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Abstract. We consider object recognition as the process of attaching
meaningful labels to specific regions of an image, and propose a model
that learns spatial relationships between objects. Given a set of images
and their associated text (e.g. keywords, captions, descriptions), the ob-
jective is to segment an image, in either a crude or sophisticated fashion,
then to find the proper associations between words and regions. Previous
models are limited by the scope of the representation. In particular, they
fail to exploit spatial context in the images and words. We develop a
more expressive model that takes this into account. We formulate a spa-
tially consistent probabilistic mapping between continuous image feature
vectors and the supplied word tokens. By learning both word-to-region
associations and object relations, the proposed model augments scene
segmentations due to smoothing implicit in spatial consistency. Context
introduces cycles to the undirected graph, so we cannot rely on a straight-
forward implementation of the EM algorithm for estimating the model
parameters and densities of the unknown alignment variables. Instead,
we develop an approximate EM algorithm that uses loopy belief propa-
gation in the inference step and iterative scaling on the pseudo-likelihood
approximation in the parameter update step. The experiments indicate
that our approximate inference and learning algorithm converges to good
local solutions. Experiments on a diverse array of images show that spa-
tial context considerably improves the accuracy of object recognition.
Most significantly, spatial context combined with a nonlinear discrete ob-
ject representation allows our models to cope well with over-segmented
scenes.
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1 Introduction

The computer vision community has invested a great deal of effort toward the
problem of recognising objects, especially in recent years. However, less atten-
tion has been paid to formulating an understanding of general object recognition;
that is, properly isolating and identifying classes of objects (e.g. ceiling, polar
bear) in an agent’s environment. We say an object is recognised when it is la-
beled with a concept in an appropriate and consistent fashion. This allows us
to propose a practical answer to the question of what is an object: an object is
a semantic concept (in our case, a noun) in an image caption. Pursuing general
object recognition may appear to be premature, given that good unconstrained
object representations remain elusive. However, we maintain that a principled
exploration using simple, learned representations can offer insight for further
direction. Our approach permits examination of the relations between high-level
computer vision and language understanding.

Ideally, we would train our system on images where the objects have been
properly segmented and accurately labeled. However, the collection of super-
vised data by manually labeling semantically-contiguous regions of images is
both time-consuming and problematic. We require captions at an image level,
not at an image region level, and as a result we have large quantities of data
at our disposal (e.g. thousands of Corel images with keywords, museum images
with meta data, news photos with captions, and Internet photo stock agencies).
Previous work shows that it is reasonable to use such loosely labeled data for
problems in vision and image retrieval[1, 4, 13, 11, 2, 7]. We stress that through-
out this paper we use annotations solely for testing — training data includes
only the text associated with entire images. We do so at a cost since we are no
longer blessed with the exact associations between objects and semantic con-
cepts. In order to learn a model that annotates, labels or classifies objects in a
scene, training implicates finding the associations, alignments or correspondence
between objects and concepts in the data. As a result, the learning problem
is unsupervised (or semi-supervised). We adapt the work in another unsuper-
vised problem — learning a lexicon from an aligned bitext in statistical machine
translation [9] — to general object recognition, as first proposed in [13].

The data consists of images paired with associated text. Each image consists
of a set of blobs that identify the objects in the scene. A blob is a set of features
that describes an object. Note that this does not imply that the scene is neces-
sarily segmented, and one could easily implement scale-invariant descriptors to
represent object classes, as in [14, 12]. Abstractly, a caption consists of a bag of
semantic concepts that describes the objects contained in the image scene. For
the time being, we restrict the set of concepts to English nouns (e.g. “bear”,
“floor”). See Fig. 1 for some examples of images paired with their captions.

We make three major contributions in this paper.
Our first contribution is to address a limitation of existing approaches for

translating image regions to words: the assumption that blobs are statistically
independent, usually made to simplify computation. Our model relaxes this as-
sumption and allows for interactions between blobs through a Markov random
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building  grass  sky crab  rock polarbear  snowboat  water  sky  house  trees

Fig. 1. Examples of images paired with their captions. A crucial point is that
the model has to learn which word belongs with which part of the image.

field (MRF). That is, the probability of an image blob being aligned to a partic-
ular word depends on the word assignments of its neighbouring blobs. Due to the
Markov assumption, we still retain some structure. One could further introduce
relations at different scales using a hierarchical representation, as in [15].

