
Patchlets: representing stereo vision data with surface elements

Don Murray∗and James J. Little

Department of Computer Science
University of British Columbia

Vancouver, BC, Canada

Abstract

This paper describes a class of augmented surface elements
which we call patchlets. Patchlets are planar surface ele-
ments generated from dense stereo vision 3D range images.
Patchlets have a position, surface normal and size. In addi-
tion they have confidence measures on the position and nor-
mal direction that are based on the sensor accuracy. These
confidence measures facilitate their use with probabilistic
methods such as clustering for range image segmentation.
Patchlets are formed by the projection of a pixel within the
stereo image onto a sensed surface. They are surface ele-
ments that are constructed directly from the sensor data and
can be used as a fundamental sensed-data primitive.

We describe patchlet formation from the stereo dispar-
ity image, the propagation of errors from the stereo sensor
model, and confirm experimentally the patchlet model rep-
resentation. We provide surface segmentation as a sample
patchlet application.

1. Introduction
In this paper we investigate using a class of surface ele-
ments that we call patchlets as the fundamental sensor prim-
itive for stereo vision. Patchlets are a point-based stereo
vision sensor primitive which is directly suitable for point-
based rendering. Since stereo vision is based on correla-
tion between image regions, it matches surface patches that
are seen in more than one camera. Patchlets augment the
sensed 3D data point with surface patch properties obtained
from the correlation of image regions. Patchlets provide a
natural representation of geometric data obtained by stereo
vision. Patchlets could also be easily extended to cover
triangulation-based laser range scanner.

Stereo vision is a range sensing technology that is in-
expensive and generates full field-of-view 3D data in real-
time, but its noise characteristics limits its utility for shape
scanning. By correctly modeling the stereo sensor noise and
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Figure 1: A close-up of patchlets made from a single stereo
image - patchlets are drawn at 90% of full size so that their
shape can be seen.

propagating this error to the patchlets we obtain meaningful
confidence measures on the patchlet parameters. Our con-
tribution is a method to interpret stereo vision with a sur-
face element data primitive that also contains uncertainty
measures on the elements position and surface normal. The
patchlets can be used directly for rendering, but they can
also be used for further shape analysis. Since the patchlets
contain accurate confidence measures, they are amenable to
probabilistic methods. We demonstrate this with a planar
surface segmentation application based on clustering. Fig-
ure 1 shows a close-up view of a patchlet cloud generated
from the image given in Figure 2. Each small rectangles is
one patchlet that maps to one pixel in the stereo image.

In the following section we briefly overview related re-
search. We follow this in Section 3 with a review of stereo
vision and the error model which we use. Section 4 gives
a detailed description of the creation of patchlets from sen-
sor data and the propagation of errors from disparity space,
through 3D points, to the patchlet parameters. In Section 5
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we present some example patchlet clouds and give the re-
sults of regression testing which confirm the accuracy of the
stereo and patchlet models. We describe the segmentation
of surfaces from stereo range images as an example applica-
tion that demonstrates the utility of the patchlet elements in
Section 6. Finally, in Section 7 we discuss the possibilities
for future extensions of the presented methods.

2. Related work

Use of points for rendering and shape representation is not
new but is gaining popularity. Levoy and Whitted [LW85]
introduced the idea of points as fundamental rendering
primitives. Oriented particles, point/surface-normal pairs,
were proposed for particle based modeling by Szeliski and
Tonnesen in [ST92], although these particles were devel-
oped for shape representation and manipulation rather than
rendering. Since 2000 the popularity of particle- or point-
based methods has experienced a surge of interest. In-
spired by Grossman and Dally’s work on point-based ren-
dering [GD98], Pfister et al. developed surfels – oriented
particles with area for efficient rendering of complex ob-
jects [PZvBG00].

