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Abstract
In this paper we present a method to recognize an object
class by learning a statistical model of the class. The proba-
bilistic model decomposes the appearance of an object class
into a set of local parts and models the appearance, relative
location, co-occurrence, and scale of these parts. However,
in many object classification approaches that use local fea-
tures, learning the parameters is exponential in the number
of parts because of the problem of matching local features
in the image to parts in the model. In this paper we present
a learning method that overcomes this difficulty by adding
new parts to the model incrementally, using the Maximum-
Likelihood framework. When we add a part to the model,
a set of candidate parts are selected and the part that in-
creases the likelihood of the data the most is added to the
model. Once this part is added to the model, the parame-
ters for all parts up to this point are updated using EM. The
learning and recognition in this approach are translation
and scale invariant, robust to background clutter, and has
less restriction on the number of parts in the model. The
validity of the approach is demonstrated on a real world
dataset, where the approach is competitive with others, and
where the learning for a rich model is much faster than pre-
vious approaches.

1. Introduction
Recognizing object categories is one of the oldest problems
in computer vision and remains one of its most challeng-
ing. Conceptually the problem is difficult, regardless of the
implementation, due to the undefined nature of similarity.
Given the sheer variety of object classes, defining a simi-
larity metric apriori that can separate all object classes is
nearly impossible. A working assumption in visual recog-
nition is that an object category has a set of features that
are shared by objects in the class, but are shared less often
by objects outside of the class. The task is thus to iden-
tify or to learn through the visual appearance some aspect
of these features. In this paper we are concerned particu-

larly with learning models to recognize semi-rigid objects
from a single viewpoint such as faces, cars, and motorbikes
and where the recognition is robust to clutter, occlusion and
certain transformations on the image coordinates.

One paradigm that has recently emerged with some suc-
cess tries to solve the problem by modelling objects as a
collection of parts [1,3,4,5,7,8,9]. In this case, the object
classification system typically models the appearance, co-
occurrence, and spatial relations of these parts. The advan-
tage of this type of approach is that it is robust to clutter
and occlusion, and in many cases can be made to be robust
to affine transformations of image coordinates. Moreover,
it has the attractive possibility of capturing the actual un-
derlying parts of the object. The difficulty, though, lies in
learning the parameters for the model. Given a dataset con-
taining images with instances of the object class, any region
of an image of the object could be a potential part. Clearly
one does not want to explore this huge space to learn which
parts are best in the context of recognition. Instead, most
approaches select interesting regions of an image, charac-
terize the local region in some way that includes informa-
tion about scale and location, and then represent the image
only by these local region descriptions. From these collec-
tions of features, the task is then to learn parts that presum-
ably account for the appearance and spatial relations of the
features, or some subset of these features.

The approach taken in this paper is similar to the one
taken by Fergus et al. [3], in which the appearance, spatial
relations, and co-occurrence of parts are learned simulta-
neously. They define for each part its appearance density,
a shape density, a density on the scale of the part, and a
joint density for the co-occurrence of parts. However, no
initial matching is available between features in the image
to parts in the model, so they define the probability of a set
of features from an image containing an instance of an ob-
ject as the sum of the probability of the data over all possi-
ble matchings. Evaluating this probability is exponential in
the number of parts in the model. Intuitively though, if the
model is accurate, then only a few matchings should have a
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high likelihood, so the probability can be efficiently approx-
imated. However, this only holds for the recognition phase.
In the approach of Fergus et al., they learn the parameters in
a Maximum Likelihood framework, using the Expectation-
Maximization [2] algorithm and initializing randomly. By
doing this they are forced to evaluate an exponential number
of matchings for the expectation step, and this is primarily
because the likelihood of different matchings is much more
uniform at this stage with no dominant peaks. As a result,
their approach is limited to just 6 or 7 parts, which typically
requires a day to learn.

The focus of this paper is to extend the approach to allow
learning a model with many parts by overcoming the expo-
nential nature of the matching problem. Moreover, unlike
the approach of Fergus et al. the approach presented in this
paper is also translation and scale invariant, and relatively
fast to learn. We use a similar probabilistic model, except
instead of learning all of the parts simultaneously, we learn
them incrementally. We begin with a model which has a
few parts that are accurate, that is, they have tight distribu-
tions on scale, appearance, and location. Each time a part
is added to the model, the feature locations in every image
are transformed into the model coordinate space using the
most likely matches from features to parts. From here we
sample a number of possible parts, try adding each part to
the model, and measure the increase in the likelihood. We
can do this efficiently because we store the information col-
lected during previous iterations. The part that increases
the likelihood the most is then added to the model. We then
update the model using EM, but since there is a dominant
matching for the previous parts, we can use this informa-
tion to reduce the number of computations in the expecta-
tion step. As a result, the learning is fast, the model can be
complex, and the variances on the appearance and locations
are kept tighter.

