
Particle-based communication among game agents

Mike Klaas and Tristram Southey and Warren Cheung
Computer Science Dept.

University of British Columbia
{klaas,tristram,wcheung}@cs.ubc.ca

Abstract

One approach to creating realistic game AI is to create au-
tonomous agents that can perform effectively with no more
knowledge than a human player would have in their place. In
a multi-agent setting, it is also necessary to devise a means
for communicating among agents in collaborative game sce-
narios (such as a group of controlled agents that are searching
for the player), since agents no longer have access to global
knowledge. We present a method for communication using
particle filters in the setting of game state estimation.
Particle filters are an efficient, nonparametric means of per-
forming inference in complex environments. Their use in
game AI is particularly compelling, as they provide an easy
way to represent nonlinear, non-Gaussian inferences about
the state space, while exhibiting computational thrift. We
demonstrate that communication among a group of agents—
using particle filters to reason about the state space—can be
accomplished in a natural way by sharing particles among
the agents’ filters. We also show how a criterion for deciding
when to communicate naturally falls out of this framework.
We apply this model in the setting of coordinated target de-
tection, and find that agents of heterogenous types and com-
plexities can nevertheless coordinate effectively.

Introduction
Many modern games strive to provide the illusion of a group
of realistic and challenging opponents that only utilise in-
game information and do not “cheat.” This can be achieved
by simulating autonomous agents that communicate and co-
ordinate in a believable manner. We present a solution to
the problem of coordinated state estimation in a multi-agent
game setting through the use of particle sharing between
multiple particle filters.

As an example, consider a group of pursuers—opposing
guards attempting to locate a friendly espionage unit. Each
guard searches independently, rather than sharing a “group
mind,” and reasons about the game state on their own. How-
ever, a guard can also “radio” specific data to the other
guards to send and receive updates on the status of their
search for the player. In this way, the guards avoid searching
areas that has already been covered yand can determine the
regions where the player is likely to be hiding.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Collaborative game state estimation is related to the gen-
eral problem of multi-agent coordination. It poses many of
the same challenging subproblems: determining what infor-
mation is important to send to other agents, when to send
this information, and how to integrate the data other agents
send you into your beliefs about the state.

The application of particle filters to produce realistic state
estimation in games was recently shown in (Bererton 2004).
He argued the importance of isolating the knowledge avail-
able to game agents from the complete knowledge available
to the game system. Particle filtering provids an efficient and
flexible means of modelling the knowledge of a game agent
searching for a target. We demonstrate that particle filter-
ing as an inference algorithm naturally provides other com-
pelling advantages for use in game AI, namely an automatic
means of determining the importance of an observation (by
estimating its likelihood), and a direct way of sharing game
state inferences among agents by sharing particles.

This problem is highly related to the well-developed field
of distributed inference and sensor fusion. However, many
systems previously proposed have depended on a central el-
ement to coordinate inference, a requirement we do not ac-
cept for reasons of scalability and realism. Fully distributed
systems have been proposed, however (Rosencrantz, Gor-
don, & Thrun 2003). In this protocol, an agent will request
an update from another agent by sending them a subsam-
pled version of its probability distribution. The receiving
agent then compares the distribution against all of his obser-
vations, and replies with the observation most divergent to
the received distribution. The authors do not, however, pro-
pose a protocol for when agents should query other agents.
Also, agents must have identical observation models for this
scheme to operate effectively, and be able to evaluate the
probability of such observations, which may be impossible
without local data. We propose that the inferences them-
selves be transmitted, rather than the observations. This
saves computation, as the receiving agent does not have
to re-evaluate observations, and allows agents’ observation
models to be arbitrary and unknown to the other agents.

Our particle-passing scheme is demonstrated using sev-
eral examples, focusing on cooperative tracking. These ex-
amples include various observation models whose complex-
ity leads to nonlinear multi-modal beliefs about the state
space which can nonetheless be effectively shared.

Bayesian Filtering
Our goal is to develop game agents that have the ability
to plan and act intelligently without access to priviledged
knowledge. Instead, the agents have access to the same ob-
servations that a human player would have in their place.
Thus, the agent is faced with the problem of estimating the
latent state of the game given her observations. The latent
state can be represented as a multi-dimensional vector com-
prised of anything relevant to the agent’s planning; obvious
examples include the location of the player’s character(s) or
the details of the map.

More formally, let xt be the latent state of the game at
time t, and zt the observation vector. The task is to esti-
mate the probability distribution over the latent state, i.e.,
the marginal filtering distribution p(xt|z1:t), where z1:t ,

{z1, . . . , zt}. In the sequential setting, a Markov assumption
is typically made, so that the dynamics are completely spec-
ified by the transition prior p(xt|xt−1) and the observation
model p(zt|xt).

