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Abstract 

The bulk of current haptics human-factors research 
focuses on mapping basic human perceptual limits. 
However, many realistic applications demand a better 
understanding of how to construct more life-like but often 
less controllable experiment scenarios.  
In this paper, we study this problem in the context of 
advanced automobile interfaces. We employ a throttle 
pedal with programmable force feedback to indicate 
potentially undesirable situations in the external 
environment and to gently but steadily guide the driver 
away from them. We have found evidence that within this 
scenario, errors in such a warning signal can have a 
negative effect on the behavior of the driver within the 
conditions studied. 

These experiments required a complex protocol and 
necessarily permitted a variety of participant tactics. Post-
experiment analysis revealed that very subtle variations in 
participant instruction produced large differences in tactics 
and consequent experiment outcome. 
Keywords: Haptic force feedback, warning signal, false 
negative, false positive, driving performance, experiment 
design, participant instructions. 

1. Introduction 
Perceptual experiments usually fall into one of two 

categories: those where participants are asked to react to 
stimuli in some direct quantitative manner and those where 
the requested response is intended to capture more subtly 
perceived attributes of the stimuli. In research focused on 
determining basic perceptual limits, the former category is 
more common. However, as we integrate haptic feedback 
into sophisticated real applications, we need to better 
understand how to conduct more life-like – and often less 
controllable – experimental scenarios.  

The latter type of experiment generally entails a realistic 
context and/or relatively complex tasks; and in the attempt 
to generate context, may invite involved or deliberately 
imprecise instructions.  In such a situation, how can we get 
the participants to focus on the desired aspects of the 
experiment without giving away critical experiment 

information?  How should we instruct participants so as to 
produce a desired performance tactic when tasks are 
complex and often cannot be clearly explained for 
experimental purposes?  Finally, how can we draw strong 
conclusions from performance and response data collected 
in a deliberately uncontrolled environment? 

In this paper, we examine these questions in the context 
of advanced automobile interfaces. Our paradigm employs 
programmable force feedback in the primary driving 
controls (here, the throttle pedal) to indicate potentially 
undesirable situations in the external environment and to 
gently but steadily guide the driver away from them.  

For our experiments we consider a scenario that 
presupposes the existence of “drive by wire” automotive 
throttle control systems, whereby a pedal position sensor 
and electronic signal replace the traditional all-mechanical 
linkage from pedal to engine control module. These 
systems have begun to appear in the last several years for 
their virtue of improving fuel efficiency and throttle 
response.  However, their existence incidentally affords a 
redefinition of how the primary controls feel to the driver 
and further allow the use of a newly-bidirectional channel 
to deliver new kinds of information in a new format. Given 
the critical nature of the driving task and in particular of the 
role played by the throttle and its feel, it is essential that 
such new interfaces be well designed.  The experiments 
described here address one aspect of this larger problem: 
driver behavior when information delivered through this 
new channel is not completely reliable. 

1.1. Remainder of This Paper 
We begin by describing previous work in the areas of 

haptic constraints, warning signal response and signal 
reliability and introduce the concept of an Active Pedal 
(AP) using a virtual model of a physical system.  The third 
section presents the implementation of a simple driving 
simulator used for our experiment.  The fourth section 
provides a detailed account of the experiment design and 
implementation.  Finally, we present the results obtained 
for three separate experiment series and discuss the subtle 
but forceful impact of instruction style on the outcome of 
this type of experiment.  



 

 

2. Background 
2.1. Haptic Constraints 

The concept of using programmed force feedback to 
subtly inform and/or modify user behavior in a realtime 
manipulation task is not new. Rosenberg first proposed 
using haptic virtual fixtures to constrain user motion 
through a space in ways analogous to the use of a ruler or 
compass in mechanical drafting [7]. More recently, others 
have employed dynamically and sometimes automatically 
generated fixtures in applications such as surgical 
teleoperation; for example Payandeh & Stanisic 
demonstrated improvement in terms of performance, 
workload and task training time [6], and Okamura’s group 
has been optimizing characteristics of the haptic signal 
itself [5]. Most relevantly, Steele & Gillespie looked at 
shared control of steering in a car where use of a haptic 
steering wheel improved tracking performance and reduced 
visual demand in a visual tracking task [9]. 

