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Abstract. We present a vision based, adaptive, decision theoretic model
of human facial displays in interactions. The model is a partially observ-
able Markov decision process, or POMDP. A POMDP is a stochastic
planner used by an agent to relate its actions and utility function to
its observations and to other context. Video observations are integrated
into the POMDP using a dynamic Bayesian network that creates spa-
tial and temporal abstractions of the input sequences. The parameters
of the model are learned from training data using an a-posteriori con-
strained optimization technique based on the expectation-maximization
algorithm. The training does not require facial display labels on the
training data. The learning process discovers clusters of facial display se-
quences and their relationship to the context automatically. This avoids
the need for human intervention in training data collection, and allows
the models to be used without modification for facial display learning in
any context without prior knowledge of the type of behaviors to be used.
We present an experimental paradigm in which we record two humans
playing a game, and learn the POMDP model of their behaviours. The
learned model correctly predicts human actions during a simple cooper-
ative card game based, in part, on their facial displays.

1 Introduction

There has been a growing body of work in the past decade on the communica-
tive function of the face [1]. This psychological research has drawn three major
conclusions. First, facial displays are often purposeful communicative signals.
Second, the purpose is not defined by the display alone, but is dependent on
both the display and the context in which the display was emitted. Third, the
signals are not universal, but vary widely between individuals in their physical
appearance, their contextual relationships, and their purpose. We believe that
these three considerations should be used as critical constraints in the design
of communicative agents able to learn, recognise, and use human facial signals.
They imply that a rational communicative agent must learn the relationships
between facial displays, the context in which they are shown, and its own util-
ity function: it must be able to compute the utility of taking actions in situa-
tions involving purposeful facial displays. The agent will then be able to make
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value-directed decisions based, in part, upon the “meaning” of facial displays
as contained in these learned connections between displays, context, and utility.
The agent must also be able to adapt to new interactants and new situations,
by learning new relationships between facial displays and other context.

This paper presents a vision-based, adaptive, Bayesian model of human facial
displays. The model is, in fact, a partially observable Markov decision process,
or POMDP [2], with spatially and temporally abstract, continuous observations
over the space of video sequences. The POMDP model integrates the recogni-
tion of facial signals with their interpretation and use in a utility-maximization
framework. This is in contrast to other approaches, such as hidden Markov mod-
els, which consider that the goal is simply to categorize a facial display. POMDPs
allow an agent to make decisions based upon facial displays, and, in doing so,
define facial displays by their use in decision-making. Thus, the POMDP train-
ing is freed from the curse of labeling training data which expresses the bias of
the labeler, not necessarily the structure of the task. The model can be acquired
from data, such that an agent can learn to act based on the facial signals of a
human through observation. To ease the burden on decision-making, the model
builds temporal and spatial abstractions of input video data. For example, one
such abstraction may correspond with the wink of an eye, whereas another may
correspond to a smile. These abstractions are also learned from data, and allow
decision making to occur over a small set of states which are accurate temporal
and spatial summarizations of the continuous sensory signals.

Our work is distinguished from other work on recognising facial communi-
cations primarily because the facial displays are not defined prior to learning
the model. We do not train classifiers for different facial motions and then base
decisions upon the classifier outputs. Instead, the training process discovers cat-
egories of facial displays in the data and their relationships with context. The
advantage of learning without pre-defined labels is threefold. First, we do not
need labeled training data, nor expert knowledge about which facial motions are
important. Second, since the system learns categories of motions, it will adapt to
novel displays without modification. Third, resources can be focused on useful
tasks for the agent. It is wasteful to train complex classifiers for the recognition
of fine facial motion if only simple displays are being used in the agent’s context.

The POMDPs we learn have observations which are video sequences, modeled
with mixtures of coupled hidden Markov models (CHMMs) [3]. The CHMM is
used to couple the images and their derivatives, as described in Section 3.1.
While it is usual in a hierarchical model to commit to a most likely value at a
certain level [4, 5], our models propagate noisy evidence from video at the lowest
level to actions at the highest, and the choice of actions can be probabilistically
based upon all available evidence.