Bayesian filtering boils down to a two-step recursion.
First, a prediction is made of the current state given past
knowledge, given by marginalizing over xt−1:

p(xt|z1:t−1) =

∫
p(xt|xt−1) p(xt−1|z1:t−1) dxt−1. (1)

Equation (1) is called the predictive density. Next, we in-
corporate the observations at time t to produce the filtering
distribution:

p(xt|z1:t) ∝ p(zt|xt) p(xt|z1:t−1) . (2)

Unfortunately, it is usually impossible to evaluate equa-
tions (1) and (2) analytically. This is particularly true in
game settings, where complex observation models are com-
mon and the posterior distribution is often multi-modal. For-
tunately, particle filters provide an efficient, general means
of performing state estimation in these cases (Metropolis &
Ulam 1949).

Particle filters estimate a probability distribution p(x)
with a set of samples

{
x

(i)
}

called particles with associ-
ated weights

{
w(i)

}
. The approximation of the density is

then:

p(dx) =

N∑

i=1

w(i)δ
x

(i)(dx)

where δ
x

(i)(dx) is the delta Dirac function.1 The sequen-
tial particle filtering algorithm at time t proceeds as fol-

lows: First, we sample N particles
{
x

(i)
t

}
from the predic-

tive density. Next, we calculate the weight of each particle
using the update equation. Renormalization of the weights
produces a particle representation of the posterior. An op-
tional resampling step may also be performed, to prevent
degeneracy (Fearnhead 1998). Further details can be found
in (Robert & Casella 1999; Doucet, de Freitas, & Gordon
2001).

1Defined as δ
x
(i) (dx) ,

(

1 x
(i) ∈ dx,

0 otherwise.

Distributed filtering
There is a wide body of distributed tracking literature. Many
approaches focus on a centre that collects distributed infor-
mation, but recent work has focused on truly distributed
tracking, where each node is responsible for some of the
inference work. This is more appropriate for the settings
we consider, where we have multiple agents making in-
dependent decisions. Previous work has also concentrated
on the symmetric case, where all agents involved share the
same observation and transition models, which facilitates
distributed inference considerably. For instance, this enables
observations to be shared directly. We consider an assymet-
ric case, where the group of agents are all trying to estimate
the same quantity (such as the position of the evader), but
have access to different observations, and have different ob-
servation models.

If every agent had a completely distinct model, then there
would be no way to relate their inferences. Our point of
departure is to assume that the predictive density (eq. (1)) is
a mixture of the predictions from the various agents:

p(xt|z1:t−1) =

na∑

m

πm

∫
p(xt|xt−1) pm(xt−1|z1:t−1) dxt−1

Here {πm} are fixed mixture coefficients that determine
the weight each agent has toward the final prediction, and
pm(·|·) is the posterior distribution for agent m. We do not
assume that pm(·|·) obeys any parametric model—we need
only that it is approximable by a particle distribution (which
admits virtually all distributions of interest).

After the prediction step, agent a computes her posterior
distribution pa (xt|z1:t) as before, using the update equa-
tion (2):

pa (xt|z1:t) ∝ pa (zt|xt) p(xt|z1:t−1)

We are inspired by the work of Vermaak et al. (2003) who
use a mixture to model the posterior distribution to perform
multi-target tracking efficiently. The technique cannot be di-
rectly applied to our situation where each agent has distinct
observation models, leading to our use of a mixture-based
prediction model.

Particle filter algorithm
In a particle filter approximation, we assume that each agent

a has a set of particles
{
x

(i)
t−1,a

}

i=1:N
with associated

weights
{
w

(i)
t−1,a

}

i=1:N
that constitute a Dirac approxima-

tion of the agent’s posterior in the previous time step, i.e.

pa (dxt−1|z1:t−1) =

N∑

i=1

w
(i)
t−1,aδ

x
(i)
t−1,a

(dxt−1)

which produces the following approximation to the predic-
tive density:

p(xt|z1:t−1) =

na∑

m

πm

N∑

i

w
(i)
t−1,m p

(
xt

∣∣∣x(i)
t−1,m

)
. (3)

Thus, if we use the prediction model as our proposal dis-
tribution, we obtain the following algorithm for agent a’s
particle filter:

1. sample x
1:N
t,a ∼

∑na

m πm

∑N

i=1 w
(i)
t−1,m p

(
xt

∣∣∣x(i)
t−1,m

)

2. calculate weights w̃
(i)
t,a = pa

(
zt

∣∣∣x(i)
t,a

)

3. normalize w
(i)
t,a = w̃

(i)
t,a/

∑
j w̃

(j)
t,a .