2. Probabilistic Model
The probabilistic model we use to recognize an object class
is almost identical to the one proposed by Fergus et al. [3].
We model an object as a set of parts with parameters θ,
where each part has a density function for scale, location,
and appearance, all of which are Gaussian. We represent
an image as a set of features that are extracted from the
image using the SIFT operator [5, 6], where each feature
contains information on shape, scale, and appearance. To
perform object detection, we do matchings between features
and parts, evaluate their likelihood given the model, and use
this measure to determine if the object is present in the im-
age or not by comparing it to the likelihood that all of the
features belong to the background. Note that for clarity we
refer to parts only in relation to the model, and features only
in regards to images.

A feature i is composed of a data vector that contains
appearance Ai, scale Si, and locations Xi. So an image is
represented as a set of extracted features F with locations
X, scales S, and appearances A.

Furthermore, we define h as a hypothesis vector where
h(i) = j means that feature j is matched to part i in the
model. In other words, h is a potential matching. If there is
no feature in the image that matches part i, then h(i) = 0.

So, given a matching h in the image, we define

p(X,S,A|h, θ) = p(A|h, θ)p(X|h, θ)p(S|X,h, θ) (1)

which is a probabilistic measure of how good the features
from the image match the parts that they were assigned to
in h. It can be seen that we assume that the appearance,
and location of parts are independent given the matching.
Note, however, that the number of features extracted is not
fixed. In order to define a proper probability we have to de-
fine the domain as all possible feature combinations in both
the number of features present, up to some maximum, and
their data vectors. To achieve this we can add a term with a
uniform distribution over the number of features. This how-
ever has no affect upon the learning nor recognition, so we
omit this for clarity of presentation.

In reality we are not given the assignment of parts in the
model to features in the image, so to determine the prob-
ability of F given θ, we can simply sum over all possible
hypotheses.

p(F|θ) =
∑
h∈H

p(X,S,A,h|θ) =

∑
h∈H

p(A|h, θ)p(X|h, θ)p(S|X,h, θ)p(h|θ) (2)

The Achilles heel of this approach is that the cardinal-
ity of H is exponential in the number of parts, P , that is
O(|F|P ). We should note however, that we actually are try-
ing to achieve a model of an object class such that for a typi-
cal image of an object there is one dominant matching from
features to parts. We want tight distributions on both shape
and location, since loose distributions will result in a greater
false positive rate. This is especially true in approaches that
try to achieve translation invariance. Now if we have a suf-
ficiently accurate model, an image with the object class in it
will only have a few matchings that contribute to the value
of (2). So, to get an estimate of (2), one can use A* search
by first evaluating matches based solely upon appearance,
and using bounds provide by these matches to explore the
hypothesis space. For an accurate model, an accurate esti-
mate of (2) can be provided relatively quickly.

2.1. Feature Extraction
The features extracted from an image are based upon
Lowe’s SIFT features [5, 6]. In this approach, candidate
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keypoints are identified by finding peaks in the difference-
of-Gaussian function convolved with the image in scale
space. In essence, keypoints are located in regions and at
scales where there is a high amount of variation, which
means these locations are likely to contain useful infor-
mation for matching. Moreover, since they are located at
peaks, minor variations in the region surrounding the key-
point won’t greatly affect its location. As a result, intra-
class variability for a part will be less likely to affect the
location of the corresponding image feature. From an im-
age feature identified by the SIFT procedure, we know its
location and scale, and we extract a local description of the
region around this feature. Rather than represent the local
region as the pixel values, or some straightforward com-
pression like PCA, we have chosen to represent them in a
manner identical to Lowe’s SIFT features. Here a local re-
gion is divided into K smaller regions, and each region is
described by a histogram of size Q of image gradients in
that region. These appearance descriptors are invariant to
small changes in position of the keypoint, and also bright-
ness changes. In this paper we have chosen K = 4 and
Q = 8, so the description of a local region has 32 dimen-
sions.