Dependence between neighbouring objects introduces spatial context to the
classification. Spatial context increases expressiveness; two words may be in-
distinguishable using low-level features such as colour (e.g. “sky” and “water”)
but neighbouring objects may help resolve the classification (e.g. “airplane”).
Context also alleviates some of the problems caused by a poor blob clustering.
For example, birds tend to be segmented into many parts, which inevitably get
placed in separate bins due to their different colours. The contextual model can
learn the co-occurrence of these blobs and increase the probability of classifying
them as “bird” when they appear next to each other in a scene. Experiments
in Sect. 4 confirm our intuition, that spatial context combined with a basic
nonlinear decision boundary produces relatively accurate object annotations.

Second, we propose an approximate algorithm for estimating the parameters
when the model is not completely observed and the partition function is in-
tractable. Like previous work on detection of man-made structures using MRFs
[16, 17], we use pseudo-likelihood for parameter estimation, although we go fur-
ther and consider the unsupervised setting in which we learn both the potentials
and the labels. As with most algorithms based on loopy belief propagation, our
algorithm has no theoretical guarantees of convergence, but empirical trials show
reasonably stable convergence to local solutions.

Third, we discuss how the contextual model offers purchase on the image seg-
mentation problem. Segmentation algorithms commonly over-segment because
low-level features are insufficient for forming accurate boundaries between ob-
jects. The object recognition data has semantic information in the form of cap-
tions, so it is reasonable to expect that additional high-level information could
improve segmentations. Barnard et al. [3] show that translation models can sug-
gest appropriate blob merges based on word predictions. For instance, high-level
groupings can link the black and white halves of a penguin. Spatial consistency
learned with semantic information smooths labellings, and therefore our pro-
posed contextual model learns to cope with over-segmented images. In fact,
with this model, a plausible strategy is to start with image grid patches and let
segmentations emerge as part of the labeling process (see Fig. 6).
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2 Specification of Contextual Model

First, we introduce some notation. The observed variables are the words wn1, . . . ,
wnLn

and the blobs bn1, . . . , bnMn
paired with each image (or document) n. Mn

is the number of blobs or regions in image n, and Ln is the size of the image
caption. For each blob bnu in image n, we need to align it to a word from
the attached caption. The unknown association is represented by the variable
anu, such that anu = i if and only if blob bnu corresponds to word wni. The
sets of words, blobs and alignments for all documents are denoted by w, b and
a, respectively. Each wni represents a separate concept or object from the set
{1, . . . ,W}, where W is the total number of word tokens.

Results in [11] suggest that representation using a mixture of Gaussians fa-
cilitates the data association task and improves object recognition performance.
However, we retain the blob discretisation proposed by [13] because it scales
better to large data sets and we will find model computation easier to manage.
We use K-means to assign each blob bnu in the feature space R

F to one of the
B clusters. F is the number of features and B is the number of blob tokens.

The translation lexicon is a B × W table with entries t(b?|w?), where w?

denotes a particular word token and b? denotes a particular blob token. We define
ψ to be a W ×W table of potentials describing the “next to” relation between
blob annotations. We define spatial context to be symmetric, so ψ(w?, w�) =
ψ(w�, w?). The set of model parameters is θ , {t, ψ}. The set of cliques in
document n is denoted by Cn. The complete likelihood over all the documents is

p(b, a |w, θ) =
N∏

n=1

1

Zn(θ)

Mn∏

u=1

Φ(bnu, anu)
∏

(u,v)∈Cn

Ψ(anu, anv) (1)

where we define the translation and spatial context clique potentials to be

Φ(bnu, anu) =

Ln∏

i=1

t(bnu, wni)
δ(anu=i)

Ψ(anu, anv) =

Ln∏

i=1

Ln∏

j=1

ψ(wni, wnj)
δ(anu=i)×δ(anv=j) .

Zn(θ) is the partition function for the disjoint graph of document n. δ is the
indicator function such that δ(anu = i) is 1 if and only if anu = i, and 0
otherwise. An example representation for a single document is shown in Fig. 2.