These and other studies consistently document the 
potential for appropriately displayed haptic feedback to 
provide information that enhances performance and reduces 
user effort in demanding realtime tasks. However, we have 
yet to consider characteristics of the information used to 
generate the informative signals; in particular its reliability, 
and how this may play out in the ability of the user to 
utilize that information.  

2.2. Virtual Models of Physical Systems 
Haptically portrayed models of familiar physical 

systems can make a haptic aid more intuitive [8]. We 
hypothesize that use of this approach in a driving situation 
can influence driver behavior towards a more conservative 
driving pattern in a subtle and non-irritating way, and 
potentially without the driver’s explicit attention or 
awareness.  However, we do not know how a user might 
respond to a haptic signal based on a virtual physical model 
when the signal cannot be guaranteed to be reliable. 

2.3. Warning Signal Effect & Signal Reliability 
Tipper [11] found a classic and robust warning signal 

effect [1, 4] in response time when subjects were given a 
haptic warning (a buzz on the hand) 100-1000 msec before 
receiving a visual stimulus to which they were to respond 
by pushing a computer key: response time improved in 
proportion to the advance warning given.   Signal reliability 
has been shown to play a role in the way people process 
information contained within the signal [3, 10]. Based on 
this, Tipper proceeded to manipulate the reliability of the 
warning signal by corrupting it successively with 25% false 
negatives (“misses” or MI), 25% false positives (“false 
alarms” or FA) or a mix of these two types of errors. She 
found that the presence of FAs within a set of trials 
eliminated the warning signal improvement in response 

time even for those trials where the signal was present 
(“valid trials”); MI trials, on the other hand, had no such 
influence on the valid trials.  Mixed errors produced the 
same negative effect as purely FA errors.  

We argue that the reason for this “bleeding” of a 
deleterious effect on subject behavior when a warning 
signal is subject to false positives is due to the subject’s 
destroyed trust (whether conscious or not) in the reliability 
of the warning signal. This data suggests that false 
negatives do not similarly destroy trust. However, it was 
collected in a highly abstract context. 

2.4. Sensor Reliability and Potential Impact on 
User Trust 

It is generally very difficult to guarantee a technical 
system’s perfect performance. In our situation of an 
intelligent system that warns a user of a critical situation, 
imperfect performance might occur when the system finds a 
critical situation when one does not exist (FA’s), or fails to 
find one when it does exist (MI’s). Further, a class of 
“perceptual” errors can occur through no fault of the 
technology: if the system finds and signals a warning for 
any situation that truly exists but which the user never 
perceives, the user may erroneously believe that system has 
delivered a false positive. In terms of impact on the user’s 
trust of the system, this “perceptual” false alarm is 
indistinguishable from a “technical” false alarm. A user 
interface that takes input from sensors must therefore 
accommodate potential imperfections in the source input by 
understanding how the user will react to various amounts 
and types of sensor inconsistency or unreliability. 

3. Driving Simulator 
We wished to (a) establish whether use of a warning 

signal displayed as a haptic model of a familiar physical 
system can modify driving behavior in its perfect (reliable) 
form, and (b) explore how the same signal when unreliable 
might impact the driver’s ability or willingness to make 

 
Figure 1: Setup.   “Driver” at simulator with force 
feedback pedal. 



 

 

effective use of this information. We therefore developed a 
graphically simple driving simulator that reproduced 
several key aspects of a complex driving environment. A 
visual tracking task was executed via a force feedback 
pedal that superimposed an Active Pedal representation on 
the usual pedal spring force (Figure 1). 

For this analysis, the physical system we modeled is that 
of a spring attached to the front of the car with a rest length 
equal to a nominal following gap behind the car ahead.   
When the driven car approaches the leading car, the driver 
feels the “compression” of this spring as an additional 
resistance through the throttle pedal: he must push a little 
harder to maintain the same gap. The smaller the gap 
between cars, the greater this extra push.  This is, of course, 
only one of the possibilities for augmenting the information 
presented by the driving interface. 

We implemented the simulator in Visual Basic on a 1 
GHz P3 Windows 2000 computer, with an 18” LCD 
monitor.  

3.1. Graphical Interface 
The graphical interface (Figure 2) portrayed two cars on 

a road.  The participant controlled the speed of the 
following car - which is stationary in the reference frame of 
the screen - using the pedal. The motion of the participant’s 
car was conveyed by the rate at which road posts move 
toward the bottom of the screen. The speed of the (upper) 
lead car and ultimately its distance from the bottom car 
varied according to a pseudo-randomized control algorithm 
outlined below.   