2.2. Appearance
The appearance of each feature extracted from an image lies
in a 32 dimensional space where each dimension is an inte-
ger between 0 and 255. Given a matching h, we evaluate the
appearance of a feature f according to the density for part
p only if h(p) = f , and if f is assigned to no part then it is
evaluated according the background distribution. Each part
p is modelled by a Gaussian with a mean µapp

p and covari-
ance Σ

app
p , and we assume that the parts are independent

given h and so Σ
app
p is diagonal. We represent the proba-

bility of x under a Gaussian distribution with mean µ and
σ as G(x|µ, σ). The background model is modelled with a
uniform distribution, but because keypoints are only found
at regions of variability, it isn’t a 25632 space. Instead we
approximate it as p(Af |f ∈ background) = α, which is a
global constant that is determined experimentally. So, if we
had n features that were not matched to some part in h, then

p(A|h, θ) = αn
∏

p|h(p)6=0

G(Ah(p)|µ
app
p ,Σapp

p ) (3)

2.3. Location
One of the distinctive differences between our approach and
that of Fergus et al., is that ours is translation and scale
invariant in both the recognition and learning phases. To
achieve this a distinction is drawn between an image coor-
dinate space and a model coordinate space. To evaluate a

hypothesis in regards to the location of features, we linearly
project the locations of the features to model space and eval-
uate the locations in the model space. For a proper proba-
bility distribution, we must evaluate the hypothesis under
all such transformations. A linear transformation, t, shifts
feature locations by x and scales them by s . So we have,

p(X|h, θ) =

∫
t

p(X, t|h, θ)

=

∫
t

p(t(X)|h)p(t|h) (4)

Here we assume that p(t|h) is uniform, so p(t|h) is con-
stant, and for technical correctness we must restrict the do-
main of the transformations. Regardless, (4) is difficult to
evaluate, so we make the approximation

p(X|h, θ) ' argmax
t

p(t(X)|h) (5)

This means that we are approximating the probability of
the feature locations based solely on their best projection
into model space. Now, given the optimal transformation
topt and a hypothesis h, we assume that the location of
parts are independent. As in appearance, for features that
are not assigned to a part we simply evaluate their location
according to the background distribution, which is uniform
with constant β which is dependent only on the size of the
image. Each feature that is assigned to a part in the hy-
pothesis has its location evaluated by the distribution of its
respective part. Each part p has a Gaussian density with a
mean µloc

p and covariance matrix Σ
loc
p , where we assume

the Σ
loc
p is diagonal. Let n be the number of features not

assigned to parts in h. So,

p(topt(X|)h) = βn
∏

p|h(p) 6=0

G(topt(Xh(p))|µ
loc
p ,Σloc

p )

(6)
Since

p(t(X)|h) = G(t(X)|µloc

p ,Σloc
p ) (7)

The transformation, topt, that optimizes this is the weighted
least squares solution of fitting the matched features to the
parts, where the weights are the variances on location.

2.4. Scale
Again, given a hypothesis h we assumed the scale of the
parts are independent, and each part is modelled using a
Gaussian with mean µscale

p and standard deviation σscale
p .

However, we also use the positions X to determine topt to
transform the feature scales into model coordinates. In this
case we multiply the scales by whatever scaling factor was
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used in the linear transformation topt. We assume that if
a feature is not assigned to a part in h then it is part of the
background, and once again we assume the background is a
uniform distribution over possible scales, ψ. So the likeli-
hood of the scales given a hypothesis and feature locations
is

p(S|X,h) = ψn
∏

p|h(p)6=0

G(topt(S)|µscale
p , σscale

p ) (8)

2.5. Part Statistics
Given the model, we simply assume that the presence or
absence of parts are independent. Although there are cer-
tainly some interesting and valuable co-occurrence patterns
present in some object classes, it is an issue we leave for
future research. So, the probability that part p is present is
φp. For a particular matching h

p(h|θ) =
∏

p|h(p)6=0

φp

∏
p|h(p)=0

(1 − φp) (9)

3. Learning
The primary contribution of this paper is in how the param-
eters for the model are learned. In the following we present
a method to learn the maximum likelihood parameters for
the model. That is, for images I , we seek model parameters
θ such that

∏
i∈I

p(Fi|θ) (10)

is maximized. In the approach of Fergus et al. [3], the pa-
rameters are learned in a maximum likelihood framework
via the EM algorithm, first initializing the model parame-
ters randomly. However, in the Expectation step they must
compute

p(h|X,A,S, θ) =
p(X,A,S|h, θ)p(h|θ)

p(X,A,S|θ)
(11)

for all possible hypotheses h in order to do the parameter
updates in the Maximization step. Since the distribution
p(h|X,A,S, θ) is roughly uniform initially because of the
random initialization, A* is of little use in making this com-
putation tractable.