3 Model Computation

Spatial context improves expressiveness, but this comes at an elevated com-
putational cost due to cycles introduced in the undirected graph. We use a
variation of Expectation Maximisation (EM) for computing an approximate
maximum likelihood estimate. In the E Step, we use loopy belief propagation
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Fig. 2. (a) A sample Markov random field with 6 blob sites. We have omitted
the n subscript. The Φ potentials are defined on the vertical lines, and Ψ on the
horizontal lines. (b) The corresponding pseudo-likelihood approximation.

[19] on the complete likelihood (1) to compute the marginals p̃(anu = i) and
p̃(anu = i, anv = j). Since the partition function is intractable and the poten-
tials over the cliques are not complete, parameter estimation in the M Step is
difficult. Iterative scaling (IS) works on arbitrary exponential models, but it is
not a saving grace because convergence is exponentially-slow. An alternative to
the maximum likelihood estimator is the pseudo-likelihood [6], which maximises
local neighbourhood conditional probabilities at sites in the MRF, independent
of other sites. The conditionals over the neighbourhoods of the vertices allow
the partition function to decouple and render parameter estimation tractable.
The pseudo-likelihood neglects long-range interactions, but empirical trials show
reasonable and consistent results [20].

Essentially, the pseudo-likelihood is a product of undirected models, where
each undirected model is a single latent variable anu and its observed partner bnu

conditioned on the variables in its Markov blanket. See Fig. 2 for an example.
The pseudo-likelihood approximation of (1) is

p`(b, a |w, θ) =
N∏

n=1

Mn∏

u=1

1

Znu(θ)
Φ(bnu, anu)

∏

v ∈Nnu

Ψ(anu, anv) (2)

where Nnu is the set of blobs adjacent to node u and Znu(θ) is the partition
function for the neighbourhood at site u in document n.

Iterative scaling allows for a tractable update step by bounding the log
pseudo-likelihood. As in [5], we take the partial derivative of a tractable lower
bound, Λ(θ), with respect to the model parameters, resulting in the equations

∂Λ

∂t(b?, w?)
=

N∑

n=1

Mn∑

u=1

Ln∑

i=1

δ(bnj = b?) δ(wni = w?) p̃(anu = i)

+
N∑

n=1

Mn∑

u=1

4t(b?, w?)|Nnu|+1
Ln∑

i=1

δ(wni =w
?)p(bnu =b?, anu = i|θ) (3)
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∂Λ

∂ψ(w?,w�)
=

N∑

n=1

Mn∑

u=1

∑

v ∈Nnu

Ln∑

i=1

Ln∑

j=1

δ(wni =w
?) δ(wnj =w�) p̃(anu = i, anv =j)

+
N∑

n=1

Mn∑

u=1

∑

v∈Nnu

4ψ(w?,w�)|Nnu|+1
Ln∑

i=1

Ln∑

j=1

δ(wni=w
?)δ(wnj=w

�)p(anu=i|ãnv=j,θ) (4)

where we take p(anu = i | ãnv = j, θ) to be the estimate of alignment anu = i
conditional on the empirical distribution p̃(anv = j) and the current parameters.
To find the conditionals for (4), we run universal propagation and scaling (UPS)
[23] at each pseudo-likelihood site nu with the neighbours v ∈ Nnu clamped
to the current marginals p̃(anv). UPS is exact because the undirected graph at
each neighbourhood is a tree. Also note that (3) requires estimation of the blob
densities in addition to the alignment marginals.

The partial derivatives do not decouple because we cannot expect the feature
counts (i.e. the number of cliques) to be the same for every site neighbourhood.
Observing that (3) and (4) are polynomial expressions where each term has
degree |Nnu|+ 1, we can find new parameter estimates by plugging the solution

for (3) or (4) into the IS update θ
(new)
i = θi ×4θi. Cadez and Smyth [10] prove

that the gradient of the pseudo-likelihood with respect to a global parameter is
indeed well-conditioned since it has a unique positive root.

