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Abstract— The estimation of static parameters in general non-linear
non-Gaussian state-space models is a long-standing problerihis is
despite the advent of Sequential Monte Carlo (SMC, aka partic
filters) methods, which provide very good approximations tahe optimal
filter under weak assumptions. Several algorithms based onMC have
been proposed in the past 10 years to solve the static paraneet
problem. However all the algorithms we are aware of suffer fran the
so-called ‘degeneracy problem’. We propose here a methodmy for
point estimation of static parameters which does not suffeffrom this
problem. Our methods take advantage of the fact that many sta
space models of interest are ergodic and stationary: this Ews us
to propose contrast functions for the static parameter whii can be
consistently estimated and optimised using simulation-tsed methods.
Several types of contrast functions are possible but we fosuhere on
the average of a so-called pseudo-likelihood which we maxize using
on-line Expectation-Maximization type algorithms. In its basic form the
algorithm requires the expression of the invariant distribution of the
underlying state process. When the invariant distributionis unknown,
we present an alternative which relies on indirect inferene techniques.

. INTRODUCTION

This paper is concerned with the on-line estimation of stati
parameters in non-linear non-Gaussian state-space models. MbTe
precisely, we consider models of the following form. For an)/a‘g

parameterd € O, the hidden/latent state proce§X,;n > 1} C

XY is a stationary and ergodidMarkov process, characterized by

its Markov transition probability distributiorfy (2’| x) admitting
T as invariant distributioni.e. X; ~ m and forn > 1,

Xl (Xo =) ~ fo (]2) . (1)

Note that the assumptio; ~ 7y is not restrictive under the er-

godicity assumption, and will furthermore simplify the presentatio

of our methodology. As indicated by its nani&,,} is observed,
not directly, but through another proce§g,;n > 1} c Y¥. The
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where® = (—1,1) x Rt x Rt and 6 = (¢,07,°) denotes
the static parameter vector. The transition probabijfityz’|z) and
invariant distributionre (x) are identical to those of the previous
example but hergy (y|z) = N (y;0, 8° exp (z)).

When the static parametdris known, sequential inference on
the process{X,} is typically based on the sequence of joint
posterior distributiongpe (z1.n|Y1:»)} which each summarizes all
the information collected abou;.,, up to timen. Optimal filtering
is concerned with the sequential estimation of these distributions,
which can be - at least conceptually - easily achieved using the
following updating formula fom > 2

ge (Yn|xn) f@ (xn|$n—1)
Peo (Yn|yvl:n71)

Do (ml:nflhflznfl) )
®3)

andpy (z1|Y1) « go (Y1|z1) 7o (21). Although simple, the recur-
sion formula in Eq. (3) rarely admits a closed form expression:
this is typically the case as soon gs or gg are non-Gaussian,
or X is not a finite set. In such scenarios it is possible to
ort to numerical approximations. One such class of numerical
orithms are Sequential Monte Carlo (SMC) methods (aka par-
ticle filters), which have recently proved to be efficient tools to
propagate sample approximations of these distributions’ marginals
{po (Zn—r+1:n|Y1:n)} in time for a given integel. > 0 [5]. This
methodology is now well developed and the theory supporting this
approach is also well established [4].

We focus in this paper on the on-line estimation of the static
parametef). More precisely, assuming that there is a true parameter

Do (-len')/l:n) =

Iyalue@* generating the dat@Y,, }, and that this value is unknown,

our aim is to compute point estimates®@ffrom {Y,, } in an on-line
manner. This problem appears in numerous applications. First, in

observations are assumed to be conditionally independent givBiPSt real-world scenaria” is indeed unknown and its estimation

{X,}, and their common marginal probability distribution is o

the formge (y|x); i.e.for 1 <n < m,

Yol (X1y o, X =2, Xom) ~ g0 (| 2) )

We give here a couple of standard examples used throughout t

paper.
Example 1.Linear Gaussian model

Xn+1 = ¢7Xn + U1JVn+17 Vn I'I\q N(Oa 1) )
Yo = Xo +0uWa, W " N (0,1)
where® = (—1,1) xRt xR*, 6 = (¢, 07, 02,) denotes the static
parameter vector and’ (; 1, 0?) is the normal distribution with
argumentz, meany and variances?. It can easily be checked

that mp (z) = N(ac; %) . fo(a'|z) = N (2';¢z,07) and

go (ylz) = N (y;2,0%).
Example 2. Stochastic volatility moddH0]