Note that no resampling step is required as the predictive
density is already a mixture. If there is only one agent, then
the predictive density (3) simplifies to

p(xt|z1:t−1) =

N∑

i

w
(i)
t−1 p

(
xt

∣∣∣x(i)
t−1

)
.

Sampling from this mixture is equivalent to resampling the
particles then sampling from the transition prior.

Sporadic communication
In the previous section, we assumed that the particles from
all agents were available at each time step from which to
draw the predictive particles. Of more interest is the case of
sporadic communication. At time steps in which no message
is being sent by agent am, we distribute her predictive re-
sponsibility over the remaining agents in proportion to their
original weights. Let Ct be the set of agents that are send-
ing a message at time t. The the mixture weights for the
predictive density at time t are:

π̃t,m =
πmIam∈Ct∑na

i πiIai∈Ct

.

Limiting the size of messages passed among agents is de-
sirable both from a resource (maintaining the computation
advantage of particle filters) and game perspective (it may
be unrealistic in the game setting that an agent can commu-
nicate verbosely with other agents). The size of the message
can be varied by limiting the number of particles to send.
If this number is fewer than the size of the filter, the agent
will subsample her own particles. Note that the agent’s mix-
ture component in this case is unweighted—if R particles
are sent, each particle will have weight 1/R.

Deciding when to communicate
One of the main problems an agent faces is deciding when
to communicate her inferences to the other agents. We show
that particle filters naturally provide an easy way of making
this decision. We want to minimize communication of data
that has been previously communicated while ensuring the
pertinent information is conveyed immediately. To do this,
we assume that anomalous data (data that poorly fits the cur-
rent model of the world) is significant, and should be con-
veyed to the other agents. We accomplish this by evaluating
the likelihood of the data at time t: p(zt|z1:t−1). When the
likelihood falls too low, the agent updates its model to ac-
count for the current observations, and sends it to the other
agents.

Let t′ be the time of last communication. We wish to
compute the likelihood of all observations obtained since t′,
namely

p(zt′+1:t|z1:t′) =

t∏

i=t′+1

p(zi|z1:i−1).

When this value drops below a threshold τ , communica-
tion is triggered. The value of τ depends on the probability
model and on how often agent communication is desirable.
This parameter can thus be used as a difficulty gauge by tun-
ing the performance of the group of agents.

One of the many advantages of a particle filter is that
p(zt|z1:t−1) is trivial to compute: it is simply the sum of

the unnormalized weights w̃
(i)
t . This gives us the following

procedure for agent a at time t:

1. Save the unnormalize weights from step (2) in the particle
filtering algorithm: WΣ

t,a =
∑

i w̃
(i)
t,a

2. Update likelihood for time t: Lt,a = Lt,a · WΣ
t,a

3. If Lt,a < τ , trigger communication, and reset Lt,a = 1.

Discussion
The model we have adopted is known as a mixture of experts.
In this scheme, each expert has a certain weight (πm in the
previous section), and the final belief is the weighted sum of
all the experts. As we have presented the algorithm, there is
a single set of mixture weights {πm}, but there is no reason
to limit all agents to use the same weights. In our examples,
for instance, each agent puts more weight on her own beliefs
than those of her fellow agents. If this system was used in a
game in which agents did not have complete confidence in
each other, the expert weights could be used as a way to tune
the level of “trust” an agent has for other agents.

The choice of the mixture of experts model has a negative
consequence, however: When agents are spatially separated,
it is likely that the quality of beliefs of various agents will
vary in different areas of the state space (agent a may have
searched a room that agent b hasn’t yet visited). By adopt-
ing a global mixture parameter, we limit a’s ability to covey
negative knowledge since b still believes that it is possible
that the target is in that room (negative knowledge pertains
to areas in which the state probability density is low). A pos-
sible solution to this problem is to segment the state space,
and assign confidence weights separately in the various re-
gions. In our small examples, however, we have found that
negative knowledge can still be conveyed despite the use of
global, fixed mixture weights.

A consequence of our communication criterion is that an
observation may misfit the model due to noise rather than
being an unusual feature. In extremely noisy environments,
this scheme may cause the communication threshold to be
crossed too often.

We also note that the communication particle filter pre-
serves the linear cost in the number of particles, since each
agent always samples the same number of particles from the
mixture regardless of the size of the mixture. Particle filters
can operate with more or fewer particles from turn to turn,
depending on the computational resources available at the
time.