Use of oriented particles for analysis of stereo vision be-
gan with Pascal Fua. In [Fua96], he combined stereo vi-
sion data from multiple viewpoints into dense point clouds
from which he generated oriented particles similar to sur-
fels from the resultant 3D data. He achieved this by orga-
nizing the point clouds into voxels and fitting local best-fit
surfaces to the data in each voxel that was sufficiently pop-
ulated. In work inspired by Fua’s particle work, Sara and
Bajcsy [SB98] developed their fish scales paradigm that is
also based on interpretation of stereo data. In their method,
rather than fitting planes to the voxeled point data, they cre-
ate a fuzzy set that includes a position and a covariance ma-
trix of the set distribution. By considering the covariance,
they can classify the fuzzy set into a class of shape, such as a
ball, a plate, or a line. Similar to Fua’s work, their methods
are applied to point clouds made from data combined from
multiple viewpoints. Carceroni and Kutulakos extract and
track structure from multi-view camera temporal sequences
using Surfel Sampling [CK].

Patchlets differ from the previous work in a few im-
portant ways. Patchlets are inspired by the observation
that correlation stereo works by recognizing local surface
patches. Therefore, the patchlet element models stereo spe-
cific surfaces rather than arbitrary point clouds. For this
reason, patchlets are created on an image-by-image basis
rather than using point data combined from multiple points
of view. As well, we propagate the uncertainty from the
stereo-based 3D points to uncertainty measures of the ori-
entation and position parameters of the patchlets. This fa-
cilitates the use of probabilistic methods when interpreting

patchlets; they can be properly weighted based on their pa-
rameter confidence. Finally, patchlets have a size parameter
that is based on the projection of the disparity pixel onto the
sensed surface, rather than uniform division of space.

3. Stereo vision
Stereo vision is the process of extracting 3D information
from cameras that are physically offset. By identifying pixel
locations in two cameras that are known to correspond to
the same physical 3D position, the position can be extracted
via triangulation. The distance in image space between a
feature identified in one camera and its corresponding po-
sition in the other camera is called disparity. There is an
one-to-one (inverse) mapping between disparity and physi-
cal distance from the stereo rig.

(a) Reference image

(b) Disparity image

Figure 2: Stereo scene and disparity image

The advantages of stereo vision for range sensing are: it
is relatively cheap, fast, and produces a full field-of-view of
sample points simultaneously. As well, the points are reg-
istered with the appearance image information. It also has
many drawbacks. Because of the inverse relationship be-
tween disparity and distance, the same error in correspon-
dence causes errors in 3D position that grow dramatically
with distance from the camera. The dependence on image
neighbourhoods of support causes smoothing in 3D infor-
mation and has difficulty with thin objects such as railings.
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Finally, occlusions, viewpoint limitations, and poor image
information can make stereo depth extraction incorrect and
incomplete.

Figure 2 shows an example stereo image. (The stereo
camera used was a Point Grey Research Digiclops camera.
See http://www.ptgrey.com.) Figure 2(a) shows the refer-
ence camera image and Figure 2(b) shows the dense dispar-
ity image generated with sum-of-absolute differences corre-
lation stereo. As disparity is inversely related to distance, in
this image the brighter a pixel is, the closer it is to the cam-
era. Black indicates regions of the stereo image for which
no disparity value could be determined.

3.1. Stereo error model
There are two classes of errors in stereo disparity images:
mismatch errors and estimation errors. Mismatch errors are
errors in stereo correspondence and lead to 3D points that
are uncorrelated with the true range value. These pixels can
be removed from the disparity image using filtering tech-
niques such as given by Fua [Fua93].