2 Previous Work

There are many examples of work in computer vision analysing facial displays [6],
and human motion in general [7, 4]. However, this work is usually supervised,
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in that models of particular classes of human motion are learned from labeled
training data. There has been some recent research in unsupervised learning of
motion models [8, 5], but few have attempted to explicitly include the modeling
of actions and utility, and none have looked at facial displays. Action-Reaction
Learning [9] is a system for analysing and synthesising human behaviours. It is
primarily reactive, however, and does not learn models conducive for high level
reasoning about the long term effects of actions.

Our previous work on this topic has led to the development of many parts
of the system described in this paper. In particular, the low-level computer vi-
sion system for instantaneous action recognition was described in [10], while the
simultaneous learning of the high-level parameters was explored in [11]. This
paper combines this previous work, explicitly incorporates actions and utilities,
and demonstrates how the model is a POMDP, from which policies of action can
be extracted. Complete details can be found in [12].

POMDPs have become the semantic model of choice for decision theoretic
planning in the artificial intelligence (AI) community. While solving POMDPs
optimally is intractable for most real-world problems, the use of approximation
methods have recently enabled their application to substantial planning prob-
lems involving uncertainty, for example, card games [13] and robot control [14].
POMDPs were applied to the problem of active gesture recognition in [15], in
which the goal is to model unobservable, non-foveated regions. This work models
some of the basic mechanics underlying dialogue, such as turn taking, channel
control, and signal detection. Work creating embodied agents has led to much
progress in creating agents that interact using verbal and non-verbal communi-
cation [16]. These agents typically only use a small subset of manually specified
facial expressions or gestures. They focus instead primarily on dialogue manage-
ment and multi-modal inputs, and have not used POMDPs.

3 POMDPs for Facial Display Understanding

A POMDP is a probabilistic temporal model of an agent interacting with the en-
vironment [2], shown as a Bayesian network in Figure 1(a). A POMDP is similar
to a hidden Markov model in that it describes observations as arising from hid-
den states, which are linked through a Markovian chain. However, the POMDP
adds actions and rewards, allowing for decision theoretic planning. A POMDP
is a tuple 〈S,A, T,R,O,B〉, where S is a finite set of (possible unobservable)
states of the environment, A is a finite set of agent actions, T : S × A → S is a
transition function which describes the effects of agent actions upon the world
states, O is a set of observations, B : S×A → O is an observation function which
gives the probability of observations in each state-action pair, and R : S → R is
a real-valued reward function, associating with each state s its immediate utility
R(S). A POMDP model allows an agent to predict the long term effects of its
actions upon his environment, and to choose actions based on these predictions.
Factored POMDPs [18] represent the state, S, using a set of variables, such that
the state space is the product of the spaces of each variable. Factored POMDPs
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allow conditional independencies in the transition function, T , to be leveraged.
Further, T is written as a set of smaller, more intuitive functions.
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Fig. 1. (a) Two time slices of general POMDP. (b) Two time slices of factored POMDP
for facial display understanding. The state, S, has been factored into {Bs, Aact, Acom},
and conditional independencies have been introduced: Ann’s actions do not depend on
her previous actions and Ann’s display is independent of her previous action given the
state and her previous display. These independencies are not strictly necessary, but
simplify our discussion, and are applicable in the simple game we analyse.

