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1 Introduction

Constraint-Based Inference (CBI) [1] is an umbrella term for various superficially
different problems including probabilistic inference, decision-making under un-
certainty, constraint satisfaction, propositional satisfiability, decoding problems,
and possibility inference. These problems share a common target of discovering
new constraints from a set of given constraints over individual entities. The new
constraints reveal previously undiscovered properties of those entities.
Along with the development of inference approaches for concrete CBI prob-

lems, researchers are increasingly aware that these problems share common fea-
tures in representation and essentially identical inference approaches. In the
constraint processing community, Semiring CSP [2] and Valued CSP [3] are
two of the most widely studied generalized frameworks that abstract most soft
constraint proposals, including Max CSPs, Fuzzy CSPs, Weighted CSPs, and
Probabilistic CSPs, as well as classic CSPs. Based on the two frameworks, arc
consistency is also extended as soft arc consistency [4] to handle soft constraints
[5, 6].
In the probability inference community, the generalized algorithmic and rep-

resentation frameworks have been studied for the past ten years. The generaliza-
tion of the bucket or variable elimination algorithm [7] can be used in probability
assessment, most probable explanation, maximum a posteriori hypothesis, and
maximum expected utility problems. Junction tree algorithms, another class of
widely studied exact probability inference approaches, are also generalized into
single abstract frameworks, such as the Generalized Distributive Law (GDL)
[8], the generalized bucket-tree elimination [9], and the valuation algebra frame-
work [10]. These generalized frameworks, though focus on probability inference
problems, provide opportunities to solving general CBI problems, especially to
solving classic and soft constraint processing problems.
We explicitly use the semiring concept to generalize various CBI problems

into a single formal representation framework with a broader coverage of the
problem space, based on the synthesis of existing generalized frameworks from
both constraint processing and probability inference communities. Based on our



generalized CBI framework, an extensive comparative study of exact and ap-
proximate inference approaches between constraint processing and probability
inference is commenced. The goals of our work are: (1) study the most impor-
tant common characteristics of various CBI problems; (2) analyze and compare
different inference approaches; (3) borrow design ideas from other fields and
improve the inference approaches’ efficiency in their own domains; and (4) sig-
nificantly reduce the amount of implementation work targetted previously at the
individual problems.

2 A Semiring-Based Generalized Framework for CBI

Problems

There are two essential operators in real world CBI problems: (1) combination,
which corresponds to an aggregation of constraints, and (2) marginalization,
which corresponds to focusing of a specified constraint to a narrow domain. We
use the commutative semiring structure to represent these two operators.

Definition 1 (Commutative Semiring). Let A be a set. Let ⊕ and ⊗ be
two closed binary operators defined on A. Here we define operator ⊗ as taking
precedence over operator ⊕. S = 〈A,⊕,⊗〉 is a commutative semiring if (1) ⊕
and ⊗ are all associative and commutative; (2) ⊗ and ⊕ have identity elements
1 and 0, respectively; and (3) there is a distributivity of ⊗ over ⊕.

A CBI problem is defined in terms of a set of variables with values in finite do-
mains and a set of constraints on these variables. We use commutative semirings
to unify the representation of constraint-based inference problems from various
disciplines into a single formal framework [1]. Formally:

Definition 2 (Constraint-Based Inference (CBI) Problem). A constraint-
based inference (CBI) problem P is a tuple (X,D,S,F) where:

– X = {X1, · · · , Xn} is a set of variables;
– D = {D1, · · · ,Dn} is a collection of finite domains, one for each variable;
– S = 〈A,⊕,⊗〉 is a commutative semiring;
– F = {f1, · · · , fr} is a set of constraints. Each constraint is a function that
maps value assignments of a subset of variables to values in A

Definition 3 (The Combination of Two Constraints). The combination
of two constraints f1 and f2 is a new constraint g = f1 ⊗ f2, where Scope(g) =
Scope(f1) ∪ Scope(f2) and g(w) = f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every
value assignment w of variables in the scope of the constraint g.