3.2. Workload Task: “Road Signs” 
People often perform more than one task while driving; 

adjusting the radio, talking on the phone and using 
navigation systems absorb driver attention. In order to test 
the pedal force feedback in a multitasking environment, we 
provided an additional workload task: shapes (Figure 3) 
appeared at random locations and time intervals on the road 
margins and slowly faded away.  Participants were asked to 
press the <ENTER> key when a particular shape (the 
triangle) was presented. 

The effort required for this task was adjusted during 
pilot experiments by varying the size, number, frequency 
and distinctiveness of shapes until pilot participants felt the 
workload task was “reasonably challenging” and we felt it 
was competing substantially for attention with their primary 
driving task. In these experiments, the workload task 
appeared about 2-16 times per minute 

3.3. Speed Control: FF Pedal and Brake 
The simulator included a force feedback pedal with a 

position sensor interfaced through an IO board for force 
display and throttle input; the participants also used the 
keyboard space bar as a “brake”. The pedal position input 
determined the acceleration of the participant-controlled car 

in the simulation. In the following, "lead" refers to leading 
vehicle, "car" refers to the participant’s vehicle, "TTC" is 
Time to Contact (time until a collision should current 
relative velocities be maintained) and "THW" is Time 
Headway between the two. We employ a desired THW of 2 
seconds, i.e. the car crosses a point on the road 2 seconds 
after the lead. Xcar, Xlead and Xrel refer to the position of 
the participant’s car, the lead car and the distance between 
them.  In a similar manner, Vcar, Vlead and Vrel refer to 
the cars’ velocity. 

rel lead carX X X= −   An increasing Xrel is good. 

 rel lead carV V V= −   An increasing Vrel is good. 

 rel

car
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=            rel
control
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The variables a and b are constants that define the 
displayed force profile given the distance between the cars 
and their velocity.  We used values that maintain the 
relation b=-a/15 based on simulated results. C is a constant 
gain used to keep the total pedal force within a comfortable 
and comparable to a mechanical pedal system range. 

3.4. Following-Car Dynamics 
The position of the throttle pedal is used to calculate the 

 
Figure 2: The main screen.  Participant controls the speed 
of the green car (bottom) using the FF pedal in tandem with 
a “brake”.   

 
Figure 3: Workload shapes which appear at random 
locations on the “road” margins.  Their size relative to other 
graphical features can be seen in the previous figure. 



 

 

“force” applied to the participant’s car; the car’s actual 
acceleration profile also depends on a wind and road-drag 
model component as well as on the vehicle’s mass and 
internal friction.  If the brake is not pressed: 

throttle drag

car

F F
Acceleration

M
−

=  

where 

throttleF  = Force generated by motor = f(pedal 
position) 

dragF   = Drag force proportional to car’s speed 

carM  = Mass of car 

If throttle dragF F< , the car gradually slows down. If the brake 
is pressed: 

brake

car

FAcceleration
M

−=  

where brakeF is a constant brake force. 

3.5. Lead-Car Dynamics 
In order to observe the participant’s response to Active 

Pedal activations in a finite amount of time, we needed the 
participant to interact with the AP fairly often. We aimed 
for 3 activations per minute as an acceptable facsimile of 
driving on a busy highway. This was achieved by 
adaptively adjusting the erraticity of the lead car velocity. 
Our algorithm randomly changed the lead car’s virtual 
accelerator pedal and brake positions, and its consequently 
computed velocity, at discrete, randomly determined 
intervals ranging from 5 to 18 seconds. At all other times, 
the lead car maintained a constant accelerator and brake 
setting. Erraticity could be set at four levels from “steady” 
to “abrupt”. The program evaluated the rate of Active Pedal 
activations every 30 seconds and adjusted erraticity level as 
needed.  

4. Experiment Design 
Experiment Units: All trials shared the same overall 
structure: the participant "drove" through 20 AP activations 
or “events”, where each event is delineated by an activation 
(triggered when THW dropped below 2 seconds). The trial 
ended after 20 activations with an approximate duration of 
6.7 minutes (3 events / minute). In post processing we 
segmented each trial into these 20 observations, and 
computed performance metrics independently on each 
segment. We used seven trial types representing 4 
variables: workload task (W) present / absent; Active Pedal 
(force feedback) present or absent (P); and False Alarms (F) 
and Misses (M) committed by the AP at various 
frequencies. Table 1 identifies 4-letter trial labels. 