On large data sets, the IS updates are slow. Optionally, one can boost the
M Step with an additional iterative proportional fitting (IPF) step, which con-
verges faster than IS because it doesn’t have to bound the gradient of the log
likelihood. We are permitted to perform an IPF update on t because it is asso-
ciated with only one clique in each neighbourhood. The IPF update for t is

t(new)(b?,w?) = t(b?,w?)×

∑N
n=1

∑Mn

u=1

∑Ln

i=1δ(wni =w
?)δ(bnu =b?)p̃(anu = i)

∑N
n=1

∑Mn

u=1

∑Ln

i=1δ(wni =w?)p(bnj =b?, anu = i|θ)
. (5)

To stabilise the parameter updates, we place weak priors on t and ψ of 10−5

and 10−4, respectively. We find a near-uninformative prior for ψ works well,
although we caution that prior selection in MRFs is notoriously difficult [6].

4 Experiments

The experiments compare two models. dInd is the discrete translation model
proposed in [13] and assumes object annotations are independent. dMRF is the
contextual model developed in this paper. We evaluate object recognition results
on data sets composed of a variety of images, and examine the effect of two
different segmentations on the performance of our models.

We composed two sets, denoted by CorelB and CorelC3. The first data set,
CorelB, has 199 training images and 100 test images, with 38 words in the
training set. The CorelB data set contains a total of 504 annotated images,

3 The experiment data is available at http://www.cs.ubc.ca/~pcarbo.
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divided into training and test sets numbering 336 and 168 in size. The training
set has a total of 55 distinct concepts. The frequencies of words in the CorelB
labels and manual annotations are shown in Fig. 4.

We consider two scenarios. In the first, we use Normalized Cuts [22] to seg-
ment the images. In the second scenario, we take on the object recognition task
without the aid of a sophisticated segmentation algorithm, and instead con-
struct a uniform grid of patches over the image. Examples of the segmentations
are shown in Fig. 6. The choice of grid size is important since the features are
not scale invariant. We use patches approximately 1/6th the size of the image;
smaller patches introduce too much noise to the features, and larger patches
contain too many objects. The two scenarios are denoted by NCuts and Grid.

The blobs are described using simple colour features. Vertical position was
found to be a simple and useful feature [11], but it does not work well with the
discrete models because the K-means clustering tends to be poor. The number
of blob clusters, B, is a significant factor; too small, and the classification is
non-separable; too large, and finding the correct associations is near impossible.
As a rule of thumb, we found B = 5W to work well.

The relative importance of objects in a scene is task-dependent. Ideally, when
collecting user-annotated images for evaluation, we should tag each word with
a weight to specify its prominence in the scene. In practice, this is problematic
because different users focus their attention on different concepts, not to mention
the fact that it is a burdensome task. Rewarding prediction accuracy over blobs
— not objects — is a reasonable performance metric as it matches the objective
functions of the translation models. We have yet to compare our models using
the evaluation procedures proposed in [8, 2]. The prediction error is given by

1

N

N∑

n=1

1

Mn

Mn∑

u=1

(
1 − δ

(
ânu = a(max)

nu

))
(6)

where a
(max)
nu is the model alignment with the highest probability and ânu is the

ground-truth annotation.
One caveat regarding our evaluation procedure: the segmentation scenarios

are not directly comparable because the manual annotation data is slightly differ-
ent for NCuts and Grid. For testing purposes, we annotated the image segments
in the two scenarios by hand. Since we cannot expect the segmentation methods
to perfectly delineate concepts in a scene, a single region may contain several
subjects, all deemed to be correct. We found that the Normalized Cuts segments
frequently encompassed several objects, whereas the uniform grid segments, by
virtue of being smaller, more regularly contained a single object. As a result,
our evaluation measure can report the same error for the two scenarios, when
in actual fact the uniform grid produces more precise object recognition. To ad-
dress the role of segmentation in object recognition more faithfully, we are in the
process of building data sets with ground-truth annotations and segmentations.

Figure 3 compares model annotations over 12 trials with different initiali-
sations. Model dInd took on the order of a few minutes to converge to a lo-
cal minimum of the log-likelihood, whereas model dMRF generally took several
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Fig. 3. Prediction error of the two models using the Grid and NCuts segmen-
tations on the CorelB and CorelC data sets. The results are displayed using a
Box-and-Whisker plot. The middle line of a box is the median. The central box
represents the values from the 25 to 75 percentile, using the upper and lower
statistical medians. The horizontal line extends from the minimum to the maxi-
mum value, excluding outside and far out values which are displayed as separate
points. The dotted line at the top is the random upper bound. The contextual
model introduced in this paper substantively reduces the error over dInd in the
grid segmentation case.
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Precision on CorelB data set using Grid

label % annotation %† dInd pr. dMRF pr.