Xn+1 = ¢Xn + U1)Vn+l7 Yn = ﬂeXp (XH/Q) Wn7

£1S required before optimal filtering can be performed. Second, on-

line estimation is often the only realistic solution when the amount
of data to be processed is large. Although apparently simpler
than the optimal filtering problem, the static parameter estimation
I;?I[Soblem has proved to be much more difficult; no closed form
solutions are, in general, available, even for linear Gaussian and
finite state-space hidden Markov models. There have already been
numerous attempts to solve it in control, signal processing, statistics
and related fieldse.g. [6], [7], [13]. However it remains largely
unsolved despite the possibilities offered by SMC techniques. We
propose here a general and principled methodology which allows
us to compute asymptotically consistent point estimateg™ofor

a large class of dynamic models. Our approach is essentially based
upon the on-line maximization of a pseudo-likelihood function for
which Monte Carlo simulations might be needed. However, we
would like to stress at this point that the methodology developed
here does not necessarily require the use of such computationally
intensive approaches when more direct and simpler simulation
technigues are possible.



Il. SMC METHODS FORSTATIC PARAMETER ESTIMATION represent the number of particles that effectively pass through it.

It is not our aim here to review SMC methods in details, putthis realization of the particle process is representative of what
simply to point out their intrinsic limitations which have funda-iS generally observed in more complex scenarios: the paths tend
mental practical consequences for the static parameter estimatighcoalesce as we follow the paths backward in time. As a result,
problem. Assuming that the static parametés fixed for the time whereas{ X{"} and {X}"} provide a good coverage o, which
being, we describe the simplest SMC algorithm available to approxVill resultin a good representation pf( zs| Y1:5) andp (27| Y1i:s),
imate {pg (21.n|Y1.n)} Sequentially. More elaborate algorithms arethe s_ample representation detgnor_ates as we go pack in time,
reviewed in [5], but crucially all such SMC algorithms suffer from"esulting in poor sample approximationsofz1.4| Y1.s), i.e. even

a common problem, namelyath degeneracyas explained below. if the truep (1.4 Y1:3) is not degenerate, the sample representation
is degenerate. This coalescence phenomenon is the result of the

k3

A. Sampling Importance Resampling resampling stage and has long been observed. As we shall see, this
Assume that at timex — 1, a collection of N (IV >> 1) random inability of SMC methods to satisfactorily approximatee(with a
samples{f(ffﬂl_l,i = 1,...,N}, called particles, distributed constant computational budget per iteration) the sequence of joint
approximately according tpg (x1.,—1| Y1.n—1) is available. The distributions{ps (z1..|Y1.n)} makes SMC-based on-line parameter
empirical distribution estimation algorithms inappropriate.
N The success of SMC methods lies in the fact that results of
By (dz1m—1|Yim_1) = % Soo  (drin) (4 the fO||0WIng form_ can be obtained under the _relatlvely general
— “Ln-t assumptions detailed in [4]. LeE > 0 be an integer and let

o1 : X = R be a bounded test function, then there exists some

is an approximation opg (dz1.n—1| Yi:n—1), Wheredy, (dz) rep- constantDy.;, (1) < oo such that for any: > 1

resents the Dirac delta mass function locateddnNow at timen,
we wish to produceV particles which will define an approximation N 2 Do (p1)
P9 (dz1:n| Yiin) Of pp (dz1m|Yim). A simple method to achieve (/L ¢L (Tn-L41n) € (dTn—L41m] Yl:")) S—N
this consists of settingt” | = X  and then sample, for @
example,f(,(f) ~ fo(-] X,(fll). The resulting empirical distribution In summary, for a fixed computational budget per time instant, SMC
of the particles{f(ffﬁ is an approximation of the joint density methods cannot properly approximate joint distributions sequences
P (1:m—1] Yiin—1) fo (zn| zn—1). We correct for the discrepancy of the form {py (z1.»|Y1.n)} Sequentially in time because of the
between this density and the targgt( x1.,.| Y1.,) using importance paths’ coalescence phenomenon: as we shall see this is what makes
sampling. This yields the following approximation@f z1.,| Y1.,)  the direct application of SMC techniques inappropriate for static pa-
N rameter inference. However, under ergodic assumptions, forea giv
oy (dz1in| Vi) = Z W,(f)éj(m (dz1m) | (5) lag L > 0, _SMC methods can consistently a_pproxmate sequences
o Lin of distributions {ps (zn—r+1:n| Y1:n)} for a fixed numberN of
particles: this is the type of property that we shall use in this paper

i) o () N (i) _ ! . : . . ;
where W, o< g (Yn|Xn") and 3 ;7 Wy = 1. in order to perform consistent on-line static parameter estimation.