An alternative approach is to increase the complexity of
the model incrementally. That is, begin with a model with a
small number of selected parts, learn the parameters for this
model, and then add a new part one at a time.

The basic approach is as follows,

1. Begin with a model of 1 or more parts.

2. Until P parts or desired accuracy:

(a) Find dominant matchings for every image.

(b) Sample n features from the dataset as potential
new parts

(c) For each of these features, try adding it as a part
to the model.

(d) Measure the likelihood of the data with this po-
tential part.

(e) Select the part that increased the likelihood of the
data the most and add it to the model.

(f) Run EM to update parameters.

3.1. Initialization
The first step can be done in a number of ways. One ap-
proach would be to select the feature that had the highest
density around it in appearance space, where the weightings
on each dimension are equal. This is equivalent to selecting
the feature that would maximize the likelihood of the data
for our model, where it was the only part of the model and
we drop terms on location and scale. This is the approach
taken in the experiments. This approach only works, how-
ever, if there is a feature that is common to many of the
images. Another approach would be to match some of the
images in the dataset to other images in the dataset, and
select the parts that tend to appear in the matchings. This
approach and others are currently being investigated.

3.2. Incremental Learning
The second step of the approach avoids constructing a
model with loose variances, which will result in an increase
in the number of significant matchings h for each image. To
achieve this we utilize what the model has learned so far in
order to transform the locations and scales of the features of
each image into model coordinate space. With this informa-
tion we can then sample from the dataset to initialize a new
part for which its appearance, and the location and scale in
model coordinate space have a high number of matches in
the dataset.

To achieve this we first, in step 2a, find dominant match-
ings in each image, which is when an image has a match-
ing h for which p(h|X,A,S, θ) is much greater than other
matchings. We then transform the feature locations and
scales into model space according to topt for this domi-
nant matching. If for a particular image there are a few
dominant matchings we use a weighted average to deter-
mine locations and scales of the features, where the weights
come from p(h|X,A,S, θ). For an image where there is
no dominant matching, then the feature locations and scales
are not transformed into model coordinate space. In this
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case, the image is not used as a source of potential parts in
this iteration. It should also be noted at this point that dom-
inant matchings also contribute the most to the measure of
the likelihood of the data according to the model. This is
important because it allows for fast computation of the like-
lihood of the data which is needed in step 2d and in step
2f.

In the next step, 2b, we could possibility sample every
feature in the data as a potential part but this would be too
computationally intensive. In order to reduce the computa-
tion we sample only n features as possible parts, where this
n is generally on the order of the average number of fea-
tures in an image. To ensure that we are sampling good fea-
tures, and thus not wasting computation, there are a number
of heuristics that can be employed. One very simple tac-
tic is to sample features from images that have dominant
matchings, since in this case we have good information on
the features locations in model coordinate space. Another
approach is to restrict sampling features to regions that are
relatively close to the features that are matched to parts in
the model. In this case we can be more confident that we
are not sampling features that are part of the background.

In order to measure how good a sampled feature would
be as a part, we can temporarily add it to the model and
measure the increase in the likelihood. We set the tempo-
rary part’s parameters, µapp

p , µscale
p , and µloc

p as the feature’s
appearance vector, the transformed scale, and and the trans-
formed locations. In the experiments we set variances for
potential parts as Σ

app
p = diag(2000), Σ

loc
p = diag(25),

and σscale
p = µscale

p /10, where diag(c) is a matrix with di-
agonal entries c. In order to calculate the likelihood, it is
not necessary to find the dominant matchings from scratch.
From previous computations we already have the dominant
matchings for parts 1 to p− 1, so it is really just a question
of finding the features that match to part p to find the new
dominant matching for parts 1 to p.

The part that is added to the model is that sampled fea-
ture that increased the likelihood of the data the most. At
this point, step 2f, we run the Expectation Maximization
algorithm on all of the parameters of the model until it con-
verges. As more parts are added to the model, the conver-
gence is fast, since most of the changes to the parameters
are occurring on the new part.