word train test† train test train test train test

airplane 0.060 0.055 0.036 0.028 0.135 0.102 0.290 0.187
astronaut 0.003 0.003 0.001 0.002 0.794 0.087 0.000 0.135
atm n/a 0.003 n/a 0.006 n/a 0.000 n/a 0.000
bear 0.031 0.017 0.021 0.013 0.192 0.092 0.452 0.272
beluga n/a 0.003 n/a 0.005 n/a 0.000 n/a 0.000
bill 0.019 0.017 0.046 0.031 0.269 0.175 0.335 0.146
bird 0.017 0.010 0.009 0.004 0.148 0.111 0.556 0.458
building 0.014 0.007 0.006 0.002 0.368 0.013 0.408 0.137
cheetah 0.012 0.017 0.010 0.013 0.833 0.683 0.710 0.395
cloud 0.050 0.045 0.050 0.048 0.222 0.152 0.300 0.239
coin 0.005 0.007 0.008 0.008 0.611 0.213 0.767 0.017
coral 0.005 n/a 0.011 n/a 0.815 n/a 0.738 n/a
crab 0.002 0.003 0.001 0.002 0.802 0.663 1.000 0.833
dolphin 0.014 0.003 0.006 0.001 0.606 0.899 0.916 0.000
earth 0.003 0.007 0.004 0.002 0.543 0.000 0.732 0.142
fish 0.007 n/a 0.003 n/a 0.236 n/a 0.695 n/a
flag 0.005 0.007 0.004 0.008 0.617 0.831 0.888 0.890
flowers n/a 0.003 n/a 0.003 n/a 0.000 n/a 0.000
fox 0.010 0.017 0.011 0.010 0.246 0.052 0.691 0.008
goat 0.003 n/a 0.001 n/a 0.704 n/a 0.994 n/a
grass 0.129 0.120 0.177 0.157 0.165 0.176 0.172 0.229
hand n/a 0.003 n/a 0.002 n/a 0.000 n/a 0.000
map n/a 0.003 n/a 0.003 n/a 0.000 n/a 0.000
mountain 0.012 0.003 0.007 0.000 0.204 0.060 0.671 0.057
person 0.003 0.014 0.001 0.004 0.170 0.037 1.000 0.000
polarbear 0.021 0.024 0.016 0.015 0.510 0.625 0.681 0.634
rabbit 0.002 n/a 0.001 n/a 0.489 n/a 1.000 n/a
road 0.026 0.024 0.016 0.008 0.190 0.062 0.526 0.213
rock 0.019 0.038 0.018 0.033 0.127 0.078 0.446 0.130
sand 0.034 0.024 0.023 0.024 0.246 0.150 0.330 0.185
shuttle 0.007 0.007 0.006 0.005 0.504 0.268 0.305 0.107
sky 0.156 0.137 0.172 0.173 0.190 0.138 0.190 0.208
snow 0.036 0.062 0.064 0.110 0.358 0.296 0.435 0.356
space 0.007 0.010 0.008 0.018 0.000 0.000 0.326 0.071
tiger 0.021 0.034 0.015 0.030 0.450 0.233 0.623 0.285
tracks 0.024 0.017 0.010 0.009 0.351 0.163 0.575 0.315
train 0.026 0.021 0.021 0.014 0.165 0.164 0.396 0.272
trees 0.095 0.076 0.075 0.069 0.169 0.094 0.227 0.134
trunk 0.003 0.010 0.001 0.006 0.553 0.023 0.910 0.000
water 0.091 0.089 0.120 0.095 0.214 0.133 0.212 0.137
whale 0.007 0.007 0.003 0.004 0.476 0.268 0.854 0.405
wolf 0.009 0.038 0.007 0.029 0.512 0.166 0.660 0.102
zebra 0.012 0.010 0.009 0.007 0.652 0.667 0.903 0.710
Totals 1.000 1.000 1.000 1.000 0.294 0.199 0.486 0.301