To obtain an unweighted approximation @f z1...| Y1.») of the
form (4), we resample particl ~{f2L} according to probabilities o
proportional to their weight$1W,\”’}. The underlying idea is to get T - T
rid of particles with small weights and multiply particles which are Fepresamans

in the regions with high probability masses; see [5]. .

Clomea Y VAR

B. Limitations of SMC Methods

Discrete O
State space

Under relatively weak assumptions ofy and ge, it can be -
proved that the resulting set of empirical posterior distributions
{;ﬁé\’ (dw1:m| Y1)} converge towards the true posteriorshagioes
to infinity. More precisely, it can easily be shown that for any 1
and any bounded test functigp, : X* — R there exists some : > : * e ’ ° o
constantCy ., (¢n) < oo such that for anyV > 1 Fig. 1. Realistic sequential methods suffer from path degeye
' N 2 CG,n (Qpn) . . . '
E (/ on (T1:n) €9 (dxl:n|Y1:n)) < N (6) C. Difficulties with Static Parameters

Various strategies have been proposed in order to deal with static
wheree) = py — Py and the expectation is with respect to theparameter in an SMC context. These methods are reviewer in the
particle realizations, see [4]. Although at first sight reassuring, (6xtended version of this paper, and we focus here on a popular
is practically useless since the boung,, (¢.) typically grows method where one sets a prior 6rand SMC is used to estimate
polynomially or exponentially withe, and reflects a fundamental the joint posteriorp (0, z1.,| Y1.») . Diversity among particles in
weakness of SMC methods: with limited resources, N fixed the parameter space is introduced using MCMC steps of invariant
and finite, it is not possible to approximate properly the sequenddstributions p (6| Y1.», z1:»). This is certainly one of the most
of distributions{pe (x1:n| Y1:n)}. elegant method, as the model of interest is not artificially altered.
We now illustrate, with a toy example, the underlying phe-This algorithm takes a simple form when Y1.,|z1.»,0) can be
nomenon which explains the growth €% .. (¢.)}. The tree in  summarized by a set of low-dimensional sufficient statistics [1],
Fig. 1 represents a realization of the pathﬁff)l} of N = 8 [6], [7]. However, as noticed in [1] and in light of the limitations
particles up to timen = 8 for a system for which the state of SMC methods outlined previously, this approach is inefficient.
space iX = {—5,—4,...,0,1,...,5}. The numbers at each node This is demonstrated by the following example.



Example 1 Linear Gaussian mode(cont.). For the sake of A. Likelihood and Pseudo-Likelihood Functions
simplicity, we set a uniform prior distribution on the stability Tpe
domain (—1,1) for ¢ and we assume thak; ~ N_(O’.Ug), (2) is given, forn > 1 observations bylog ps (Yi.,) =
for someog > 0. In this case, the full conditional distribution S log pe (Yi|Yie_1) with the conventionYi, = @ and
p(¢|Y1i:n, 1) IS @ truncated Gaussian distribution restricted tQ/vhke:r(le ' ’