Purposeful facial display understanding implies a multi-agent setting, such
that each agent will need to model all other agent’s decision strategies as part of
its internal state 1. In the following, we will refer to the two agents we are model-
ing as “Bob” and “Ann”, and we will discuss the model from Bob’s perspective.
Figure 1(b) shows a factored POMDP model for facial display understanding in
simple interactions. The state of Bob’s POMDP is factored into Bob’s private
internal state, Bs, Ann’s action, Aact, and Ann’s facial display, Acom, such
that St = {Bst, Aactt, Acomt}. While Bs and Aact are observable, Acom is not,
and must be inferred from video sequence observations, O. We wish to focus
on learning models of facial displays, Acom, and so we will use games in which
Aact and Bs are fully observable, which they are not in general. For example,
in a real game of cards, a player must model the suit of any played card as an
unobservable variable, which must be inferred from observations of the card. In
our case, games will be played through a computer interface, and so these kinds
of actions are fully observable.

The transition function is factored into four terms. The first involves only
fully observable variables, and is the conditional probability of the state at time

1 This is known as the decision analytic approach to games, in which each agent
decides upon a strategy based upon his subjective probability distribution over the
strategies employed by other players.
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t under the effect of both player’s actions: ΘS = P (Bst|Aactt, Bact, Bst−1).
The second is over Ann’s actions given Bob’s action, the previous state, and her
previous display: ΘA = P (Aactt|Bact,Acomt−1, Bst−1). The third describes
Bob’s expectation about Ann’s displays given his action, the previous state
and her previous display: ΘD = P (Acomt|Bact,Bst−1, Acomt−1). The fourth
describes what Bob expects to see in the video of Ann’s face, O, given his
high-level descriptor, Acom: ΘO = P (Ot|Acomt). For example, for some state
of Acom, this function may assign high likelihood to sequences in which Ann
smiles. This value of Acom is only assigned meaning through its relationship
with the context and Bob’s action and utility function. We can, however, look at
this observation function, and interpret it as an Acom = ’smile’ state. Writing
Ct = {Bactt, Bst−1}, At = Aactt, and Dt = Acomt, the likelihood of a sequence
of data, {OCA}

1,T

= {O1 . . . OT , C1 . . . CT , A1 . . . AT }, is

P ({OCA}
1,T

|Θ) =
X

k

P (OT |DT,k)
X

l

ΘAΘDP (DT−1,l, {OCA}
1,T−1

|Θ) (1)

where Dt,k is the kth value of the mixture state, D, at time t. The observations,
O, are temporal sequences of finite extent. We assume that the boundaries of
these temporal sequences will be given by the changes in the fully observable
context state, C and A. There are many approaches to this problem, ranging
from the complete Bayesian solution in which the temporal segmentation is
parametrised and integrated out, to specification of a fixed segmentation time [4].

3.1 Observations

We now must compute P (O|Acom), where O is a sequence of video frames.
We have developed a method for generating temporally and spatially abstract
descriptions of sequences of facial displays from video [10, 12]. We give a brief
outline of the method here. Figure 2 shows the model as a Bayesian network
being used to assess a sequence in which a person smiles.

We consider that spatially abstracting a video frame during a human facial
display involves modeling both the current configuration and dynamics of the
face. Our observations consist of the video images, I, and the temporal deriva-
tives, ft, between pairs of images. The task is first to spatially summarise both
of these quantities, and then to temporally compress the entire sequence to a
distribution over high level descriptors, Acom. We assume that the face region
is tracked through the sequence by a separate tracking process, such that the
observations arise from the facial region in the images only. We use a flow-based
tracker, described in more detail in [12].

The spatial abstraction of the derivative fields involves a projection of the
associated optical flow field, v, over the facial region to a set of pre-determined
basis functions. The basis functions are a complete and orthogonal set of 2D
polynomials which are effective for describing flow fields [12]. The resulting fea-
ture vector, Zx, is then conditioned on a set of discrete states, X, parametrised
by normal distributions. The projection is accomplished by analytically integrat-
ing the observation likelihood, P (ft|X), over the space of optical flow fields and
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Fig. 2. A person smiling is analysed by the mixture of CHMMs. Observations, O, are
sequences of images, I, and image temporal derivatives, ft, both of which are projected
over the facial region to a set of basis functions, yielding feature vectors, Zx and Zw.
The image regions, H, are projected directly, while it is actually the optical flow fields,
V , related to the image derivatives which are projected to the basis functions [10]. Zx

and Zw are both modeled using mixtures of Gaussians, X and W , respectively. The
class distributions, X and W , are temporally modeled as mixture, S, of coupled Markov
chains. The probability distribution over S is at the top. The most likely state, S = 1,
can be associated with the concept “smile”. Probability distributions over X and W

are shown for each time step. All other nodes in the network show their expected value
given all evidence. Thus, the flow field, v, is actually 〈v〉 =