Left Camera Right Camera

Covariance

Pointing error

Matching error

Figure 3: Stereo error model

Estimation errors are slight miscalculations in the dis-
parity value due to local disturbances such as image noise.
Matthies and Grandjean showed that these errors can be
modeled successfully with a Gaussian distribution [MG94].
We used the estimation error model illustrated in Figure 3.
Each disparity pixel from the stereo rig can be converted to
a 3D point based on the projective camera equations:
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where (u, v) is the position of the disparity pixel in the ref-
erence camera image plane, (x, y, z) is the position of the
observed 3D point in the reference camera coordinate frame
and d is the pixel disparity. We define our sensor model er-
ror to be the combination of two parts: pointing error (p)

and matching error (m). Pointing error is the variance in
(u, v) of the reference camera and is determined by the ac-
curacy of the camera calibration. Matching error is the vari-
ance of the disparity d and is determined by the accuracy
of the correlation matching. The covariance matrix of the
disparity pixel in (u, v, d) space can then be written as:
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To obtain the covariance matrix (Λx) of the 3D point
(x, y, z) associated with a disparity pixel (u, v, d), we prop-
agate this error from (u, v, d) space to (x, y, z) space by ap-
plying the methods given in Faugeras [Fau93]:
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With the above error model, given the pointing and
matching error for a stereo camera system we can determine
the covariance matrix for each 3D point in the disparity im-
age. This covariance matrix defines the confidence we have
in the accuracy of the 3D point position estimation. Patch-
let confidence measures are determined by propagating the
accuracies of the 3D points on which the patchlet is based.

4. Patchlets
The primary contribution of this paper is the development of
the patchlet surface element as a fundamental sensor prim-
itive for stereo vision data. The idea of the patchlet arose
from the observation that correlation stereo vision is a re-
gion matching technique and consequently senses surface
patches, not points. The surface patch corresponds to the
portion of the scene that falls within the neighbourhood of
a given stereo pixel, as defined by the stereo matching algo-
rithm, (typically a square image mask of 5 × 5 pixels.)

The justification of this observation is given in Figure 4.
As shown in Figure 4(a), when a single continuous surface
covers the image neighbourhood, there is a high correla-
tion of the image regions between the stereo cameras. Con-
versely, as shown in Figure 4(b), if there is a surface dis-
continuity within the image neighbourhood, there is little
correlation between the images and consequently we can
expect the stereo algorithm to fail.

Since correlation stereo senses surface patches, a surface
element representation for the sensor data is appropriate.
One patchlet is generated for each valid pixel in the stereo
image. The size of the patchlet is determined by projecting
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Figure 4: Surface continuity and correlation stereo
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Figure 5: The Patchlet model

the pixel onto the sensed surface. This projection distorts
the patchlets so that they form a complete coverage over the
imaged surface, however the patchlets are not uniform in
size and shape. Patchlets that are farther from the camera
will be larger and have higher uncertainty measures than
close patchlets. Patchlets on oblique surfaces will be long
and narrow rectangles, while patchlets on frontal-parallel
surfaces will be square.

Figure 5 illustrates the patchlet model. Each patchlet has
its own coordinate system that defines its normal direction,
its position in the world coordinate system, and the primary
axes of its size parameters. The grey regions in the figure
show the regions of uncertainty associated with the position
and orientation parameters. Symbolically a patchlet is rep-
resented by the letter P and its parameters are:

XP the patchlet 3D position in the world coordinate frame;

ψP the patchlet normal vector;

TPw the 4×4 homogenous transform that defines the patch-
let’s local coordinate system;

HP patchlet height (size in local Y );

WP patchlet width (size in local X);

ΛP the positional variance in normal direction;

κP the confidence in the normal direction.

The positional uncertainty is modeled using a Gaussian
distribution with variance ΛP . The normal direction space
is a two-dimensional sphere that wraps around on itself.
Consequently, the Gaussian model is unsuitable. Instead we

selected the Fisher [Fis53] distribution which is specially
tailored for circular or spherical spaces. The Fisher distri-
bution probability density function takes the form:

P (x|µ, κ) =
κeκψ

4π sinh(κ)
(5)

where x is a given vector, µ is the distribution mean vector
and κ is the Fisher confidence measure. ψ is the angular
difference between µ and x. The Fisher confidence measure
κ can be considered as the inverse of the standard deviation
in Gaussian distribution.