(—1,1) with meanm,, and variances2 given by

log likelihood function corresponding to model (1)-

po (Yi| Yi—1) = /ge(Yk\ZCk)pa (zk| Yiig—1) dzk .
X

n n—1
2 -2 2
Mn = On (Z kakl) ando,” = Z Tk Under regularity assumptions, it can be shown that the average log-
k=2 =1 likelihood satisfies the following ergodicity property
The prqbllem With t.his approach is that the SMC estimates of limn—co n1log po (Yim) = 1(6) |
the sufficient statistics necessary to perform the MCMC updates 1(0) = [ log (f g6 (y|$)u(dx)) No.o- (dy, dp)
degrade as: increases because they are based on the approx- IYXPX) X ' ’ ’
imation of the joint distributionpg, (z1.n| Y1.n). For the ideal whereP (X) is the set of probability distributions defined ¢t
case wherep = ¢* = 0.5 we present in Figure 2 the quan- In this expressiom ¢~ is the invariant distribution of the Markov
tity n=' > r_, E[X}| Y1..] computed exactly using the Kalman chain{Y,pe (21| Y1.x—1)}. It can be shown that the set of global
smoother and estimated using an SMC method. Initially the SM@axima of this function includes the true valéé. This follows
estimate displays good performance but, as expected, perforfism the fact that maximizing () is equivalent to minimizing
very poorly asn increases: this stems from the fact that the jointhe Kullback-Leibler divergencés (9,0%) := 1(0*) — 1(0) > 0.
distributions {pg~ (z1.»| Y1:n)} cannot be consistently estimated Based upon this remark, we suggest the use of noisy gradient
over time, as pointed out earlier. In Figure 2, we display thalgorithms to maximizel (9); see [2] for a review. There are,
parameter estimate obtained using the SMC algorithm coupled wittowever, two major problems with this approach. First, such an
Gibbs sampling updates. We see that at first the parameter seeapproach requires one to estimate the derivative of the optimal
to converge towards the correct region but then drifts away as tifigter with respect to. Non-standard particle methods are required
sufficient statistics used in the MCMC update are not properlio estimate this signed measure and their robust implementation
estimated. A similar problem occurs with the method proposed ivia SMC has a computational complexity @ (N?), whereN is
[13] since it is also based on such sufficient statistics. the number of samples used for the SMC [11]. Second it can be
difficult to properly scale the gradient components. More elegant
- and robust algorithms have been proposed that rely on on-line
1 versions of the EM algorithm, typically when the joint distribution
i po (z1:n,y1:n) belongs to the exponential family. This approach
e has the advantage that the filter derivative is not required and
_ ] that it is, in general, numerically well-behaved. Furthermore, it
e T —— etz e is conceptually and practically straightforward to implement an
i ] on-line EM algorithm to maximizel (¢) using SMC methods.
A el However, this requires estimating sufficient statistics based on joint
probability distributions whose dimension is increasing over time.
So similarly to SMC approaches that use the MCMC steps described
. earlier, such an approach can lead to unsatisfactory results in
Fig. 2. Top: sufficient statistics computed exactly throups Kalman practice.
zgihiglédlj's?% %ﬁéﬁj&g:&%ﬂgﬂé%ﬁ%:'t?gs)'S?ggns: parameter o circumvent this problem we propose to introduce here another
contrast function. More precisely, we focus on a pseudo-likelihood
function as originally proposed in [12] for finite state space HMMs
(refered to in this paper as “split-data likelihood”). This pseudo-
[11. POINT ESTIMATION METHODS likelihood is defined as follows. Formally, consider for a given time
) . lag L > 1 and anyk > 0 “slices” Xj = Xyr41:6+1) and
We present here an_alter_natlve strategy to t_he static parametgl’ _ YioL1:(es1yz OF { X} and{Y,, }. Because of our stationarity
estimation problem, which aims to give point estimate§ofather

) ’ ) A assumption, the vector§Xy, Y} are identically distributedand
than a series of estimates of the posterior distributigr®|Y1.,)}.

. . ; X their common distributiomy (xx, yx) is given by
As a result no particle method is required in the parameter space,

[

B2 No kB

and it should also be pointed out that particle methods in the state (k1)L
spaceX are also not always necessary. The most natural approacHTe(wkHl)ge(ykLH|$kL+1) H fo(zn|Tn-1)g6(Ynlzn) -
to point estimation for the parametér consists of recursively n=kL+2

8)

maximizing the series of likelihood$p(Y1.,]0)}. We start this
section with a discussion in which we highlight the difficulties
associated with this t_ype_ of strategy and th!s Ie_ads us to.lnstead po (Yi) = / o (%, Y ) dxic 9)
focus on a pseudo-likelihood approach which is well suited to XL

Monte Carlo approximations. We then go on to develop efficiening we define the log pseudo-likelihood ferslices of observations
algorithms for maximizing the pseudo likelihood recursively. We —m—1

first describe a gradient algorithm in brief, and then focus mainl{?y kz::o log po (
on on-line EM (Expectation-Maximization) type algorithms whichtially ignores the dependence between data slices. The parameter
benefit from numerical stability. L should be large enough to ensure identifiability. Note also that