R

v
vP (v|O).

over the feature vector space. This method ensures that all observation noise
is propagated to the high level [10]. The abstraction of the images also uses
projections of the raw (grayscale) images to the same set of basis functions, re-
sulting in a feature vector, Zw, which is also modeled using a mixture of normal
distributions with mixture coefficients W .

The basis functions are a complete and orthogonal set, but only a small
number may be necessary for modeling any particular motion. We use a feature
weighting technique that places priors on the normal means and covariances, so
that choosing a set of basis functions is handled automatically by the model [10].

At each time frame, we have a discrete dynamics state, X, and a discrete
configuration state, W , which are abstract descriptions of the instantaneous
dynamics and configuration of the face, respectively. These are temporally ab-
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stracted using a mixture of coupled hidden Markov models (CHMM), in which
the dynamics and configuration states are interacting Markovian processes. The
conditional dependencies between the X and W chains are chosen to reflect the
relationship between the dynamics and configuration. This mixture model can
be used to compute the likelihood of a video sequence given the facial display
descriptor, P (O|Acom):

P ({O}
1,T

|DT ) =
X

ij

P (ft|XT,i)P (It|WT,j)
X

kl

ΘXijkΘWjklP (XT−1,k, WT−1,l {O}
1,T−1

|DT )

(2)

where ΘX , ΘW are the transition matrices in the coupled X and W chains,
and P (ft|XT,i), P (It|WT,j) are the associated observation functions [12]. The
mixture components, D, are a set of discrete abstractions of facial behavior. It
is important to remember that there are no labels associated with these states
at any time during the training. Labels can be assigned after training, as is done
in Figure 2, but these are only to ease exposition.

3.2 Learning POMDPs

We use the expectation-maximization (EM) algorithm [17] to learn the parame-
ters of the POMDP. It is important to stress that the learning takes place over
the entire model simultaneously: both the output distributions, including the
mixtures of coupled HMMs, and the high-level POMDP transition functions are
all learned from data during the process. The learning classifies the input video
sequences into a spatially and temporally abstract finite set, Acom, and learns
the relationship between these high-level descriptors, the observable context, and
the action. We only present some salient results of the derivation here. We seek
the set of parameters, Θ∗, which maximize

Θ∗ = arg max
Θ

[

∑

D

P (D|O,C,A, θ′) log P (D,O,C,A|Θ) + log P (Θ)

]

(3)

subject to constraints on the parameters, Θ∗, that they describe probability
distributions (they sum to 1). The “E” step of the EM algorithm is to compute
the expectation over the hidden state, P (D|O,C,A, θ′), given θ′, a current guess
of the parameter values. The “M” step is then to perform the maximization
which, in this case, can be computed analytically by taking derivatives with
respect to each parameter, setting to zero and solving for the parameter.

The update for the D transition parameter, ΘDijk = P (Dt,i|Dt−1,jCt,k), is
then

ΘDijk =
αDijk +

∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ′)
∑

i

[

αDijk +
∑

t∈{1...Nt}|Ct=k P (Dt,iDt−1,j |O,A,Cθ′)
]

where the sum over the temporal sequence is only over time steps in which Ct =
k, and αDijk is the parameter of the Dirichlet smoothing prior. The summand
can be factored as

P (Dt,iDt−1,j |O,A,Cθ′) = βt,iΘA∗i∗P (Ot|Dt,i)ΘDijkαt−1,j
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where αt,j = P (Dt,j{OAC}
1,t