4.1. Patchlet creation
To extract a patchlet at a particular location in the disparity
image we use the neighbourhood around that location in the
disparity image to estimate a local planar fit. We chose a
square neighbourhood of the equal or smaller size as the
stereo correlation mask (for experiments in this paper, we
used a support region of 5 × 5 pixels). The steps of the
patchlet creation are:

1. Determine 3D points from the disparity pixels

2. Find the best-fit plane.

3. Find the patchlet origin, coordinate frame and size.

4. Propagate confidence measures.

These steps are elaborated below.

4.1.1 Determine 3D points

We generate the 3D points, X = {X1 · · ·Xn}, associated
with the disparity pixels within the neighbourhood using
(1). Each 3D point also has an independent covariance ma-
trix, Λi, determined by (2), (3) and (4).

4.1.2 Find best-fit plane

We find the best plane in a least-squares sense to X. Since
each point has its own covariance matrix and these matrices
are not aligned, we required an iterative solution. We se-
lected Levenberg-Marquardt [PTVF92] as an efficient and
robust optimisation approach. The error that is minimised
is the Mahalanobis distance,

e2i = (Xi − X̂i)
′Λ−1

i (Xi − X̂i) (6)

where X̂i is the point on the current plane estimate that min-
imises the error ei. X̂i is not necessarily the perpendicular
projection ofXi onto the plane since the error term includes
the covariance matrix Λi.

To determine X̂i we perform a whitening or sphering
transform [KWV95] to both Xi and the plane estimate. In
the whitened space, X̂i is the perpendicular projection ofXi
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onto the plane. X̂i is determined in the whitened space and
then the reverse transform is applied to determine X̂i. After
the Levenberg-Marquardt minimisation has converged, typ-
ically in 3 - 4 iterations, the plane normal direction ψP is
obtained.

4.1.3 Find the patchlet origin, coordinate frame and
size

Each patchlet has its own coordinate system. The patchlet
origin represents its centre position. The Z axis is the sur-
face normal. For simplicity, we choose to represent patch-
lets as simple rectangles, rather than as the quadrilateral that
is the projection of a square pixel onto an arbitrary surface.
We select the X axis to be the larger primary axis of the
rectangle and the Y axis the shorter.

TheZ axis, or plane normal, is already determined in the
previous step. The patchlet origin, XP , is the projection of
the disparity pixel centre onto the planar surface based on
the camera parameters. We determine the X and Y axes by
finding the major and minor axes of the ellipse that is the
projection of a circular pixel onto the planar surface. This
is determined by Y = Z × R and X = Y × Z where R
is the unit vector associated with the ray that connects the
reference camera projective centre with the patchlet origin.
After the three coordinate axes and the origin are obtained,
the world-to-patchlet transform T Pw can be generated.

The size in the patchlet Y axis direction, HP , is deter-
mined by the frontal-parallel pixel size which is HP = z

f

where z is the z coordinate value of the patchlet origin in the
camera coordinate system and f is the camera focal length.
The size in the patchletX axis direction,WP , is determined
by WP = HP

cosα
where α is the angular difference between

the normal and the vectorR.

4.1.4 Propagate confidence measures

The last step in patchlet creation is the propagation of the
uncertainty associated with the underlying 3D points to the
patchlet parameter space. This determines the confidence
parameters for the normal direction and patchlet position.
The covariance matrix for the patchlet parameters can be
determined by Λ = (JTJ)−1 where J is the Jacobian ma-
trix defined by Jij = ∂ei

∂hj
. ei is the distance off the plane

associated with point i as given in (6) and hj is the jth pa-
rameter of the plane. For our plane representation we use
three parameters - yaw, pitch and distance from the origin.
We evaluated J numerically by performing small perturba-
tions of h and observing the resultant changes in e. Before
evaluating J , we first transform the coordinate system so
that the plane has yaw and pitch of 0 and the origin is cen-
tred at the pointcloud centroid. This moves the system as far
as possible from the singularity of a polar-coordinate repre-

sentation of vectors that appears at pitch = ±π, (the “north”
and “south” pole of the system). As well, placement of the
origin at the centroid of the point set ensures the greatest in-
dependence between the angles and position ([Mur04] dis-
cusses angle and offset parameter independence).