The likelihood of a blocKY, of observations is given by

Y«) which compared to the true likelihood essen-



there will be here an efficiency/computational complexity trade-off)s (X,Y) = Zfﬂ XiXiz1, Ya (XY) = Zle Y2 exp (—X:).
associated td.. As L increases, the maximum pseudo-likelihoodGiven & (0,_1,6%), it is possible to maximizeQ@ (0,0,_1)
estimate properties will become comparable to that of the standaadalytically whenL > 2 and find0, = A(® (6x-1,0")) whereA
ML estimate, but as we shall see this might result in more comples not given here for sake of brevity.

and computationally intensive algorithms. In practice,Q cannot be computed as the expectations appearing
Under ergodicity assumptions, the average log pseudo-likelihodd the expression fob (65, 6*) are with respect to a measure depen-
satisfies dent on the unknown parameter valife However, this ideal batch
lim, oo % ZZ:ol log po (Yr) =1(0) , algorithm can be approximatgq using the f_oIIowjng on-line §cheme.
1(0) := fyL log (po (y)) pe- (y)dy - Indeed, thanks to the ergodicity and stationarity assumptions, the

o observationq Y} provide us with samples fromy- (y) which can
It can be shown that the set of parameters maximiziify includes  pe ysed for the purpose of Monte Carlo integration. More precisely

the true parameter [12]. This follows from the fact that maximizingye recursively approximate the sufficient statistiesd;, 6*) with
1(6) is equivalent to minimizing the following Kullback-Leibler the following update, given here at tinke
divergenceK (0,0*) = 1(6*) — 1(0) > 0. In this article, we ) )
propose to maximizel () recursively using on-line EM type D = (1 — %) Pr—1 +1Eo,_, (¥ (X, Yi)| Yi) , (10)
algorithms and stochastic approximation techniques. here E (|Yx) denotes the expectation with respect to
Whereas the maximization of the true average Iog-likelihOO(\:fV O—1 k s P ;) . b
function requires complex SMC methods in order to either evaluatés-1 (x|Y). We then substitute;, for ?1(9’“’ ¢") and Obta'r?’“ -
the filter derivative or estimate expectations with respect to distrig(®#)- If 6 was constant and; = k™" then ; would simply
utions defined oiX™ at timen, the key advantage (detailed further) compute the arithmetic fwerage {)E_"k;fl(\p (X, Y&)| Y&)}, and )
of the average log pseudo-likelihood function is that it only require_§°m’erge toward (6, ") by qrgodlc@y. In fa_c_t, convergence IS
the estimation of expectations with respect to distributions defind general ensured for any non-lncreas;ng positive stepsize segjuen
on XX, A direct stochastic steepest descent algorithm to minimiz Y sucbathatz Y = oo and Zﬂk < oo} we can select
K (8,6%) is possible using Fisher’s identity. We will not detail this 7% = C.k V\_/hereO >0anda € _(5_’ 1]. L o
approach here, but will focus on on-line EM type algorithms as _'I_'o summarize, the \_/ector of sufﬂ_uent statisties; is arbitrarily
they are more numerically stable and widely applicable to model§itialized and the on-line EM algorithm proceeds as follows for the

used in practice. data slice indexed by > 0.
: . . o E-step ®x = (1 — 7%)Pr—1 + 7B, _, (¥ (X, Yr)| Yi).
B. On-line EM Algorithm: Known Invariant Distribution mp 0, — A(ik).
We first assume in this section that the invariant distributigis In scenarios wher&;, (¥ (X,Yx)|Y) does not admit an an-

known analytically. To introduce the on-line EM in this scenario, wealytical expression, a further Monte Carlo approximation can be
first present an “ideal” batch EM algorithm to minimiZ€ (0,0%)  used. Assume that a good approximatign(-|Yx) of pe (-|Y4) is
with respect tod or equivalently to maximizd (6) . At iteration  available, and that it is easy to sample frggn(-|Y%). In this case
k+1, given an estimaté,. of 6", we update our estimate via  the algorithm presented above can be altered as follows.
E-stepx,(j) ~qop_, (|Yg) fori=1,...,N

Ok+1 = argmax Q (6, 0x) , - ? , . '
bco &y = (1=) Pt 47 2N, Ww(XP Yy) whereW ) o

xM 1y ;
where Pon K k) Z)I ay and N W =1,
96,,_, (X" Yk) =
Q(0,0r) = /XL - log (po (x,¥)) pe,, (x]y) pe- (y)dxdy . M-step 0, = A(dy).

