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We present a probabilistic approach to state estimation and control of industrial
processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model
to describe an industrial heat exchanger. The parameters of this model are identi-
fied with the expectation maximisation (EM) algorithm. After identification, particle
filtering algorithms are adopted to diagnose, in real-time, the state of operation
of the heat exchanger. The particle filtering estimates are then used to drive an
automatic control system.
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1. Introduction

State estimation plays a critical role in modern diagnosis and control systems. Early detection of
changes in the states of industrial process can be used to plan maintenance or to choose a suitable control
policy. These changes are typically very subtle. They depend on operating conditions and on complex
interactions of many discrete and continuous variables. It is often difficult for a human operator to evaluate
or diagnose the process continuously [1, 2].

Here, we propose and real-time, automatic strategy for estimating the states of industrial processes
from noisy measurements of continuous variables. This approach enables us to reduce the cognitive load
experienced by human operators. It also serves to minimise the number of instruments and to open up
room for sophisticated control strategies.

In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe an industrial heat
exchanger with different linear regimes of operation. A discrete state variable controls the switching between
the various linear regimes. The parameters of each regime are identified off-line with the EM algorithm [3].
Once the stationary parameters have been identified, real-time Rao-Blackwellised particle filtering (RBPF)
algorithms are used to estimate the continuous and discrete states of the system on-line [4, 5]. These
estimates are used to determine to control policy of a PID controller.

The paper is organised as follows. Section 2. presents and overview of our approach. Section 3.
describes various particle filtering algorithms. Section 4. discusses the results and Section 5. concludes
the paper.

2. Overview

We represent a complex nonlinear process (a heat exchanger) with a dynamic mixture of linear
processes. In addition to the continuous state variables corresponding to each linear process, we have a
discrete state variable that determines the linear regime of operation. We acquire data for each regime
separately. This data enables us to do off-line identification with the EM algorithm. Subsequently, a particle
filter uses these parameters and new measurements to estimate the discrete state of operation on-line.
Knowledge of this state enables us to choose appropriate control strategies.
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2.1. Process monitored

We monitored an industrial heat exchanger, shown on the left of Figure 1. This exchanger heats
10 gpm of water from 25 �

�
to 70 �

�
using steam at 5 kg/cm � . It is in a horizontal arrangement with 11

Cu-Ni(90-10) tubes of 3/4 inches external diameter, which are in a BWG-20 triangular distribution. The
container is 6 inches in external diameter and 70 inches in length. This process is fully instrumented and is
operated by the Honeywell TDC 3000 industrial distributed control system [6]. The right graph in Figure 1
shows a conceptual diagram of the main instrumentation. Table 1 describes each tag-name.

Figure 1. Heat exchanger and instrumentation diagram.

Table 1. Heat exchanger instrumentation.
Tag-name Name Description units

FT203 Flow transmitter Input water flow %
FV203 Control valve Input water valve %
FIC203 Flow controller Input water flow PID
FT202 Flow transmitter Steam flow %
FV202 Control valve Steam valve %
FIC203 Flow controller Steam flow PID
TT201 Temperature transmitter Output water temperature �

�

The key variable in this thermal process is the output water temperature. We can control this tempera-
ture by manipulating the steam flow. The dynamic characteristics (transient response) of the heat exchange
are strongly influenced by the input water flow. The relationship among input water flow and output water
temperature is nonlinear. We found five linear operating ranges shown in Table 2.

Table 2. Linear operating conditions.
Model Name FT203 Range FV202 TT201

1 Very high flow 59-71 % 32 % 39.69 �
�

2 High flow 55-59 % 32 % 41.68 �
�

3 Normal flow 44-55 % 32 % 44.05 �
�

4 Low flow 35-44 % 32 % 47.26 �
�

5 Very low flow 29-35 % 32 % 51.40 �
�



2.2. Mathematical model

We adopted the following JMLG model

����� �������
	 ��������
����� ���������������������������������� ����������!"�
#$��� � ���������%�&� '(��������)*�+� ,���������!"�.-

where # �0/214365 denotes the measurements (output water temperature), � ��/7143$8 denotes the unknown
continuous states, ! �0/ 9 is a known control signal (steam flow), � �0/;:=< -�>?>�>
-A@+B6C denotes the unknown
discrete states described in Table 2. We assume the noise processes are i.i.d. Gaussian: � � � D;��E%-AFG� and) � �HD;�IEJ-AFG� . Note that the parameters ����-A�K- � -A'L-M��-A,N� depend on the discrete state of operation. For
each discrete state, we have a single linear-Gaussian model. We ensure that '(�I� � �O'(��� � ��PKQRE for any � � .
The initial states are �JST�UD;��V�S=-.W�S�� and �?SX�2������S�� .