For our 3-parameter plane, {θ, φ, o} (where θ = yaw, φ
= pitch and o = positional offset) the resulting covariance
matrix is 3×3. The upper-left 2×2 submatrix is the covari-
ance matrix, Λθφ, of the angles {θ, φ} and the lower-right
value is ΛP , the variance of offset parameter o. κP is ex-
tracted from Λθφ by determining the direction of maximum
variance and calculating the corresponding Fisher spherical
confidence measure.

5. Patchlet results

Figure 6 shows the patchlet cloud generated from the stereo
image given in Figure 6. The patchlets are rendered from
two novel viewpoints to illustrate the quality of the depth
reconstruction. In the left images, each patchlet is displayed
with the greyscale of associated pixel in the reference im-
age. In the right images, each patchlet is coloured white and
Gouraud shaded. Each patchlet is the size of the pixel from
which it was generated, projected onto the sensed surface.
The patchlets are drawn at 90% of their full size so that the
gaps between patchlets are easily visible.

(a) (b)

(c) (d)

Figure 6: Patchlets rendered from two views : (a) and (c)
are colored by the source image, (b) and (d) are white with
Gouraud shading
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Figure 1 (on first page) shows a close-up view of the
foreground subject. In this view the individual patchlets are
clearly visible. One can see that patchlets on more oblique
surfaces, such as the lower cheek, are considerably larger
in order to cover the entire surface continuously. There
is some smoothing of features caused by the plane-fitting
process of patchlet creation, but most observed smoothing
(such as between the lower nose and the upper lip) is actu-
ally caused by the correlation stereo and is observable in the
underlying point cloud.

(a) Reference image

(b) Disparity image

Figure 7: Stereo scene and disparity image of outdoor steps

Figure 8: Patchlets generated from scene in Figure 7 and
rendered from a novel viewpoint, Gouraud shaded

Figure 7 gives a reference/disparity image pair similar
to Figure 2, this time of an outdoor scene. The distances
are larger than in Figure 2 and consequently the errors are
greater, especially for farther regions of the image such
as the staircase balustrade. Figure 8 shows the generated
patchlet cloud rendered from a novel viewpoint. One can
see in that there is considerable wobble in the represented
surface due to stereo estimation errors. Figure 9 shows two
additional views of the patchlet cloud. Figure 9(a) shows
the balustrade viewed from the front of the steps. Signifi-
cant smoothing between the steps and the balustrade can be
seen. This is caused by the stereo correlation mask during
the correlation algorithm.

(a) Far side of stairs

(b) Close up

Figure 9: Scene rendered from additional viewpoints

5.1. Accuracy analysis
The pointing accuracy required by (2) is supplied by the
calibration process of the stereo camera. In our case it was
supplied as a standard deviation of 0.03 pixels when oper-
ating with 320 × 240 resolution stereo images. However,
the matching accuracy, m, is a feature of the correlation al-
gorithm and is less straightforward to estimate. We derived
the matching accuracy experimentally.

To determine the matching accuracy we took a stereo im-
age of a well textured planar surface (in this case, carpet
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Figure 10: Determination of stereo matching accuracy: dis-
played is the histogram of Mahalanobis distances for three
matching errors overlaid on the histogram expected from
the Unit Gaussian. The Y axis is number of points, the X
axis is in standard deviation.

over a concrete floor). We then postulated several values
for the matching error and evaluated their accuracy. Given
the manufacturer-specified pointing accuracy and a hypoth-
esis for the matching accuracy, we calculated the covariance
matrix, Λx, for each disparity pixel in the stereo image as
given by (3), as well as the disparity pixel’s x, y, z location.
We then generated a normalized histogram of the Mahalno-
bis distance of each calculated 3D location from the plane.
The histogram that best matched the Unit Gaussian would
be the one with the accurate value for the matching error,
(i.e., we iterated through a set of matching errors, search-
ing for the one in which exactly 67% of the 3D points were
within one standard deviation of the plane, 95% were within
two standard deviations and so on.)

