimensional multivariate o o
Gaussian, which is scaled by different constants in different ~ Table 1:Group statistics for the dataset in Figure 2(a).
orthants of the space. The orthants which correspond to the

guessed fraction of positivesy;, will have larger scaling  Note that each of the groups contains a mixture of positive
factors than those that do not. Since the prior and likelihoochnd negative instances, which is typical for many practical
do not combine, we cannot directly sample from this distri—appncaﬂons_ In an election, for example, it is extremely
bution. Instead we use a Metropolis within Gibbs sampletynlikely that everybody votes identically in a district. In

with an isotropic Normal distribution as proposal. That is, the multiple instance framework, each group would hence
a new set of candidate valug§  is generated based on the have a positive label and this MI data thus would thus be
previous samplz(gtj) using uninformative when trying to infer the labels of individuals.

Using the MCMC algorithm described in Section 4, we
generated 1000 samples frdha(@|D) after a burn in pe-
riod of 1000 simulation steps. We chose a Gaussian ker-
nel, uninformative hyper-parameter values= b = y =
v = 1.0 and a confidence value gf = 1000. The run
(2L |mi, Xg., B,7) t!me for the simulation was 6 seconds on a 2:6 Ghz I_Den-
A = min (1, g P TED ) tium 4. Figure 2(b) shows the learned predictive distribu-
p(Zg)|m;, X, . 8,7) tion Pr(y = 1|x, D) evaluated using Equation (10) and the
) generated samples. The distribution correctly assigns high
We use a value of = 2.4n_ > for the proposal variance, probability to regions of the feature space containing pre-
which was shown to be optimal for sampling from the unit dominantly positive instances. The flexibility of our semi-
variance multivariate normal distribution [5]. While this parametric model allows to recover the non-linear decision
only implies optimality for the limiting case of = 0, this ~ manifold in this example. At the same time, the hierar-
proposal distribution does result in reasonable acceptandghical priors regularize the solution and prevent excessive
rates in practice. complexity. The computed solution is fairly sparse with on
average 15 active kernels.

7, ~ (2. 7,,) = N (20, 1),

wherec controls the variance of the proposal. The proposa
is accepted with acceptance rate

In the special cases,; = 1 andm; = 0 it follows from
the properties of the Beta distribution thet = m;. Asa  In a second experiment shown in Figure 3 we generated
consequence, al; for instances in the group are enforced a synthetic 2D dataset, in which we actually have a large
to be positive (resp. negative) for; = 1 (resp.m; = 0) number of groups with exclusively negative instances and
and are sampled independently from truncated univariat@ small number of groups with both positive and negative

Normal distributions as described in [9]. A valueraf =  instances. In this example, the positive and negative in-
0 thus is equivalent to a negative group label in the multiplestances are not nicely separated in the feature space. In-
instance setting. stead, a few positive instances are embedded in a large dif-

fuse mass of negatives as shown in Figure 3(a). This prop-
5 Experiments erty is typical of many real-world concept learning prob-

lems in the multiple instance setting. Figure 3(b) visual-
We demonstrate the performance of our proposed prohizes the semi-supervised information provided by the bi-
abilistic model and training algorithm on both synthetic nary group labels. The predictive distribution learned from
and real-world data. In all these experiments we actuallythis multiple instance data using the approach described in
know the binary labels of the individual instances and usg9] with a Gaussian kernel is shown in Figure 3(c). Fig-
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(a) Synthetic dataset consisting of 2D feature vectors be- (b) The predictive distributiofPr(y = 1|x, D) learned by

longing to 3 groups 4, B and C). Each instance has a our approach for the data set shown in (a). The location

positive (bold blue letters) or negative (red italicized) label.  of the positive (blue triangles) and negative (red circles) in-
stances are shown superimposed.

Figure 2: Experiment on a small synthetic dataset with 3 groups of 2D instances. Our learning algorithm learned the predictive
distribution shown in (b) from the location of the instances in the 3 groups shown in (a) and the group statistics given in/WVelbéi..
knowledge of the instance labéisnanaged to reconstruct a predictive distribution which correctly assigns high probability to regions
of the feature space containing predominantly positive instances.

ure 3(d) on the other hand shows the distribution learned byge regions (does an image region show a fox or not?) are
the approach described in this paper (with the same Gausgtenerally unknown, but the binary labels of whole images
sian kernel) when additionally the fractions of positives  are provided by the annotations. This learning problem is
were provided for all groups. Clearly, the additional infor- similar to the synthetic dataset in Figure 3 in that positive
mation helped to learn a much improved predictive distri-and negative instances can not be expected to be neatly sep-
bution in which the cluster of positive instances is nicely arated in the feature space. Nevertheless, the probabilistic
reconstructed. MI learning approach proposed in [9], managed to learn
classifiers from this data, which performed quite well.