A Session consisted of a practice trial followed by five 

experiment trials; each of a different type. Every participant 
completed trial types 0000, W000, 0P00 and WP00 (WL 
and reliable AP present/absent) in random order, followed 
by one of type WPF0, WP0M or WPFM (either False 
Alarms, Misses or both plaguing the AP signal in the 
presence of the workload task). 
Training: All participants performed a practice trial where 
the different combinations of parameters that would be 
presented in the following 5 trials (AP+- and WL+-) were 
experienced.  However, False Alarms and Misses were not 
experienced, nor was their possibility mentioned. 
Participants: We used 36 participants in three runs of the 
experiment (12 per run).  The participants were between 
18-40 years of age, 14 female and 22 male, all with valid 
driver’s licenses and normal vision and motor capability. 
Instructions: For all three runs of the experiment, 
participants were told they were competing in a virtual 
“driving rally” with scoring on race time, safety errors and 
performance in the workload task.  In the first two runs, 
instructions were read from a script, by a different 
individual for each run. For the third run, instructions were 
conveyed by a video recording of an experimenter relating 
the same script.  At the time, we considered the instructions 
for all sessions and runs to be effectively identical.   

5. Analysis 
Analysis was conducted via Matlab scripts and Visual 

Basic code created for data segmentation, computation of 
performance metrics, collation of segment results, statistical 
comparisons and graphical display. This section describes 
how several analysis issues were handled. 
Data Segmentation: To delineate the 20 activation 
events in each session, we defined a segment to begin as the 
participant leaves the critical THW zone from the previous 
segment and continue through to the end of the next critical 
zone penetration.   
Performance Metrics: We used three performance 
metrics to examine the impact of warning signal reliability 
on driving behavior. These metrics were computed for 
every segment of every non-practice trial for each 
participant. For all three, more positive values indicate 

Table 1: Trial types 
Trial Description Label 

Work Load Active 
Pedal 

False 
Alarms 

Misses  

NO NO NO NO 0000 

YES NO NO NO W000 
NO YES NO NO 0P00 

YES YES NO NO WP00 

YES YES 25% NO WPF0 

YES YES NO 25% WP0M 
YES YES 12.5% 12.5% WPFM 

 



 

 

worse performance (see Figure 4). 
 Pcrit (Critical Zone Penalty): weighted integral of time 
spent inside the critical region  (THW < its nominal 2-
second value) where the AP signal is activated. The closer 
the driver is to the lead car, the higher the penalty: 

 
1nLeaveZone

crit
k nEnterZone k

mP
THW=

= ∑ , 

where nEnterZone and nLeaveZone refer to the time steps 
during which the critical zone was entered and departed 
respectively. THWk is the Time-Headway at that time step; 
its inverse is larger when the driver is closer to the lead car. 
Brake: # of samples in the segment where the “brake” was 
pressed, multiplied times sample period. 
Crashes: # of crashes during a segment (THW = 0). 

Statistical Comparisons: To determine relative 
driving performance among the different experiment 
conditions, we compared distributions of segment 
performance metrics rather than trial and/or segment mean 
values. Mean values of metrics like amount of braking or 
number of crashes exhibit large variance by their nature, 
and even statistically significant differences may not be 
very meaningful. Distributions, on the other hand, retain 
information related to frequency and likelihood of these 
kinds of events occurring under the different conditions 
studied. 

A Kolmogorov-Smirnov (KS) test statistically 
evaluates the difference between data distributions. The 
response distributions include all observations of a 
particular metric for a given set of conditions: the KS test 
then provides the likelihood that two such distributions are 
different [2].  Specifically, KS uses as a test statistic the 
maximum difference over all x values of the cumulative 
distributions of the two data sets X1 and X2. Mathematically, 
this can be written as: 
 KS test statistic = max(|F1(x) – F2(x)|), 
where F1(x) is the proportion of X1 values <= x and F2(x) is 
the proportion of X2 values <= x. 

It should be noted that the KS test does not distinguish 
between differences due to distribution means, shapes or 
variances; this is acceptable for our purposes since all of 
these are relevant, and in general the differences we found 
appeared due to a combination of these factors.  