As N increases the importance sampling approximation con-
verges towards the true expectation. Moreover the bias is of order
N~ Note that if it is possible to sample frop, _, (x|Y}) exactly

P61 (Xy) dxd then it is not necessary to have a large numieof samples and a
_/XL i 08 (W) Po,. (XIy) e~ (y)dxdy single sample might even be sufficient. Indeed it is only necessary

and since the second term on the RHS is negative by Jense%oshave an unbiased _es.tlmate]]ba‘kfl (¥ (X, Y’“NY’“)'
. . . . o . . Observe also that it is alternatively possible to use SMC tech-
inequality, we see that an iteration of this “ideal” EM algorithm

decreases the value & (07 9*), and the Stationary points corre- niques to approximate this expectation or to sample apprOX|mater

spond to the zeros dt (6, 6*). In practice for the models which we from po (x[Y&). We stress that_ln th's. context, as SMC.: Is used to
. . L . ... sample from a distribution of fixed dimensidn there will be no
will consider, it is necessary to compute a set of sufficient statistics

D (0, 0%) at timek in order to compute). path degeneracy problem.

Example 2. Stochastic volatility mode{cont.) In this case, we ¢, On-line EM Algorithm: Unknown Invariant Distribution
have (with= meaning “equal up to a constant”)

Now since for anyd € © Q (0x+1,0x) — Q (0k, 0x) — K (0x,0%) +
K (0x41,0%) is equal to

In the previous section we required not only the existence of
Q(0,0k-1) = —log (1 — ¢*) + Llog (028%) + 5%@4 (0k-1,0) m, but also its analytical expression. This can be a restriction in
25 (o1 (0k—1,0") + (1 + ¢*) 02 (0x—1,0") — 2¢p3 (0r—1,0")] some situations since whereas ergodicity can be established for
y many Markov processes of interest, and the existeneg @iroved,
closed form expression for this distribution is rarely available due
to algebraic intractability. However in many cases, it is easy to
sample realizations of the proce§X,,, Y, } for a fixed value o9,
especially in situations where the process is defined recursively as

where the sufficient statistics @ (0;_1,6") =
[901 (ek—lv 0*) ) P2 (ekf—l? 6*) y P3 (91@—1, 9*) )y P4 (076_17 9*)]T
are given by ® (6x—1,0") = Eo,_,.0+ [V (X,Y)] and where
the expectation is with respect ts, , (x|y)pe=(y) and
v (X7Y) = [wl (X7 Y) , 2 (X7 Y) Y3 (X, Y) s (X7 Y)]T
with 1/}1 (Xa Y) = )(l2 + XI2,7 1/)2 (X7Y) = Zf:_zl X127 Xn+1 = ¥o (Xn7 Vn+1) ) Y, = Yo (XTH Wn) ) (11)



where for anyd € ©, pg : XXV — X, 79 : Xx W — X for some {Y,} from (11) and using the recursion

spacesV andW, with {V,,} ¢ V¥ and {W,,} ¢ W" beingi.i.d.

sequences from standard distributions not dependefit biere we @, = (1 — &) Pr—1 + yk/ W (X, Yr) Dy, (x| Yr)dx, (14)

will consider the situation where we can sample realizations of the xr

process{X,,Y,} for a fixed value ofo to develop an algorithm for a stepsize sequendgy,} C (0,1)Y. The sequencd¢,} is
based on théndirect inferenceprinciple; e.g.[8]. The main idea of constructed by letting;, = A(®y) for any & > 1. We refer to this
indirect inference consists of the following three key steps. First algorithm as the on-line EM algorithm. Similarly integration with
proxy model parameterized lfy€ = is fitted to the observed data respect topy- (y) is straightforward, since herfY;’} provides us
{Y.'}, generated witld = 6*. We will hereafter denot¢” = £ (6*)  directly with samples which can be used for Monte Carlo integration
the corresponding estimate. The proxy model is generally chosemnd fed into a recursion identical to (14) to produte; }. If

so that inference is easy, but sufficiently close to the original modghtegration with respect t@, (x|y), denoted hereaftee (-y), i

in order to capture its full complexity. Second, given a parametatot possible analytically, it can be performed using |mportance
estimated of the true parametef” one can simulate artificial data sampling or more generally any other Monte Carlo technique,
{¥} using (11) with¢ = 6, and the aforementioned proxy modelsimilarly to that in Section I1I-B. We now focus on a technique
is also fitted to{Y,} to produce an estimaté = £(¢). Third, to construct sequencesvé;} which converges to an estimate of
the parameter estimateis updated to decrease a distance measurg¢ | as this quantity is required in order to minimizg(9).