5.2 Learning object recognition models from

. Even though in this setting we do not know which fraction
annotated images

of the image regions in a given ‘fox’ image actually show a

. fox, we can make an educated guess based on the number
Finally, we explore the performance of the proposed aPof image regions and the number of words in the image’s

proach when app]lgd to the .task of 'e?“”'”g modgls for Ob'annotation: We work from the simplifying assumption that
ject class recognition from images with annotations. Ou

I, . . . .
- S : . he regions in an image are equally distributed amongst the
training data in this experiment consists of 200 annotate J g qua’y g

. X ) age’s annotation words. That is, for an image where the
images from the Corel database. Each image is segment rd fox’ appears in the annotation as onewfwords

mtc(; onfaverage about le 'mb"’?ge reg|ﬁns using NCuts [13 e choose the estimate of the fraction of positive image re-
and a ieature vector describing each region Is computeg, ¢ 4, bem; = L. Of course this only provides us with
(for more details see [8, 9]). The goal is to learn a proba w

bilistic . lassifieio at dlob ‘a crude estimate of the real fraction of positives. As the
DIIStc IMmage region classilielor one annotation Wordjob- gt jn Figure 4 demonstrate, using these guessed frac-
ject class at a time. Consider for example the object clas

. S C8Sfons of positives in the approach presented in this paper
fox'. S.UCh a C[aSS,IerI“ allows ,US to_ Iab_el |nd|\_/|dual 'M" yesulted in improved classification performance for most
age regions as ‘fox’ or ‘not fox,” making it possible to not

object categories when compared to the classifiers learned

only detect pgt also locate a fo_x N an image. Learnmgfrom MI data. The additional information also seems to
such a classifier from annotated images constitutes a mult jave the effect of reducing the variance across runs. Both
ple instance learning problem, in which images are treate\%}e '

. X . ) arning algorithms in this comparison were run with the
as groups of image regions. The binary labels of the im- gy P
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(a) Labeled instances in a synthetic dataset with 600 2D in-
stances. Positive (blue triangles) and negative instances (red
circles) were generated from 2 Gaussians. The two classes
are not nicely separated in feature space but a cluster of pos-
itive instances is embedded in a large diffuse mass of nega-
tives.

(c) The predictive distribution learned from binary group la-
bels using the MI learning algorithm proposed in [9]. The
locations of the labeled training data instances are superim-
posed. The learned distribution does not quite manage to re-
construct the positive cluster which indicates that the binary
group labels do not provide sufficient information about the
individual instance labels.

-4

3

(b) The instances are arranged into 75 groups of 8 instances
each. This figure shows the semi-supervised information
provided by the binary group labels in the MI setting. For
the 62 negative groups, all instances are known to be neg-
ative (red circles). The instances in the 13 positive groups
can be either positive or negative (black dots).

i
it
77 i

I

i
i)
i

(d) The predictive distribution learned using the approach
described in this paper when the fractions of positives

for each group are given. A confidence valuexof 1000

was used. The additional information clearly helps to recon-
struct a better predictive distribution in this case. The pos-
itive cluster is nicely separated from the surrounding nega-
tive instances.

Figure 3: Experiment on a synthetic 2D data set demonstrating the benefit of using information about the fractions of positives as
compared to binary group labels. In the synthetic data set used here most of the groups contain exclusively negative instances (Figures
(a)(b)). The binary group labels given in multiple instance learning do not provide sufficient information about the individual instance
labels in this case, as can be seen in (c). If, on the other hand, for each group, the fraction of positive instances in the group is known, a
good probabilistic classifier can be learned from this information using the approach described in this paper as shown in (d).
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Figure 4:Probabilistic image region classifiers were learned for [6]
different object classes/annotation words from a set of 200 anno-
tated images with in total 2070 image regions. The chart com- 7]
pares the performance of classifiers learned from binary group
labels using the approach described in [9] with classifiers learned
from guessed fractions of positive regions per image using the ap-
proach presented in this paper. The classification performance is{8]
measured using AUC (area under the receiver operator curve) on

a test set of about 1000 manually labeled image regions. AUC

is a widely recognized measure for comparing the performance 9]
of probabilistic classifiers independent of a fixed decision thresh-
olds [2]. A value of 1 indicates perfect classification performance
while 0.5 corresponds to random guessing. The columns displapO]
the mean AUC value averaged across 10 runs while the error bars
show 1 standard deviation. Although the fractions of positive in-
stances are estimated based on a rather crude assumption and thus
tend to not be very accurate, they still lead to improved proba-[11]
bilistic classifiers for most object classes.

same hyper-parameters and sigmoidal kernel. 10 000 samt2]
ples were collected after a 10 000 step burn in period which
took between 5-10 minutes (depending on the object cate[—lg]
gory) with both approaches.

6 Conclusion [14]

We have introduced a novel problem formulation with
relevant real-world applications in social sciences, demo—lS]
graphic analysis and marketing research as well as co&-
nitive vision. In this setting we take advantage of group
statistics to infer information about the individuals in the
groups. [16]

We developed a principled probabilistic model which fully [17]
accounts for the uncertainty in the binary labels of indi-
viduals. It has significant modeling power due to a semi- 18]
parametric representation while achieving sparsity using ‘131
hierarchical prior. An efficient MCMC sampler for training

this model was presented.

The problem formulation we introduce can be seen as f9]
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