
SATzilla: An Algorithm Portfolio for SAT∗

Eugene Nudelman Alex Devkar Yoav Shoham
Department of Computer Science, Stanford University

Kevin Leyton-Brown Holger Hoos
Department of Computer Science, University of British Columbia

1 Introduction

Inspired by the success of recent work in the con-
straint programming community on typical-case
complexity, in [3] we developed a new method-
ology for using machine learning to study em-
pirical hardness of hard problems on realistic
distributions. In [2] we demonstrated that this
new approach can be used to construct practical
algorithm portfolios. In brief, the fact that algo-
rithms for solving NP-hard problems are often
relatively uncorrelated means that it is possi-
ble for a portfolio to outperform all of its con-
stituent algorithms. However, such uncorrela-
tion is a knife that cuts both ways: a portfolio
that makes bad choices among its constituent
algorithms will often have much worse perfor-
mance than any of its constituent algorithms.

Our methodology can be outlined as follows:

Offline, as part of algorithm development:

1. Identify a target distribution of problem
instances.

2. Select a set of algorithms having relatively
uncorrelated runtimes on this distribution.

3. Using domain knowledge, identify features
that characterize problem instances.

4. Compute features and determine algorithm
running times.

5. Use regression to construct models of al-
gorithms’ runtimes.

Online, given an instance:

1. Compute feature values.

2. Predict each algorithm’s running time us-
ing learned runtime models.

3. Run the algorithm predicted to be fastest.
∗See [5] for a complete discussion of SATzilla

2 SATzilla

SATzilla is a portfolio of SAT solvers built ac-
cording to the methodology described above. It
includes the following solvers: 2clseq, Limmat,
JeruSat, OKsolver, Relsat, Sato, Satz-rand,
zChaff, eqSatz, Satzoo, kcnfs, and BerkMin.

We began by assembling a broad library of
about 5000 SAT instances, which we gathered
from various public websites. We identified 83
features that could be computed quickly and
that we felt might be useful for predicting run-
time. We computed these features for our set
of SAT instances, dropped some features that
were highly correlated, and were left with 56
distinct features. In order to keep feature values
to sensible ranges, as appropriate we normalized
features by the total number of clauses or num-
ber of variables. We also computed runtimes for
each algorithm on each of our SAT instances.
Given our features and runtime data, we had
a well-defined supervised learning problem. We
built models using ridge regression, a machine
learning technique that finds a linear model (a
hyperplane in feature space) that minimizes a
combination of root mean squared error and a
penalty term for large coefficients. To yield bet-
ter models, we ignored all instances that were
solved by all algorithms, by no algorithms, or as
a side-effect of feature computation.

Upon execution, SATzilla begins by run-
ning a UBCSAT [6] implementation of WalkSat
for 30 seconds. In our experience, this step helps
to filter out easy satisfiable instances. Next,
SATzilla runs the Hypre[1] preprocessor, which
uses hyper-resolution to reason about binary clauses.
This step is often able to dramatically shorten
the formula, often resulting in search problems
that are easier for DPLL-style solvers. Perhaps
more importantly, the simplification “cleans up”
instances, allowing the subsequent analysis of

1



SAT Competition 2004 - solver description

their structure to better reflect the problem’s
combinatorial “core.” Third, SATzilla com-
putes its 56 features. Sometimes, a feature can
actually solve the problem; if this occurs, exe-
cution stops. Some features can also take an in-
ordinate amount of time, particularly with very
large inputs. To prevent feature computation
from consuming all of our allotted time, certain
features run only until a timeout is reached, at
which point SATzilla gives up on computing
the given feature. Fourth, SATzilla evaluates
a regression model of each algorithm in order to
compute a prediction of that algorithm’s run-
ning time. If some of the features have timed
out, a different model is used, which does not in-
volve the missing feature and which was trained
only on instances where the same feature timed
out. Finally, SATzilla runs the algorithm with
the best predicted runtime until the instance is
solved or the allotted time is used up.

3 Features

Space restrictions prevent us from going into
great detail about all elements of SATzilla. We
choose to use our remaining space to give an
overview of the features used by SATzilla.

The features can be roughly categorized into
9 groups. The first one captures problem size,
measured in the number of clauses, variables,
and their ratio. The next three groups corre-
spond to 3 different constraint graphs associ-
ated with each SAT instances. Variable-Clause
Graph is a bipartite graph representing which
variables participate in which clause. Variable
Graph has nodes representing variables, and an
edge between any variables that occur in a clause
together. Conflict Graph (CG) has nodes repre-
senting clauses, and an edge between two clauses
whenever they share a negated literal. For all
graphs we compute various node degree statis-
tics. For CG we also compute statistics of clus-
tering coefficients, defined, for each node, as the
number of edges among its neighbors divided by
k(k− 1)/2, where k is the number of neighbors.
The fifth group measures the balance of an in-
stance in several different respects: the number
of unary, binary, and ternary clauses, statistics
of the amount of positive versus negative occur-
rences of variables within clauses and per vari-
able. The sixth group measures the proximity
of the instance to a Horn formula by computing
the fraction of clauses that are Horn, and statis-

tics over variables occurring in a Horn clause.
These groups are motivated by known heuris-
tics and tractable subclasses. The seventh group
of features is obtained by solving a linear pro-
gramming relaxation of an integer program rep-
resenting the current SAT instance (a feature
that can sometimes solve the SAT instance). Of-
ten, for integer programs, proximity of the LP
relaxation solution to an integral solution is an-
ticorrelated with hardness. We compute statis-
tics of the integer slacks, as well as the actual
objective value and fraction of variables set to
an integer. The eighth group tries to estimate
the hardness of the search space for a DPLL-
type solver. For that we run DPLL procedure
to a small depth and measure the number of
unit propagations done at various depths. We
also estimate the size of the search space [4] by
randomly setting variables and then doing unit
propagation until a contradiction is found. Our
final group of features uses two local search al-
gorithms, GSAT and SAPS [6]. We run both al-
gorithms many times, each time continuing the
search trajectory until a plateau cannot be es-
caped within a given number of steps. We then
average various statistics collected during each
run. It is interesting to note that local-search
probing features are important to the models
for most of SATzilla’s algorithms, even though
all of these solvers are DPLL-based.

References

[1] F. Bacchus and J. Winter. Effective preprocess-
ing with hyper-resolution and equality reduc-
tion. In SAT, 2003.

[2] K. Leyton-Brown, E. Nudelman, G. Andrew,
J. McFadden, and Y. Shoham. Boosting as a
metaphor for algorithm design. In CP, 2003.

[3] K. Leyton-Brown, E. Nudelman, and
Y. Shoham. Learning the empirical hard-
ness of optimization problems: The case of
combinatorial auctions. In CP, 2002.

[4] L. Lobjois and M. Lemâıtre. Branch and bound
algorithm selection by performance prediction.
In AAAI, 1998.

[5] E. Nudelman, A. Devkar, Y. Shoham, and
K. Leyton-Brown. Understanding random SAT:
Beyond the clauses-to-variables ratio. Under re-
view.

[6] D. Tompkins and H. Hoos. UBCSAT: An im-
plementation and experimentation environment
for SLS algorithms for SAT and MAX-SAT. In
SAT, 2004.

2