Fig. 4. The first four columns list the probability of finding a particular word in
an image caption and manually-annotated image region in the CorelB data using
the grid segmentation. The final four columns show the precision of models dInd
and dMRF averaged over the 12 trials. Precision is defined as the probability
the model’s prediction is correct for a particular word and blob. Since precision
is 1 minus the error of equation (6), the total precision on both the training
and test sets matches the average performance shown in Fig. 3. The variance in
the precision on individual words is not presented in this table. Note that some
words do not appear in both the training and test sets, hence the “n/a”.
†We underline the fact that an agent would not have access to the test image
labels and information presented in the annotation % column.
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Fig. 5. Our algorithm learned the above contextual relations for the CorelB data
using the grid segmentation (the matrix is averaged over all the learning trials).
Darker squares indicate a strong neighbour relationship between concepts. White
indicates that the words were never observed next to each other. For example,
fish goes with coral. It is intriguing that planes go with buildings!

hours to learn the potentials. The first striking observation is that the contextual
model shows consistently improved results over dInd. Additionally, the variance
of dMRF is not high, despite an increase in the number of parameters and a lack
of convergence guarantees.

Recognition using the grid segmentation tends to do better than the Nor-
malized Cuts results, keeping in mind that we require the Grid annotations to
be more precise, as discussed above. This suggests we can achieve comparable
results without an expensive segmentation step. However, we are cautious not
to make strong claims about the utility of sophisticated low-level segmentations
in object recognition because we do not have a uniform evaluation framework
nor have we examined segmentation methods in sufficient variety and detail.

Figure 4 shows the precision on individual words for the CorelB Grid ex-
periment, averaged over the 12 trials. While not shown in the figures, we have
noticed considerable variation among individual trials as to what words are pre-
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dicted with high precision. For example, model dMRF with a grid segmentation
predicts the word “train” with average success 0.396, although the precision on
individual trials ranges from 0.102 to 0.862 in the training set. Significantly, the
spatial context model tends to do better on words that cannot be described using
simple colour features, such as “building”, “bear” and “airplane”.

Figure 5 depicts the potentials ψ for the CorelB Grid experiment. Note the
table is symmetric. The diagonal is dark because words appear most often next
to themselves. The strong diagonal acts as a smoothing agent on the segmented
scenes. Most of the high affinities are logical (e.g. “airplane” and “cloud”) but
there are a few that defy common sense (e.g. “trees” and “trunk” have a weak
affinity), likely due to incorrect associations between the blobs and words.

Selected annotations predicted by the dMRF model on the CorelB training
and test sets are displayed in Fig. 6. In several instances, observers found dInd
annotations more appealing than those of dMRF, even though precision using
the latter model was higher. This is in part because dMRF tends to be more
accurate for the background (e.g. sky), whereas observers prefer getting the
principal subject (e.g. airplane) correct. This suggests that we should explore
alternative evaluation measures based on decision theory and subjective prior
knowledge.

5 Discussion and Conclusions

We showed that spatial context helps classify objects, especially when blob fea-
tures are ineffective. Poorly-classified words may be easier to label when paired
with easily-separable concepts. Spatial context purges insecure predictions, and
thus acts as a smoothing agent for scene annotations. The pseudo-likelihood
approximation allows for satisfactory results, but we cannot precisely gauge the
extent to which it skews parameters to suboptimal values. Our intuition is that it
gives undue preference to the diagonal elements of the spatial context potentials.

Normalized Cuts is widely considered to produce good segmentations of
scenes, and surprisingly our experiments indicate that crude segmentations work
equally well or better for object recognition. Upon further consideration, our
results are indeed sensible. We are attempting to achieve an optimal balance be-
tween loss of information through compression and adeptness in data association
through mutual information between blobs and labels. The Normalized Cuts set-
tings we use tend to fuse blobs containing many objects, which introduces noise
to the classification data. dMRF can cope with lower levels of compression, and
hence it performs much better with smaller segments even if they ignore object
boundaries. Since model dMRF fuses blobs with high affinities, we claim it is a
small step towards a model that learns both scene segmentations and annota-
tions concurrently. A couple considerable obstacles in the development of such
a model are the design of efficient training algorithms and the creation of eval-
uation schemes that uniformly evaluate the quality of segmentations combined
with annotations.
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Fig. 6. Selected dMRF model annotations on the CorelB training (top) and
test sets (bottom). It is important to emphasize that the model annotations are
probabilistic, and for clarity we only display the classification with the highest
probability. Also, the the predictions are made using only the image information.
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