3.3. Discussion on Incremental Learning
The important insight as to why this approach avoids the
exponential aspect of the matching problem, is that before
a new part is added to the model we have only a few hy-
potheses h for which p(h|X,A,S,θ) is significant, for each
image. As a result, when we add a new part to the model,
we only have to determine if there are features that match
this new part such that it improves our previous matching.

In addition it should be noted that incremental learning

is greedy in the manner in which it selects a new part to add
to the model, and thus there is some concern that the final
solution is not a globally optimal solution. Recall, however,
that the objective function we seek to minimize, (10), with
respect to the model parameters θ is such that it has many
local minima. So, applying the Expectation Maximization
algorithm on a random initialization, as in Fergus et al., re-
sults in a solution that is a local minimum, usually arrived
at in an exponential amount of time. The approach to learn-
ing presented in this paper seeks to both arrive at a solution
quickly, but also at a desirable solution. With a high number
of parts in the model, EM with random initialization will
result in a model that is slowly learned and contains parts
that are useless in recognition. In the incremental version,
however, a new part is added to the model when there are
a number of features in the dataset that match it closely, so
the variances remain small.

Another point to note is that in the early stages of model
construction, the model may not account for much of the
data. The first few parts chosen by the model may only
have features in a subset of the images. However, with each
part that is added, this subset is expanded. This poses a new
problem though, since if the object class is such that there
are very distinct subclasses, then the model may only model
one of the subclasses. An example of this is the class of
vehicles, where cars are visually distinct from motorbikes.
One way to deal with this would be to alter the algorithm to
detect if it is only modelling a certain subset of the dataset.
If this is the case, the algorithm could then split the data,
and model the data separately. Research into this scheme is
ongoing.

Another potential problem with the incremental ap-
proach is that in the early stages the approach could pick
poor parts and thus construct an unsatisfactory solution. As
much as this is a legitimate concern, it is also the case that
random initialization will sometimes settle on a unsatisfac-
tory solution, and our experiments indicate that this occurs
frequently with random initialization. In the case where the
incremental approach has arrived at a poor model in the first
few iterations, this can easily be detected by examining the
variances on location and scale. In these cases it would be
easy to have the system automatically restart.

4. Experiments
The bulk of the experiments presented in this paper were
performed on the face data set utilized in the Fergus et
al.[3]. This dataset is composed of 450 grayscale images,
with about 30 subjects, taken under different lighting condi-
tions and background conditions. For training and testing,
the data sets were randomly separated into testing and train-
ing sets, and the models were trained on the training images.
The split was 350 training images to 100 testing images.
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Figure 1: The graph displays the RPC curve for a model
with five 5 parts, comparing the incremental approach to
simultaneous learning.

For experiments where we report the recall-precision curve
(RPC) we train five models, each with a different splitting of
the data set, in order to obtain more accurate results. To ob-
tain data on false positive rates, the models were also tested
using the same background greyscale images in the Fergus
el al. Moreover, each of the models trained with the in-
cremental learning were initialized with a single part. This
part was the sampled feature for which the likelihood of the
data based solely on the appearance was greatest, where the
part had µapp

1 set as the feature’s appearance vector, and
Σapp

1 = diag(2000). We set α = exp(−170), the back-
ground appearance density, and this value was arrived at by
investigating the distribution of appearance for SIFT fea-
tures in a large database of SIFT features.

In the first set of experiments we compare the approach
presented in this paper to an approach that learns all of the
parts simultaneously using EM. The simultaneous approach
is very similar to Fergus et al., with only slight changes in
the probabilistic model. The difficulty in doing the compar-
ison is that our approach is translation invariant, whereas
the approach that learns the parts simultaneously is not. To
overcome this problem, we transform the locations of the
features in each image so that the object is in the centre of
the image. We also normalize for scale. In the Fergus et
al. experiments, they make the same transformation to the
data, and train their model in much the same manner. To
contrast this with our approach, a model was trained us-
ing the incremental approach, except that no preprocessing
transformations are made on the data.