The results of this search are shown in Figure 10. This
test verifies two issues. First, that the histogram shape
conforms to a Gaussian, verifying that the assumption of
a Gaussian distribution for sensed data points is accurate.
Second, it determines that a matching accuracy of 0.05 pix-
els standard deviation best modeled our system.

As a sanity test, we then performed a regression test on
the confidence measures for the patchlets created from the
same planar surface scene. We used the pointing and match-
ing errors as determined above, generated patchlets based
on the resulting sensor model, and examined the histogram
of the angular difference between the patchlet normals and
the plane normal, normalised by the orientation confidence
measure. The resulting histogram is displayed in Figure 11.
The dashed line represents the unit Gaussian, our expected
histogram level. The solid line represents the obtained his-
togram, which matches the Unit Gaussian very closely, al-
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Figure 11: Verification of patchlet accuracy: displayed is
the histogram of Mahalanobis distances for normal direc-
tion of a patchlet cloud from its generative plane, overlaid
with a Unit Gaussian. The Y axis is number of patchlets,
the X axis is in standard deviation.

beit with a slightly heavier tail.

6. Range image segmentation
Patchlets were originally conceived as a tool for interpreta-
tion of stereo range data for mobile robot navigation. Mo-
bile robots can collect a large amount of data from their
environments, and a compact representation of the environ-
ment is desirable for mapping and navigation algorithms.

Figure 12: Surface segmentation

Figures 12 and 13 show the results of probabilistic pla-
nar surface segmentation from the patchlet cloud from
Figure 7 using clustering. The details of the segmenta-
tion process are described fully, and more complete re-
sults are presented, in [ML]. The method use Expectation-
Maximisation to maximise the joint probability of the
patchlet data and the segmented surfaces. Figure 12 uses
the full patchlet model and includes dimensions for both
surface normal and surface connectivity. Figure 13 gives
the results of the clustering using only the patchlet position
information. We can see from these figures that the added
dimensionality of normal direction, surface contiguity and
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Figure 13: Segmentation using point information only

proper weighting with the uncertainty measures greatly im-
proves the quality of the segmentation.

7. Conclusions
Point-based methods are gaining popularity in the graph-
ics community for their ability to handle complex shapes
without constructing or maintaining explicit connectivity
between points. Stereo vision is a sensing technology that
has considerable promise, it is inexpensive, fast and simple.
In our research we are bringing these two areas together,
demonstrating that point-based data primitives are a natural
and useful way to interpret stereo vision 3D data.

Stereo vision is a noisy sensor, consequently maintain-
ing uncertainty data is a requirement for later shape anal-
ysis and especially important if one wishes to merge data
from multiple viewpoints. Patchlets, our primitives, may be
used directly for modeling as well as for data-driven shape
analysis. We have demonstrated this usefulness through ap-
plication to larger surface extraction and estimation.

7.1. Future work
A stereo image is quite limited in its ability to reconstruct
scenes due to its viewpoint limitation. For more complete
models it is necessary to register views and combine the
resultant 3D data. The uncertainty measures of patchlets
make it well suited for the process of combining data. The
certainty and the sizes of the patchlets can play and impor-
tant role in maximising the accuracy of the final result. We
are working to extend the application of patchlets to the
combination of multi-viewpoint data. As well, the exam-
ple application in this paper is restricted to extracting pla-
nar surfaces. This application was designed for construct-
ing environment models of indoor environments for mobile
robots, in which the planar surface constraint is largely ac-
curate. However, for more complex and organic environ-
ments or objects, expanding the shape analysis to higher
order parameterised surfaces would be advantageous.
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