) and βt,i = P ({OAC}
t+1,T

|Dt,i) are the usual forwards

and backwards variables, for which we can derive recursive updates

αt,j =
X

k

P (Ot|Dt,j)ΘA∗j∗ΘDjk∗αt−1,k βt−1,i =
X

k

βt,kΘA∗k∗P (Ot|Dt,k)ΘDki∗

where we write ΘA∗j∗ = P (At = ∗|Dt,jCt = ∗) and P (Ot|Dt,i) is the likelihood
of the data given a state of the mixture of CHMMs (Equation 2). The updates
to ΘAijk = P (At,i|Dt,jCt,k) are ΘAijk =

∑

t∈{1...Nt}|At=i∨Ct=k ξj , where ξj =

P (Dt,j |OAC) = βt,jαt,j . The updates to the jth component of the mixture of
CHMMs are weighted by ξj , but otherwise is the same as for a normal CHMM [3].
The complete derivation, along with the updates to the output distributions of
the CHMMs, including to the feature weights, can be found in [12].

3.3 Solving POMDPs

If observations are drawn from a finite set, then an optimal policy of action can
be computed for a POMDP [2] using dynamic programming over the space of
the agent’s belief about the state, b(s). However, if the observation space is con-
tinuous, as in our case, the problem becomes much more difficult. In fact, there
are no known algorithms for computing optimal policies for such problems. Nev-
ertheless, approximation techniques have been developed, and yield satisfactory
results [14]. Since our focus in this paper is to learn POMDP models, we use the
simplest possible approximation technique, and simply consider the POMDP as
a fully observable MDP: the state, S, is assigned its most likely value in the
belief state, S = arg maxs b(s). Dynamic programming updates then consist of
computing value functions, V n, where V n(s) gives the expected value of being
in state s with a future of n stages to go (horizon of n), assuming the optimal
actions are taken at each step. The actions that maximize V n are the n stage-
to-go policy (the policy looking forward to a horizon 3 stages in the future). We
use the SPUDD solver to compute these policies [18].

4 Experiments

In order to study the relationships between display recognition and action we
constrain the structure of an interaction between two humans using rules in a
computer game. We then observe the humans playing the game and learn models
of the relationships between their facial motions and the states and actions in the
game. Subsequent analysis of the learned models reveals how the humans were
using their faces for achieving value in the game. Our learning method allows such
games to be analysed without any prior knowledge about what facial displays
will be used during game play. The model automatically “discovers” what display
classes are present. We can also compute policies of action from the models. In
the following, we describe our experiments with a simple card game. Results on
two other simple games, along with further details on the game here described,
can be found in [12].
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4.1 Card Matching Game

Two players play the card matching game. At the start of a round, each player
is dealt three cards from a deck with three suits (♥,♦,♣), with values from 1
to 10. Each player can only see his own set of cards. The players play a single
card simultaneously, and both players win the sum of the cards if the suits
match. Otherwise, they win nothing. On alternate rounds (bidding rounds), a
player has an opportunity to send a confidential bid to his partner, indicating a
card suit. The bids are non-binding and do not directly affect the payoffs in the
game. During the other rounds (displaying rounds), the player can only see her
partner’s bids, and then play one of her cards. There is no time limit for playing
a card, but the decision to play a card is final once made. Finally, each player
can see (but not hear) their teammate through a real-time video link. There are
no game rules concerning the video link, so there are no restrictions placed on
communication strategies the players can use.