The first thing to note is that training the parts simulta-
neously tended to be very inconsistent, where most of the
time the variances on location grew very large, which es-

Figure 2: These 4 figures represent typical images and the
features that were in the maximum matching.

sentially means that the data is being clustered based on ap-
pearance alone. As a result, these models had a high false
positive rate. This demonstrates that EM with random ini-
tialization suffers as a result of it’s random initialization.
This is certainly a motivation to use an approach that learns
a model with many features with tight distributions rather
than a model with only a few parts and wide distributions.
This result, however, seems to differ somewhat from the re-
sults in Fergus et al.. The reason for this could be because
we detect many more features using SIFT features, on the
order of 300, compared to the feature detector used by Fer-
gus, which they limit to just 20. It could also possibly be
that the dimensionality of the appearance space is too large.
For comparison we report results for the best model for the
simultaneously learning approach, which did not have the
large variances.

To make the actual comparisons, there is a subtle point
to notice. In a translation invariant model, an instance of the
object could be found anywhere in the image. In a model
that requires the object to be centred, it will only look for the
object in that one location. As a result, the number of false
matches for the translation invariant model will naturally be
higher since it can find a match anywhere in an image. As
a result, to make a proper comparison, during classification
using the model learned by the simultaneous approach the
feature locations are transformed into the model coordinate
space using the procedure discussed in section 2.3.

Figure 1 shows the recall-precision curve for a model
with 5 parts, which we use for efficiency since a larger num-
ber of parts requires a significant amount of training time
for the simultaneous learning approach. The incremental
approach took just 20 minutes on a 2.5 GHz machine, while
the simultaneous approach took 2 hours and failed to con-
verge on a satisfactory solution occasionally. It can be seen
that the incremental approach outperforms the simultaneous
approach. This result may be caused in part by the fact that
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Figure 3: Sample of features from dataset that best match
each part for the model trained on with 12 parts. Note that
the 10th part is a part with a very wide variance. The parts
that correspond to the left side of the face are 2, 3, 8, and
11. The parts that correspond to the right side of the face
are 1, 4, 6, and 12. Part 7 corresponds to a nose.

the simultaneous approach to learning relies on human in-
tervention to centre the data. This may introduce additional
noise to the data, and thus the model may be less accurate.
Regardless, the approach presented in this paper produces
a model with better classification accuracy, is much faster
to learn, and is translation invariant in both the learning and
recognition.

The second experiment is designed more as an illustra-
tion of the power of the approach. In this experiment a
model for the face dataset with 12 parts was trained. The
results are encouraging in regards as to how the approach
scales. The time it took for the model to learn 12 parts was
1 hour, where as the time it takes to train a 5 part model is
about 20 minutes. Larger models take a similar linear in-
crease in time to learn. Figure 2 shows some example faces
with the features that were matched to parts in the model
circled in white. On average, about 300 SIFT features were
extracted per image.

The model with 12 parts had an impressive RPC curve,
achieving a true positive rate of 0.96 and false positive rate
of just 0.02. The faces that were not recognized in the
dataset were examples of faces taken under lighting con-
ditions that were highly uncommon in the dataset. The fea-
tures extracted from these images tended to be located in
different places and at different scales than most images.
As a result it’s not that the parts do not exist in the image,
but rather that the SIFT feature detector did not extract them
from the image.
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Figure 4: This figure is a representation of the part locations
in model coordinate space. The centres are the mean loca-
tion of each part, and the standard deviation is represented
by the ellipse.

There are a number of interesting things to note. First is
that the model has a surprisingly tight distribution on loca-
tion, as shown in Figure 4 which shows the location model
for the parts. The centre of the ellipse for part p is µloc

p , and
the ellipse represents the standard deviation σloc

p . Notice
how the variances for the parts corresponding to the eyes
are very small. The reason for this is that using an opti-
mal linear transformation to transform feature locations into
model coordinate space introduces a bias. If at sometime in
the learning a particular part has a very small variance on its
location, then the optimal transformation will always place
the features matching this part very close to where the part
lies in model space. Since the first few parts added to the
model were colinear, the variances at the beginning were
small for these parts and so this persisted. Future work can
overcome this by regularizing the variances so that they do
not become too small.