2.3. Data acquisition

We engineered a transition matrix �����
�.	 �������� to physically change the operating conditions of the
heat exchanger. For each regime of operation, we monitored the water temperature, #�� , for more than 30
minutes and collected 1000 time samples.

2.4. Parameter identification

The identification consisted of two stages. In the first stage, we adopted an open-loop step response
technique [7] to obtain the dynamic model for each discrete state. The parametric identification was guided
by the minimum squares error algorithm [8]. The discrete-time state space representation, consisting of
matrices �����I�����.- � �����O�.-M���������.-A,��I���O�O� , was generated by a standard procedure in control engineering [7].
The matrix ,��I�?�O� was null in our application.

In the second stage, we apply a maximum likelihood (EM) algorithm [3] to refine the estimates of���Y�����O�.- � �������.-M���������.-A,��I���O�O� and to compute the noise matrices ���������O�.-M'(�������O� . This algorithm consisted of
two steps. In the E step, a Rauch-Tung-Striebel Kalman smoother was used to compute the sufficient statis-
tics of the Gaussian states. In the M step, we updated the matrices of parameters using analytically derived
equations [3]. We repeated this procedure for each discrete state. Note that the first identification stage
contributes significantly toward avoiding convergence to shallow local maxima of the likelihood function.

To show that the JMLG model can successfully describe the heat exchanger with a dynamic mixture
of linear models, we compared the measured data to data generated by the model. The graphs in Figure 2
show this data. The upper graphs show the discrete state of operation. The lower graphs show the real
data (output water temperature, # � ) and the synthetic data generated by the JMLG model. The JMLG model
seems to be rich enough to model the nonlinear heat exchanger.

2.5. On-line Bayesian monitoring

Our main goal is to determine the discrete state of operation. That is, we want to compute the
marginal posterior distribution1 of the discrete states �Z����S
[ �.	 #\M[ ��� . (In practice, we avoid storing past trajec-
tories and, hence, focus on the filtering distribution ���I�.�
	 #GA[ ��� as ] increases.) The marginal posterior can

1NOTATION: For a generic vector ^ , we adopt the notation ^
_�` acb7de^�_.fI^hg�fOi�iAi�fI^ akjml to denote all the entries of this vector at timen
. For simplicity, we use ^ a to denote both the random variable and its realisation. Consequently, we express continuous probability

distributions using o�dep
^ akj instead of q�r\ds^ a�t p�^ a�j and discrete distributions using o0ds^ akj instead of q"r\du^ a"v ^ a�j . If these distributions
admit densities with respect to an underlying measure w (counting or Lebesgue), we denote these densities by xyde^ a j . For example,
when considering the space z+{ , we will use the Lebesgue measure, w v p
^ a , so that o0dup
^ a j%v xyds^ a j p
^ a .
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Figure 2. Real data and generated data for two random sequences.

be derived from the posterior distribution �Z���=� S.[ � -A� S
[ � 	 # M[ � � using standard marginalisation. The posterior
density satisfies the following recursion:

�����%S
[ �.-A��S.[ �.	 #GA[ ��� � �Y�m�%S
[ ����6-A��S
[ ���+*	 #\A[ ���+
� ����# � 	 � � -A� � ������� � -A� � 	 � ���� -A� ���� ����m#6�
	 #\M[ ���+
� > (1)

This recursion involves intractable integrals. One, therefore, has to resort to some form of numerical ap-
proximation scheme. Here, we adopt particle filtering techniques.