Definition 4 (The Marginalization of a Constraint). The marginalization
of X from a constraint f , where X ∈ Scope(f), is a new constraint g =

⊕
X f ,

where Scope(g) = Scope(f)−X and g(w) =
⊕

xi∈DX
f(xi,w) for every value

assignment w of variables in the scope of the constraint g.



According to the definitions of the CBI problem and the basic constraint op-
erations, we define the abstract inference and allocation tasks for a CBI problem.

Definition 5 (The Inference Task for a CBI Problem). Given a subset of
interested variables Z = {Z1, · · · , Zt} ⊆ X, let Y = X \Z, the inference task for
a CBI problem P = (X,D,S,F) is defined as computing:

gCBI(Z) =
⊕

Y

⊗

f∈F

f (1)

Given a CBI problem P = (X,D,S,F), if ⊕ is idempotent, in other words,
a⊕ a = a,∀a ∈ A, we can define the allocation task for a CBI problem.

Definition 6 (The Allocation Task for a CBI Problem). Given a subset
of variables Z = {Z1, · · · , Zt} ⊆ X, let Y = X \Z, the allocation task for a CBI
problem P = (X,D,S,F) is to find a value assignment for the marginalized vari-
ables Y, which leads to the result of the corresponding inference task gCBI(Z).
Formally, we compute:

y = arg
⊕

Y

⊗

f∈F

f (2)

where arg is a prefix of operator ⊕. In other words, arg⊕ is an operator that
returns arguments of the ⊕ operator.

Many CBI problems from different disciplines can be embedded into our
semiring-based unified framework [1]. These problems include the decision task
and allocation task of CSP and SAT, Max SAT and Max CSP, Fuzzy CSP,
Weighted CSP, probability assessment, most probable explanation (MPE), dy-
namic Bayesian networks (DBN), possibility inference with various t-norms, and
maximum likelihood decoding.

3 Comparative Studies of Inference Approaches

3.1 Generalized Arc Consistency for Probability Inference

Arc consistency [11] is one of the most important techniques for binary classic
CSPs. It is straightforward to extend it as generalized arc consistency [12, 13] to
handle non-binary classic CSPs. Arc consistency is also extended as soft arc con-
sistency [4] based on the Semiring CSP [2] and Valued CSP [3] frameworks. We
applied generalized arc consistency to probability inference problems [14]. Here
the success of generalized arc consistency in probability inference depends only
on the existence and property of the combination absorbing element. More specif-
ically, given a CBI problem defined on a commutative semiring S = 〈A,⊕,⊗〉,
if ∃α⊗ ∈ A s.t. e ⊗ α⊗ = α⊗ ⊗ e = α⊗ for any element e ∈ A and α⊗ = 0,
the combination absorbing element α⊗ can be used to detect non-valid domain
values and simplify the involved constraints. For example, false, 0, and ∞ are
combination absorbing elements of classic CSPs, probability inferences, and Max



CSPs, respectively. All the existing arc consistency enforcing algorithms can be
generalized and migrated to handle a concrete CBI problem that satisfies this
condition. If a CBI problem is defined on a monotonic semiring, we can also use
an element to approximate the combination absorbing element. This approach
results in an approximate arc consistency enforcing algorithm [14].

3.2 Junction Tree Algorithms for Soft Constraints

The major motivation that prompts researchers to use junction tree (JT) algo-
rithms to solve CBI problems is handling multiple queries by sharing intermedi-
ate computational results. In general, junction tree algorithms assign constraints
to clusters and combine constraint in the same cluster. The combined constraint
is marginalized and passed as a message between clusters. Following a specified
message-passing scheme, the junction tree reaches consistency and any subset of
variables can be queried through marginalizing out other variables in the cluster
that contains these variables.
The basic version of message-passing scheme in JT algorithms is Shenoy-