The card matching game was played by two students in our laboratory, “Bob”
and “Ann” through a computer interface. A picture of Bob’s game interface
during a typical interaction is shown in Figure 3. Each player viewed their partner

stage 1 stage 2

Fig. 3. Bob’s game interfaces during a typical round. His cards are face up below the
“table”, while Ann’s cards are above it. The current bid is shown below Bob’s cards,
and the winnings are shown along the bottom. The cards along the sides belong to
another team, which is introduced only for motivation. A bid of hearts in stage 1 is
accepted by Ann, and both players commit their heart in stage 2.

through a direct link from their workstation to a Sony EVI S-video camera
mounted about their partner’s screen. The average frame rate at 320 × 240
resolution was over 28fps. The rules of the game were explained to the subjects,
and they played four games of five rounds each. The players had no chance to
discuss potential strategies before the game, but were given time to practice.

We will use data from Bob’s bidding rounds in the first three games to
train the POMDP model. Observations are three or four variable length video
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sequences for each round, and the actions and the values of the cards of both
players, as shown in Table 1. The learned model’s performance will then be
tested on the data from Bob’s bidding rounds in the last game. It is possible to
implement a combined POMDP for both bidding and displaying rounds [12].

There are nine variables which describe the state of the game when a player
has the bid. The suit of each the three cards can be one of ♥,♦,♣. Bob’s actions,
Bact, can be null (no action), or sending a confidential bid (bid♥, bid♦, bid♣) or
committing a card (cmt♥, cmt♦, cmt♣). Ann’s observed actions, Aact, can be
null, or committing a card. The Acom variable describes Ann’s communication
through the video link. It is one of Nd high-level states, D = d1 . . . dNd

, of
the mixture of CHMMs model described previously. Although these states have
no meaning in isolation, they will obtain meaning through their interactions
with the other variables in the POMDP. The number of states, (Nd), must be
manually specified, but can be chosen as large as possible based on the amount
of training data available. The other six, observable, variables in the game are
more functional for the POMDP, including the values of the cards, and whether
a match occurred or not. The reward function is only based upon fully observable
variables, and is simply the sum of the played card values, if the suits match.

4.2 Results

The model was trained with four display states. We inspected the model after
training, and found that two of the states (d1, d3) corresponded to “nodding”
the head, one (d4) to “shaking” the head, and the last (d2) to a null display
with little motion. Training with only three clusters merges the two nodding
clusters together. Figures 4 and 5 show example frames and flows from sequences
recognized as d4 (shake) and as d1 (nod), respectively. The sequences correspond
to the last two rows in Table 1, in which Ann initially refuses a bid of ♦ from
Bob, then accepts a bid of ♣.

Table 2(a) shows a part of the learned conditional probability distribution
over Ann’s action, Aact, given the current bid and Ann’s display, Acom. We see
that, if the bid is null, we expect Ann to do nothing in response. If the bid is
♥, and Ann’s display (Acom) is one of the “nodding” displays d1 or d3, then we
expect Ann to commit her ♥. On the other hand, if Ann’s display is “shaking”,
d4, then we expect her to do nothing (and wait for another bid from Bob).

The learned conditional probability distribution of Ann’s display, Acom, at
time t, given the previous and current bids, bidt−1, and bidt, carried two impor-
tant pieces of information for Bob: First, at the beginning of a round, any bid
is likely to elicit a non-null display d1, d3 or d4. Second, a “nodding” display is
more likely after a “shaking” display if the bid is changed.

4.3 Computing and using a policy

A 3 stage-to-go policy was computed by assuming that the facial display states
are observable. There are ten possible values for each card, which expands the
state space and makes it more difficult to learn accurate models from limited
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Table 1. Log for the first two bidding rounds of one of the training games. A blank
means the card values were the same as the previous sequence. Ann’s display, Acom,
is the most likely as classified by the final model.

round frames Bob’s cards Ann’s cards bid Bob’s act Ann’s act Ann’s display
♥ ♦ ♣ ♥ ♦ ♣ Bact Aact Acom