Participant blocking: Because we observed substantial 
between-participant variation and we were most interested 
in the effect on individuals of varying experimental 
conditions, we blocked on participants by computing the 
mean of all observations in a given metric for each 
participant and then removing that mean from the 
participant observations before comparison. (This meant 
that negative values were possible for the metrics). 
Four Tests: We performed four different statistical 
comparisons on the described performance metrics, each 
based on a KS test between two distributions. In order to 

utilize a 2-distribution test to compare 3 distributions, we 
therefore had to carry out three pair-wise comparisons. 
1. Effect of Reliable AP and of Workload 
 Does AP feedback help when reliable? What effect does 
our workload model have? To measure the effect of AP, 
trial were lumped as (0000+W000) and (0P00+WP00), then 
compared in a 2-way test.  For workload, the same trials 
were lumped as (0000+0P00) and (W000+WP00). Each test 
utilized 36 participants x 4 trials x 20 segments = 2880 
observations. 
2. No AP vs. Reliable AP vs. 25% Misses AP  
What is the impact of Misses on performance? This 3-way 
test compared trial types W000, WP00 and WP0M for the 
12 participants who performed WP0M (4 from each 
experiment run). Each of the three component 2-way tests 
utilized 12 x 2 trials x 20 = 480 observations; 12x3x20=720 
observations in all were involved in the three comparisons. 
3.  No AP vs. Reliable AP vs. 25% False Alarms AP 
What is the impact of False Alarms? This 3-way test also 
utilized 720 observations and compared trial types W000, 
WP00 and WPF0 for a second subset of 12 participants. 
4. No AP vs. Reliable AP vs. 12.5% M + 12.5% F 
What is the impact of mixed False Alarms and Misses? 
This 3-way test also utilized 720 observations, and 
compared trial types W000, WP00 and WPFM for the final 
subset of 12 participants. 

6. Results 
In Figure 4, we see the baseline effects of the reliable 

AP signal (top half), and of workload (bottom). The Active 
Pedal signal (as implemented in our simulator) reduced the 
magnitude of all selected metrics, proving to be a 
significant aid over the no-AP case. However, our 
mechanism for imposing workload demonstrated mixed 
results, hurting performance for one of the metrics 
(braking), less significantly improving performance for 
another (Pcrit) and having no significant effect on the third 
metric (Crashes) within the conditions studied.  

Using a similar convention, Figure 5 shows the results 
of the 3-way KS comparisons (composed of three 2-way 
tests) of the trials that used no AP signal, a reliable AP 
signal, or a particular type of unreliable signal.  In the top 
graph in Figure 5, the signal for this twelve-participant 
subset was corrupted by Misses.  The Brake and Crash 
metrics do not show a significant alteration in driving 
behavior when a reliable AP signal was employed (No AP 
vs. Rel AP).  However, Pcrit shows a significant increase in 
time spent in the critical zone for reliable-AP trials (large 
positive blue bar), countering the 36-participant result 
shown in Figure 4 (negative blue bar), and the two other 
12-participant results for this comparison for False Alarms 
and Mixed Error participant subsets below. In the 
comparison of reliable with Miss-prone AP trials (Rel AP 
vs. Misses), Pcrit and Brakes indicate that for these 12 



 

 

participants, driving style was more extreme when the 
warning signal was reliable than when it was subject to 
misses.  The final row in this graph (No AP vs. Misses) is 
consistent with the first two for its only significant metric 
(Brakes): a miss-prone signal is better than none. 

Proceeding in this manner through the remaining two 
graphs of Figure 5, we see in summary that a reliable AP 
signal usually results in a performance improvement over 
no AP signal (Pcrit for the first group is the only exception), 
and that this result is often significant. False Alarms results 
in a performance most similar to that of no signal at all, i.e. 
the presence of false alarms appears to “wipe out” the 
benefits of the reliable signal for our specific setup and 
experiment design (Brakes metric). The presence of Mixed 
Errors results in a behavior intermediate between a reliable 
signal and none, for all metrics. The twelve FA participants 
seem to have been less reactive than the other 24, showing 
little diversity in performance for any metric except Brake 
(which followed the results of Mixed Errors). 
Unsurprisingly, Crashes shows the least consistent results 
among the three metrics. It represents the most extreme 
error, and the one most likely to be influenced by variations 
in the participant’s accustomed driving style and the current 
driving mindset. 