Example 1: Jungle Search
In Figure 1, three agents (coloured circles) are searching
for the target (black ×) within a “jungle” without success.
The “jungle” contains regions of total and partial occlusion,

which reduce the probability of detecting the target. In this
example, the three agents determine that the target is not
within the high-visibility regions near them, and pass this
information to each other.

Figure 1: Agent B state estimate; Dirac distribution of 1000
particles. Example of information from two agents allowing
a third agent to determine that the target is not only not in
her own viewing cone but also not in the viewing cone of
the others. The clear (white) regions have few particles, as
messages from the green and red agents have low probability
in those regions. In the obscured (grey) regions, none of
the agents can be sure that the target is not present, so the
particle density is higher.

Figure 2: Smoothed probability density corresponding to the
particle approximation in Figure 1.

Our probabilistic observation model allows for both par-
tial and total occlusion. Each agent has a limited angle of
view but is assumed to be able to see an unlimited distance
in the absence of occlusion. Each pixel on the map has an
associated occlusion value γ which is the probability of the
line of sight of an agent being occluded if it passes through
this pixel. The total occlusion value for a target P from an
agent O is therefore equal to 1 if the target is outside the

agent viewing angle, and equal to the product of all the oc-
clusion values of the pixels on the line from the agent to the
target, if the target is within the agent viewing angle. That
is,

occ(O, P) =

p∏

i=0

(1 − γi)

where γ0..γp are the visibility probability for the pixels
along a line drawn between the agent O and the target P .
An example of this observation model for an agent looking
through jungle foliage can be seen in Figure 3.

Figure 3: Observation model for an agent in the jungle. left:
the original obscurity map. right: the darkness of each pixel
within the agent’s field of view is proportional to the occlu-
sion value of the pixel—the probability that an object at this
location will not seen. Objects that are opaque (the black
trees) “cast shadows” of regions of zero visibility.

We have three coloured agents: R, B and G, all using the
observation model described above.

As agent B communicates with the other agents R and
G, they are passing an approximation of their entire belief
state, simultaneously transferring information about where
the target is not located in addition to where the target may
be hidden.

This example also shows that by using particle filters, we
can easily accommodate observation models that include un-
certainty in their observations. We can model a variety of
environments, from obscurity from shadows and nighttime
darkness to occlusion-filled terrains such as jungle and fog.
The posterior belief of the state space for agent B is shown
in Figure 2. This complex, multi-modal distribution would
be impossible to handle using analytic Bayesian Filtering
techniques (such as the Kalman Filter (Kalman 1960)).

Example 2: Range and Direction Sensors
This is an example of data integrated from two different ob-
servation models. We have two agents, R and D, attempting
to detect a target T . R is able to noisily detect the distance to
the target when making a successful observation. The obser-
vation model for agent D is only able to detect the direction
in which the target is located when making a successful ob-
servation. Independently, the agents are cannot pinpoint the
location of the target.

The agents both start off with evenly-distributed particles
which represents a uniform belief in the target’s location.
Once they both successfully observe the target, they will
initially infer the game state shown in the left of Figure 4.

Here, R has an obsevation of the range for the T but no di-
rection, resulting in a ring of particles at the distance of the
target. D has an observation of the direction of T , resulting
in a cone of particles in the direction of the target. Neither
sensor alone is able to accurately pinpoint the location of
the target. However, as the two of them communicate, they
update their models and are eventually fairly certain of the
position of the target as seen in the right of Figure 4.

This example highlights the flexibility of the observation
models that can be used. Agents with radically differing ob-
servation models are still able to communicate and coordi-
nate with one another. Different agents could include human
guards, cameras that detect a fixed field of view in a fixed
position, laser tripwires that only detect the target passing
through its line, touch pads that detect the target touching a
region, motion sensors that can detect movement in a room,
guard dogs that can smell a trail or heartbeat sensors that
work through walls.

Example 3: A Camera and a Tripwire
In our third example, we look at a scene with a fixed secu-
rity camera C and a laser scanner in a doorway L. C can
reorient itself but has difficulty seeing long distances. The
laser has a different observation model. It can only detect in
the target passes directly over its length but it is highly accu-
rate at doing so. At the outset (Figure 5), neither agent has
any evidence about the targets location. The laser detects
the target and communicates to the camera, telling it where
to focus. The camera then turns to track the target.