between¢ and ¢*. These three steps are repeated ufiti £*. To this end, for anyk > 1 we consider the gradient with respect
Many criteria are possible for matching, and we chose here thg ¢ of ¢, produced by the on-line EM algorithm for a set of obser-
commonly used criterion vations {Y,,} generated by (11) withd. First it is worth recalling
. N that¢y, is obtained at iteratiok by a deterministic transformation of
JO)=(-€) 2 (-¢), 12) the estimated sufficient statistids, of ® (£,_1,0), & = A(Py).
where¢ = ¢(0) and. is a positive definite matrix; see [8] and the As a consequence the derivative with respedf ie of the form
references therein for a discussion of the validity of the approach. Ve = VO Va, A(®r) . (15)

There is, in general, no analytical expression for the minimizer of
J, and we will resort here to a steepest descent algorithm, whioh sequence{V®,} of gradients of the sufficient statistics can be
requires the computation of the gradient recursively constructed by differentiating (14), leading to

1 . _
SVI(O) =VED (£-&7) . (13)  Vor =1 =) Ver1+%V | W (xk, Yi)Dey_y (xk| Yi) dxi ,
L
) (16)
where{Y}} is generated using. Under regularity assumptions, it
follows thatV [, ; W (xk, Y&) Pe,_, (xx| Yi) dx is equal to

Note that herev denotes the derivative with respect@&aand that
V. will denote the gradient with respect to any other variahle
Note also that for am.-dimensional variable = [z ... z,_] and
an nj,—dimensional function = [h1...h,,]", we will use the
notationV . to denote the:. xn, matrix with elementsv. A, ; =
Oh;/0z. This methodology is very general and good performance B T

is in general obtained if the auxiliary model is “close” to the true +/L Vg3 (k| Y)W (i, Yie) e
model. We suggest here a proxy modgel(xx,yr) which differs

from the true model (8) only in thatv replaces the invariant WhereVlogpg, , (x| Y&) is given by

L VYkVY\I/ (Xk, Yk)ﬁﬁk—l (Xk| Yk) ka
X

dlstrlbgtlonwa Here¢& and#@ coincide,i i.e. E€e=2=0, l_f e = Vlog e, (xi, Yi) — (18)
Following the developments of Section III-B, we introduce the
following cost function for any(§,0) € E x © Viog e,y (%i, Yi) De 4 (k| Yi) dXwpe, (x| Yi)
XL
lo (€) == / log (Pe (y)) po (y) dy , providing us with an expression for (17) in terms of expectations
Y& Ee, _, (:|Yx). Finally we haveV log pe, _, (xk, Yr) equal to
and foré, 0* € © define the “pseudo-estimateé;’f* as (1)L (k+1)L
€ := argmax [; (¢) and¢” := argmax lp= (€) . Z Vlog fe;, i (nlen—1) + Z Viogge,_, (Yalzn) ,
fe= fez n=kL+2 n=kL+1

In most cases analytical expressions §o€* and VE = Vé|,_; andVlog fe, _, (#nlen—1) = VEk-1.Ve,_, log fey (@nlan—1),
are not available, and we resort to iterative methods. Following the Viog ge,, (Yalzn) = VY.V, 1og g, (Yalzn)
developments of Section I1I-B, we again suggest the use of an on- V1Y o (Yalzn)

line EM algorithm in order to construct sequendgs } and {&;} ko1 Vg1 108 9ey nln) -
which converge to estimates @f and £*. Typically, for a given The sequencé§VY,} required for{VY,} corresponds to a path
0 € ©, {&} is defined recursively ag, = A(¥ (§x-1,0)) where  derivative [9]. Assuming that we can samp{é;} and {W,}