7. Impact of Instructions 
Considering the complex nature of the experiment and 

some initial non-intuitive observations, we were prompted 
to examine our data in greater detail.  A close examinationd 

of the individual results revealed that each participant’s 
overall driving behavior correlated with that of others in the 
same run.  

Figure 6 shows the average values obtained for the 
Critical Zone Penalty (Pcrit) for the 3 separate runs of the 
experiment (12 participants each; and each run included 

Figure 4: KS results for Test 1 show the effect of reliable AP 
and of workload for the three metrics (all 36 participants). 
Data from the same 2880 observations have been 
compared after lumping by presence/absence of AP signal 
(top) or workload task (bottom). The P-value indicates the 
statistical significance of the noted difference according to 
the KS test, whenever P≤0.050. The x-value is the 
dimensionless KS test statistic, i.e. the maximum difference 
between the two cumulative distribution functions.  The x-
direction of the arrows indicates whether the change in the 
performance metric denotes an increment or decrement in 
the related metric.  For these metrics, a more negative 
value indicates a more conservative driving pattern. 

 

 

 
Figure 5: KS results are compared two at a time for (in each 
of the three graphs) three cases: No AP signal, a reliable 
AP signal, and an unreliable AP signal corrupted by one of 
three categories of errors (Tests 2-4). The KS test P-value 
is noted when significant, and the x-value is the 
dimensionless KS test statistic.   



 

 

participants tested with all types of signal error). 
Here we can see that for all 3 runs, the presence of an 

Active Pedal improves performance overall (by reducing 
the average Pcrit).  Also evident from this figure is the 
difference in overall magnitude for the 3 separate runs of 
the experiment, regardless of AP signal presence or 
absence.   

The only variable we have been able to identify that 
could explain this phenomenon is the delivery of participant 
instructions for each run. A different experimenter 
administered each of the first two runs of the experiment, 
reading the same script; becoming suspicious, we instructed 
3rd-run participants with the aid of a video recording, using 
the voice of a third experimenter. We conjecture that 
intonation, expression and verbal emphasis might have 
varied enough between the different experimenters to 
encourage different degrees of driving conservatism among 
each set of participants. 

8. Discussion 
In summary, we can observe that for this simulator and the 
tested combinations of experiment conditions:  

(i) AP forces (always vs. never present) had a 
significant impact on all of the three metrics considered 
(p=0.014, 0.000, 0.018 respectively; 36 participants and 
2880 observations). This is a strong result. Our workload 
task, on the other hand, did not appear to have a consistent 
effect on these metrics for the conditions tested.  Further 
work will investigate the effect of workload more directly. 

(ii) The improvements observed when using a reliable 
AP are lost when the signal is plagued with False Alarms 
(25%) in this particular experimental context.  Performance 

with FA's is never significantly different from that with no 
signal (e.g. a Drive-By-Wire system with no additional 
force feedback). However, this pattern of degradation is 
significant only for the Brake metric for this participant 
subset. Mixed errors (FA+Misses), produced behavior 
similar to that of just FA's, for those results that are 
significant, although with a smaller magnitude. This effect 
of false alarms suggests that this type of error may 
undermine the improvements gained with the uncorrupted 
AP and are consistent with those found by Tipper [11], but 
to our knowledge this is the first time they have been 
documented in a semi-realistic driving context (i.e. 
continuous task subject to additional workload tasks).   

(iii) Within the conditions studied, the presence of 25% 
Misses significantly improves performance over the cases 
of both a reliable and an absent AP signal, for some metrics 
(in Figure 5, compare the Rel AP vs. Error AP for Misses 
relative to those for FA and Mixed errors; the pattern is 
markedly different). This is perhaps the most surprising 
result among Tests 2-4. 

Why might the presence of missed events (Misses) in 
the warning signal improve performance over the case of a 
perfectly reliable AP signal – under these conditions and 
measured by these metrics? It is believed that a warning 
signal of any type places individuals in a state of 
heightened alert and thus decreases reaction times [1]. 
However, it may also be the case that when individuals 
come to fully trust a warning signal, they may not feel the 
need to attend so closely to the task, particularly when a 
second task is competing for that attention – and this may 
result in decreased performance, despite the warning signal. 
Conversely, we theorize that our participants seem to make 
good use of a signal that is always trustworthy when it does 
trigger, but cannot be depended on to trigger for every valid 
target, without abdicating responsibility for finding those 
other events. This result may not appear in the case of false 
positive signals because the user may then feel that the 
signal is never trustworthy. If so, determination of the 
cognitive or perceptual level at which this distinction is 
made will require further investigation.  