Figure 3 shows an example of features in the data that
match each part closely. It can be seen that a variety of
local regions are represented. One interesting point is that
for part 5, the variances on the appearance are very high in
regions where the background is part of the feature. Another
interesting point is that part 10 does not clearly match any
feature. It is expected that as more parts are added to the
model, then more noisy parts like this will occur because
of over fitting. Parts such as 10, however, don’t affect the
false positive rate greatly since the wide variance means any
false matches to this part will contribute little the overall
likelihood. It is those parts that have tighter distributions on
location and scale that contribute the most to the likelihood.
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Part # µscale
p σscale

p φp

1 6.15 0.92 0.87
2 3.21 0.53 0.44
3 6.24 0.15 0.88
4 3.27 0.0.48 0.53
5 25.12 12.52 0.725
6 4.95 0.98 0.56
7 7.03 1.72 0.36
8 3.85 1.37 0.52
9 41.81 17.63 0.41
10 7.35 3.95 0.64
11 4.95 1.22 0.67
12 5.76 2.85 0.41

Table 1: The parameters that were learned for a 12 part
model, where µscale

p , σscale
p , φp are mean scale, standard

deviation on the scale, and probability of presence for part
p.

Table 1 contains other statistics about the model, like
the scale parameters and the occurrence parameters. No-
tice how the parts that are detected initially are, in general,
the most common parts detected, as indicated by φp, and
also have the tightest distributions on location and scale.

Other experiments are currently being conducted on the
motorcycle and car datasets. Results are encouraging, but
temperamental. The reason for this is that this approach
relies on the fact that the first few features are good features,
even if these features only occur in a subset of the dataset.
In some cases, the approach to select the initial model fails
to select good initial features, which causes the distributions
to become wider, and thus no dominant matchings emerge.
We are currently investigating better ways to construct the
initial model.

5. Summary and Conclusions
The approach to learning presented in this paper overcomes
some of the difficulties of the matching problem that is in-
herent in approaches that recognize objects using local fea-
tures. Experiments have shown that the time to learn the
model is almost linear in terms of the number of parts in the
model, as opposed to exponential as in some methods. This
allowance for a greater number of parts will make it possible
to learn models with a much richer appearance. Examples
of this would be models of faces under many different light-
ing conditions, with novelties like sunglasses, and possibly
an extension to multi-viewpoint models. Moreover, the re-
sults have shown that it fares better in terms of recognition
performance than a simultaneous approach. An additional
contribution is that of presenting an approach that is both
scale and translation invariant in both recognition and learn-
ing.

As with the approach of Fergus et al., the approach is de-
pendent upon the local feature detector. This is a significant
limitation since many object classes are recognized more on
the underlying shape than on appearance. Currently most
local feature detectors are based on appearance, so further
classes of feature detectors would be valuable.

The approach is also dependent upon beginning with a
few good parts. For the face data set this did not pose a
problem, but for data sets without a clear common part, the
problem becomes more difficult. We are currently investi-
gating reliable ways to extract such parts.

Acknowledgements
This research was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC) and by
the Institute for Robotics and Intelligent Systems (IRIS)
Network of Centres of Excellence.

References
[1] M. Burl, M. Weber, and P. Perona, “A probabilistic ap-

proach to object recognition using local photometry and
global geometry,” European Conference on Computer Vision,
Freiburg, Germany (1998), pp. 628-641.

[2] A. Dempster, N. Laird, and D. Rubin.“Maximum likelihood
from incomplete data via the em algorithm.” Journal of the
Royal Statistical Society, 39:1-38, 1976.

[3] R. Fergus, P. Perona, and A. Zisserman, “Object class recog-
nition by unsupervised scale-invariant learning,” Conference
on Computer Vision and Pattern Recognition, Madison, Wis-
consin (2003), pp. 264–271.

[4] L. Fei-Fei, R. Fergus, P. Perona, “A Bayesian Approach to
Unsupervised One-Shot Learning of Object Categories,” In-
ternational Conference on Computer Vision, Nice, France
(2003), pp. 1134- 1141.

[5] D.G. Lowe, “Object recognition from local scale-invariant
features,” International Conference on Computer Vision,
Corfu, Greece (1999), pp. 1150–1157.

[6] D.G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, in press
(2004).

[7] A.R. Pope, D.G. Lowe, “Probabilistic Models of Appearance
for 3-D Object Recognition,” International Journal of Com-
puter Vision, 40(2), pp. 149-167.

[8] S. Ullman, M. Vidal-Naquet, and E. Sali, “Visual features of
intermediate complexity and their use in classification,” Na-
ture Neuroscience, 5(7), (2002), pp. 1–6.

[9] M. Weber, M. Welling, and P. Perona, “Unsupervised learning
of models for recognition,” European Conference on Com-
puter Vision, Dublin, Ireland (2000), pp. 18–32.

8