U (¢,0) is a vector of sufficient statistics andl a deterministic exactly (recall these are independent@®fand that the functions
mapping. wp and~yy are differentiable with respect to their first argument,
In most cases of interest this “ideal” algorithm cannot be implethe sequence can be recursively computed as follo§ = 0,

mented as the expectations do not admit closed-form expressioiy;, = 0 and forn > 0

and, in particulard* is itself unknown. However, we can again

resort to on-line Monte Carlo approximations. For @njntegration ~ VXn+1 = VYn.Vape (Xn, Vai1) + Vs (Xn, Vatr) (19)
with respect tapy (y) can be performed by generating artificial data VY, = VXo.Vev (Xn, Wn)+ Ve (Xn, W,) . (20)



Assuming that all the above expectations with
Pe,_, (xx| Yz) can be calculated analytically, (14) fér= 6, 6*
will allow us to compute sequencef,} and {&;} that will
converge to estimates gfand¢* and (20) ford = 6 will allow us
to compute a sequenc{&ék,} that will converge ton, therefore
allowing us to compute an estimate §WJ\9:é.

One can therefore, in theory, construct a sequeifigg that will
converge to the set of stationary points{d¥.J using the recursion

Or=0-1—m VE S (£ -¢), (21)

where forl > 1 £ :=limg o0 €4, € := limy_.oo &f andVE! =
limg .o VEL with {£L} estimated ford = 6, 1,0 and {VEL}
estimated fot = 6,_;. This is clearly impossible in practice. A first
step towards preserving the on-line nature of our algorithm would -
be to redefing’ := &}, £ := &, andVE' := V¢}, for a sequence
of integers{k;} such thatlim; . k; = co. This is however still
unsatisfactory since the computational cost per iteration (21) grows
to infinity with I and the algorithm does not “recycle” estimatés
from one iteration to the next.

An elegant way around these two problems consists of using a
two-time scale scheme, where the auxiliary model if fitted on a fast

Esmaely

]

£

timescale whereas the estimate of the true parameter is updatec..””

on a slow timescale. This scheme requires the choice of two non-
decreasing positive stepsize sequenges}, {3:} such that

D= Bi=00, Y v <oo, Y Bi<oo,

k>1 k>1 k>1 E>1

&

respect t&M algorithm and a modified version of it using the Polyak-Ruppert
averaging procedure. In this case, this proves very useful for the
parameter3. The algorithm converges to the true parameter. We
also display in Figure 3 the Kullback-Leibler divergence between
the estimated parameters and the true parameters.

a

Sl

and for somej > 0, ZkZIB,‘ify,j‘s < oo. A typical choice is
Y = C1k™Y, By, = C2k™¢ for 1 > ¢ > v > 0.5. The algorithm is

Fig. 3. From top to bottom: Convergencedfo?2 and3? and coﬁgarison
(up to additive constants) of the KL divergence under theémesed
parameters (red) and the true parameters (blue).

initialized with arbitrary valuesXo, Yo, VX0, VYo, ®*; and d_;
and then proceeds as follows fbr> 0.

EM for the true data/proxy model
®f = (1— )@y +wBe; | (WOGYDIYR) L& = A®7) -

Sampling of artificial dat&orn = kL+1,kL+2,...,(k+ 1)L,
sampleV;,, and W,, then set

Xn =04, (Xn-1,Va) , Yo =75, (Xn, Wn) . [3]

EM for the artificial data/proxy model [4]
O = (1= ) ®ro1 +mBe, (X, Vi)[Yr) & = A(Ps) -

Model Matching computeVé, using (15) to (20) and o

Or = Or—1 — B V& 2 (€ — &) E:

The expectations with respectgie: | (x| Y;) andp,, _ (x| Y&))
appearing inEe;  (U(X,Y;)|Y;) andEe  (¥(X,Yx)[Yx), re- 8
spectively, cannot typically be performed in closed-form. Monte
Carlo methods similar to those described in the previous sectiong]
can be used. A Monte Carlo approximation@f (x| Y) can

also be used to estimaté¢;, in (18).

(20]

IV. APPLICATION (1]

We have applied our algorithms to the stochastic volatility model
given in Example 2. Simulation results for the algorithm based?]
on indirect inference are presented in the extended version of tq'ﬁ]
article. The sampling distributiogy, was chosen to be a Gaussian
approximation ofpy as described in [10]. In Figure 3, we present a
simulation for the case whefle = 10, N = 100 ¢ = 0.8, 2 = 0.1
and 32 = 1, for a number of observation = 250,000 and
v = 1/k'/2. We also present results corresponding to the on-line
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