1 40-150 3 4 7 2 10 7 - bid♣ - d3

1 151-295 ♣ cmt♣ cmt♣ d1

2 725-827 2 5 2 7 3 8 - bid♦ - d4

2 828-976 ♦ bid♣ - d4

2 977-1048 ♣ cmt♣ cmt♣ d1

887
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1

1 2 3 4 5 6 7 8 0

1

1 2 3 4 5 6 7 80

1

1 2 3 4 5 6

887 888

890

0

1

1 2 3 4 5 6 7 8 0

1

1 2 3 4 5 6 7 80

1

1 2 3 4 5 6

890 891

Fig. 4. Frames from the second-to-last row in Table 1. This sequence occurred after
Bob had bid ♦, and was recognized as Acom = d4: a head shake. The bottom row shows
the original images, I, with tracked face region, and the temporal derivative fields, ft.
The middle row shows the expected configuration, H, and flow field, V (scaled by a
factor of 4.0 for visibility). The top row shows distributions over W and X.
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Fig. 5. Frames from the last row in Table 1. This sequence occurred after Bob had made
his second bid of ♣ after Ann’s negative response to his first bid, and was recognized
as Acom = d1: a nod. See Figure 4 for more details.
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Table 2. (a) Selected parts of the learned conditional probability distribution over
Ann’s action, Aact, given the current bid and Ann’s display, Acom. Even distributions
are because of lack of training data. (b) Selected parts of policy of action in the card
matching game for the situation in which B♥v = v3, B♦v = v3 and B♣v = v1.

(a) (b)

bid Acom Aact

null cmt♥ cmt♦ cmt♣

null - 0.40 0.20 0.20 0.20
♥ d1, d3 0.20 0.40 0.20 0.20
♥ d2 0.25 0.25 0.25 0.25
♥ d4 0.40 0.20 0.20 0.20

bid Acom policy Bact

null d1 bid♥
“ d2, d3 bid♦
“ d4 cmt♥
♥ d1, d2, d3 cmt♥
“ d4 bid♦

training data. To reduce this complexity, we approximate these ten values with
three values, v1, v2, v3, where cards valued 1-4 are labeled v1, 5-7 are v2 and
8-10 are labeled v3. More training data would obviate the need for this approx-
imation. We then classified the test data with the Viterbi algorithm given the
trained model to obtain a fully observable state vector for each time step in the
game. The computed policy was consulted, and the recommended actions were
compared to Bob’s actual actions taken in the game. The model correctly pre-
dicted 6/7 actions in the testing data, and 19/20 in the training data. The error
in the testing data was due to the subject glancing at something to the side of
the screen, leading to a classification as d4. This error demonstrates the need for
dialogue management, such as monitoring of the subject’s attention [14].

Table 2(b) shows a part of the policy of action if the player’s cards have
values B♥v = v3, B♦v = v3 and B♣v = v1. For example, if there is no bid on
the table, then Bob should bid one of the high cards: hearts or diamonds. If the
bid is hearts and Ann nodded or did nothing (d1, d2 or d3), then Bob should
commit his heart. If Ann shook her head, though, Bob should bid the diamond.

Notice that, in Table 2(b), the policy is the same for Acom = d2, d3. These
states hold similar value for the agent, and could be combined since their dis-
tinction is not important for decision making. It is believed that this type of
learning, in which the state space is reduced for optimal decision making, will
lead to solution techniques for very large POMDPs in the near future [12].

More complex games typically necessitate longer term memory than the
Markov assumption we have used. However, POMDPs can accomodate longer
dependencies by explicitly representing them in the state space. Further, current
research in logical reasoning in first-order POMDPs will extend these models to
be able to deal with more complex high-level situations.

5 Conclusion

We have presented an adaptive dynamic Bayesian model of human facial displays
in interactions. The model is a partially observable Markov decision process, or
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POMDP. The model is trained directly on a set of video sequences, and does
not need any prior knowledge about the expected types of displays. Without
any behavior labels, the model discovers classes of video sequences and their
relationship with actions, utilities and context. It is these relationships which
define, or give meaning to, the discovered classes of displays. We demonstrate
the method on videos of humans playing a computer game, and show how the
model is conducive for intelligent decision making or for prediction.
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