Shafer (SS) architecture [15]. SS architecture has no special requirement for the
two operators, thus general CBI problems, including all soft constraint propos-
als, can be processed without any modification. If the two operators of the com-
mutative semiring have special properties, the message-passing schemes can be
modified to achieve better computational efficiency. For example, the idempotent
combination operator ⊗ implies that repeatedly combining the same informa-
tion will not produce new information. This property enables us proposing a
JT-Idemp message-passing scheme in [1]. Classic CSPs and Fuzzy CSPs can be
processed by JT algorithms with this scheme. For CBI problems such as Max
CSPs and Weighted CSPs that are defined on semirings with an invertible combi-
nation operator ⊗, in other words, ∀a ∈ A,∃a−1 ∈ A, s.t.a⊗a−1 = 1, two popu-
lar message-passing schemes in probability inference, the Lauritzen-Spiegelhalter
(LS) architecture [16] and the HUGIN architecture [17], can be generalized and
applied. Details of these generalized JT algorithms for CBI problems can be
found in [1].

3.3 Loopy Message Propagation for General CBI Problems

As already known, in JT algorithms both time and space complexities are
bounded by the maximum cluster size. To maintain junction tree properties,
the maximum cluster size is usually large in practical problems. Loopy message
propagation [18] is an approximate probability inference approach that aims at
relaxing the junction tree properties to make computation feasible. Using junc-
tion graphs, instead of junction trees, means that the message-passing may not
terminate due to the introduction of loops. Also messages will be repeatedly
counted. Both of these bring errors of inference for general CBI problems. How-
ever, we claimed in [1] that for CBI problems with a idempotent combination
operator, such as Classic CSPs and Fuzzy CSPs, the loopy message propaga-
tion is an exact inference approach. Our experimental results also showed that



the loopy message propagation yields high quality inference approximation for
general CBI problems like Max CSPs and probability assessment. Like message-
passing schemes in JT algorithms, the schemes in the loopy message propagation
can be revised according to different semiring properties to achieve better com-
putational efficiency.

3.4 Stochastic and Context-Specific Inference

Basically, all the inference algorithms generalized in our framework are system-
atic approaches to CBI problems. In concrete application domains, stochastic
approaches, such as sampling techniques in probability inference, are very suc-
cessful. Given the fact that underlying representations of these problems are
highly analogous, an abstract representation of stochastic or hybrid (stochastic
and systematic) inference approaches should be a reasonable goal for future re-
search. Context-specific inference has drawn a lot of attentions in the probability
inference community recently. The same idea appears in SAT as the DPLL algo-
rithm [19] for a long time. After instantiating one or several variables (context),
the original CBI problem will be probably simplified. Solving the simplified prob-
lem together with backtracking techniques provide another promising inference
approach for general CBI problems.

4 Conclusion

Many real world inference problems, under the umbrella term of Constraint-
Based Inference (CBI), share common features in the problem representation and
essentially identical inference approaches. The observation prompts us propos-
ing a generalized semiring-based algorithmic and representation framework for
CBI problems, based on the synthesis of existing generalized frameworks from
both constraint processing and probability inference communities. Our unified
CBI framework provides opportunities for researchers from different fields to
reinterpret many familiar approaches in their domains at a higher level.

More specifically, we are aiming at comparing various exact and approx-
imate inference approaches in both constraint processing and probability in-
ference communities. Based on the semiring-based unified framework for CBI
problems, we show that arc consistency, one of the most important techniques
in constraint processing, can be applied to general CBI problems like probability
inference. We also show that the widely studied exact and approximate infer-
ence approaches in probability inference, such as junction tree algorithms and
loopy message propagation, are suitable to be applied in constraint processing.
In other words, based on the semiring-based unified CBI framework, we can
borrow ideas from other fields to improve the inference algorithm design in con-
straint processing. Our knowledge in handling constraints is also applicable in
other domains. The unified CBI framework acts as a bridge in exchanging ideas
between researchers from different fields.
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