(iv) There is a noticeable difference in participant 
behavior (and thus performance according to our measures) 
for the 3 separate runs of the experiment. This can be 
clearly seen in Figure 6, where there is an evident 
difference between the overall values for the Pcrit metric for 
the three separate runs of the experiment. The same trend 
was observed in the two other metrics (not shown due to 
length restrictions).   

We theorize that these differences are a result of 
variation in the participants’ understanding of their assigned 
task. The three experiment runs were administered by 
different individuals. A careful postmortem suggested that 
these individuals inadvertently placed a subtly different 
emphasis on differ rent aspects of the instructions for each 
run, thus creating three different driving mindsets that could 

Effect of Reliable AP for 3 Experiment Runs
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Figure 6: Average values for Pcrit metric for the 3 
experiment runs (12 participants each) after grouping by 
presence/absence of the AP signal. Data from all reliable 
trials (0000+W000 vs. 0P00+WP00) are compared. A more 
negative value indicates improved performance. Reliable 
AP always improves performance over no AP, but overall 
performance varies substantially between the three runs.  



 

 

explain the evidence seen in Figure 6: Slow/Calm 
(Experiment 3), Fast/Aggressive (Experiment 2) and 
Somewhere In Between (Experiment 1). 

The instructions were designed to situate the 
participants in a “drive conservatively but quickly” 
mindset. This gave the participant the responsibility of 
enacting a compromise between two often-conflicting 
goals, as most of us do in real-life driving on a daily basis. 
However, a simulator is not a real car and brings no real 
consequences to aggressive driving. If the experimenter 
read the instructions with a greater emphasis on 
“conservative” as opposed to “quickly”, the participant’s 
behavior might be different for that particular run of the 
experiment. This is what seems to have occurred. 

9. Conclusions  
The experiment described here confirms previous 

evidence of a deleterious effect of interspersed false 
positives (in contrast to the neutral effect of false negatives) 
on the ability to use a binary haptic warning signal.  This 
work extends these findings to a substantially more 
sophisticated scenario involving a semi-realistic driving 
simulation with a pedal-controlled tracking task in the 
presence of additional workload, with intuitively generated 
continuous force feedback delivered through the pedal, and 
for a set of metrics which evaluate “conservative driving”. 

This experiment has also introduced new possibilities 
regarding the potentially positive performance impact of 
interspersed false negatives in a warning signal for our 
specific context. 

We conclude that participant instruction can strongly 
influence their attitude when immersed in complex 
scenarios such as the Active Pedal driving simulator. A 
post-experiment analysis of the results leads us to conclude 
that our instructions inadvertently created 3 different kinds 
of driver mindsets (Slow, Moderate, Fast).  Specifically, we 
believe that the three experimenters tended to encourage the 
participants to drive more or less aggressively through both 
vocal emphasis in reading written instructions, and ad-hoc 
clarifications.  The level of impact of Active Pedal force 
feedback (AP) varies given these different driver mindsets.  
At least within the conditions studied, the AP seems to have 
a stronger influence in moderating driving behavior for 
people who are driving aggressively.  

In general, the strong sensitivity of this type of highly 
contextualized, stakes-based experiment to experimenter-
influenced participant strategy underscores the need for 
care in experiment design and protocol as well as careful 
analysis of results to better understand the gathered data.  

As implemented by us, the presence / absence of a 
workload task made no measurable difference in the impact 
of AP on driving performance. Possible causes for this are: 

a) Our WL task was not hard enough to impact on the 
"automaticity" of the driver's mental state. 

b) The principal response to the WL task was to drive less 

aggressively in general, a condition in which the AP had 
less effect. Thus WL (in this case) may have changed 
participant behavior, but independently of the AP. 
We emphasize that the conclusions presented here apply 

only to our proposed haptic feedback model (Active Pedal) 
and the additional information it might provide to the driver 
and not to the general Drive-By Wire case. 

In future work, we plan to further investigate the 
subtleties of warning signal reliability for complex 
scenarios such of that described here, and to innovate on 
mechanisms for reliable experimentation in these situations. 
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