Applications
We have focused on games where searchers spread through-
out a map are passively guarding regions or actively search-
ing for the player. The player wishes to accomplish his
set of goals without having his exact position discovered
by the searchers. Our model allows for realistic interac-
tion between the player and the searchers. As the searchers
do not communicate continuously, the player can disable a
searcher that has discovered significant evidence of his po-
sition, preventing the searcher from communicating. The
other searchers retain their own inferences and can continue
to collaborate, while the state held by the disabled searcher
is unavailable. Should the disabled searcher recover, he
can rejoin the searchers and pass his inferences to the other
searchers. The player could also feed false information to
the searchers (by causing a noise, for instance), who would
act on and communicate this misinformation. These induced
errors in the model are eventually corrected by the searchers
investigating and observing the true state, but would provide
a temporary distraction.

In many real-time strategy games, a player must search a
map for the location of one or more resources such as lumber
or metal. By using our methods to direct search for these re-
sources, a computer player would not have any undue advan-
tage in searching resources over a human player. This would
also allow artificial opponents to be able to find resources
on an unknown or randomised map, and be unaffected by
randomised starting positions. It would also easily handle

resources that move, such as migrating buffalo, or perhaps
automate this resource collection for a human player.

The player could also be in control of an army and be
supported by game agents who would serve as leaders of
his units. Limited communication allows the player to only
update their model when we simulate communication from
the player’s leaders, which may be frequent in the case of
infantry squad leaders in radio contact, or very rarely in the
case of captains of submarines that operate mostly underwa-
ter or satellites which are often out of position.

Conclusion
Representing the inferred game state of multiple agents can
be readily accomplished through the use of particle filters
(Rosencrantz, Gordon, & Thrun 2003; Bererton 2004). Us-
ing a mixture model representation of the predictive den-
sity, agents can perform collaborative estimation of game
state. Each agent can have an arbitrary level of confidence
in the predictions made by other agents. Particle filters also
provide a natural way of determining when communication
should occur, by examining the likelihood of the observa-
tions, which is given straightforwardly in a particle filter
by the sum of the unnormalized importance weights. Our
model allows the agents to act autonomously, with heteroge-
nous observation and prediction models, while also provid-
ing a framework for sharing their inferences.

This system was implemented in the context of coordi-
nated target detection. We introduce an enhanced observa-
tion model which models partial occlusion using a cumula-
tive per pixel occlusion. In this setting, our model success-
fully replicates intelligent cooperative behaviour of multiple
agents that communicate in a realistic manner.

Acknowledgements
We thank Nando de Freitas and Jim Little for their invaluable
advice.

References
Bererton, C. 2004. State estimation for game ai using par-
ticle filters. In AAAI workshop on challenges in game AI.
Doucet, A.; de Freitas, N.; and Gordon, N. J., eds. 2001.
Sequential Monte Carlo Methods in Practice. Springer-
Verlag.
Fearnhead, P. 1998. Sequential Monte Carlo Methods in
Filter Theory. Ph.D. Dissertation, Department of Statistics,
Oxford University, England.
Kalman, R. E. 1960. A new approach to linear filtering and
prediction problems. Journal of Basic Eng. 82:35–45.
Metropolis, N., and Ulam, S. 1949. The Monte Carlo
method. JASA 44(247):335–341.
Robert, C. P., and Casella, G. 1999. Monte Carlo Statistical
Methods. New York: Springer-Verlag.
Rosencrantz, M.; Gordon, G.; and Thrun, S. 2003. Decen-
tralized sensor fusion with distributed particle filters. In
UAI.
Vermaak, J.; Doucet, A.; and Peŕez, P. 2003. Maintaining
multi-modality through mixture tracking. In ICCV.

Figure 4: Example of two agents attempting to locate a target. The circle agent (blue particles) is only able to observe the range
to the target and the asterisk agent (red particles) is only able to determine in which direction to the target. Apart, neither is able
to precisely determine the targets location. The left figure represents the the particle filters of the respective agents after they
detect the target. The right figure shows the particle filters of the agents after they share their inferences, successfully locating
the target.

(a) (b)

(c) (d)

(e) (f)

Figure 5: Example of two devices trying to locate the target. C is rotating security camera with a visual field defined by the
blue arc. S is a laser door sensor which can only detect the target if it passes over the red line. (a) C and S begin with an even
distribution of particles. (b) C has eliminated all particles in its viewing angle. (c) S has sensed the target moving over it and
recentered its particles on the target. (d) S creates new particles from the positive detection. (e) C receives information from S
and adjusts its own particles. Each now has an accurate estimate of the target’s position. f) C turns to orient on the target and
detects it. S’s estimate is now incorrect since it does not observe the target, but C can now remit the new position of the target.