3. Particle Filtering

In the PF setting, we use a weighted set of samples (particles) : ���������S.[ � -A�	���
�S
[ � �.-O�������� C��
�  to approximate
the posterior with the following point-mass distribution

�� � ���=� S
[ � -A� S
[ � 	 # M[ � �c�
��
�
� 
�����
����������
���� � � B ���
���� � ���=� S
[ � -A� S
[ � �
-

where �������
��!� � � B �"������ � �#�$� S.[ � -A� S
[ � � denotes the Dirac-delta function. Given $ particles : �����
�S
[ ���+ -M�%���
�S
[ ���� C��
�  at time

]%& < , approximately distributed according to �����=�����
�S
[ ���+ -M�%�
���S.[ ���� 	 # A[ ���� � , PF enables us to compute $ particles
: � ���
�S.[ � -A� ���
�S
[ � C ��
�  approximately distributed according to �����=� ���
�S
[ � -A� �����S.[ � 	 # M[ � � , at time ] . Since we cannot sample
from the posterior directly, the PF update is accomplished by introducing an appropriate importance pro-
posal distribution ' �#�$� S
[ � -A� S
[ � � from which we can obtain samples. The basic algorithm, Figure 3, consists
of two steps: sequential importance sampling and selection (see [5] for a detailed derivation). This algo-
rithm uses the transition priors as proposal distributions; ' ��� S
[ �h-M�?S
[ �
	 #\M[ ��� � �����%�
	 ������6-A���������I�?�
	 ������
� . For
the selection step, we used a state-of-the-art minimum variance resampling algorithm [9].

3.1. Rao-Blackwellised Particle Filtering

By considering the factorisation ���
�JS
[ �.-A��S.[ �.	�#\M[ ���N�(�����%S
[ �.	�#\M[ �h-M�?S
[ ���)���
��S
[ �
	�#\A[ ��� , it is possible to de-
sign more efficient PF algorithms. The density ���.� S
[ ��	�#\M[ �h-A��S.[ ��� is Gaussian and can be computed analyti-
cally if we know the marginal posterior density ������S.[ �.	�#\M[ ��� . This density satisfies the alternative recursion

���I��S.[ �.	 #\M[ ��� �*���I��S.[ ����$	 #GA[ ������ ����#6�
	 #\M[ ����*-A��S.[ �������I�?�
	 ������
��Y�m# � 	 # A[ ���+ � (2)



Sequential importance sampling step� For
� v�� fOi i i f�� , sample from the transition priors� �	��
�a�� o d � a�� �	��
�a��"_ j and

�����
�a�� o dep � a�� ����
�a���_ f �	��
��a j
and set � �� ��
�� ` a f �� ��
��� ` a�� b�� �� ��
�a f � � ��
�a f � ��
�� ` a���_ f � ��
��� ` a��"_�� i� For

� v�� fOi i i f�� , evaluate and normalize the importance weights� ��
��a� x!�#" a�� �����
��a f � �	��
�a �
Selection step� Multiply/Discard particles $ �� ��
�� ` a f �� � 
��� ` a�%'&
( _ with respect to high/low importance weights � ��
�a to obtain � particles

$ ��� 
��� ` a f �	��
�� ` a)% &
�( _ .

Figure 3. PF algorithm at time ] .

If equation (1) does not admit a closed-form expression, then equation (2) does not admit one either and
sampling-based methods are still required. (Also note that the term �Y�m# � 	 # M[ ���� -A� S.[ � � in equation (2) does
not simplify to ����# � 	 � � � because there is a dependency on past values through � S.[ � .) Now assuming that we
can use a weighted set of samples : � ���
�S
[ � -O���
���� C�����  to represent the marginal posterior distribution

�� � ����S
[ �
	 #\M[ ���c�
��
�
� 
� ������ � B ���
���� � ����S
[ ���
-

the marginal density of � S
[ � is a Gaussian mixture

�� � ���%S
[ ��	 #\M[ ��� �+* � �m�%S
[ ��	 ��S
[ �M-A#\M[ �����\������S
[ ��	 #\M[ ���c� ��
�
� 
� ���
�� � �m�%S
[ �
	 #\M[ �h-A� �����S.[ � �

that can be computed efficiently with a stochastic bank of Kalman filters. That is, we use PF to estimate
the distribution of � � and exact computations (Kalman filter) to estimate the mean and variance of � � . In
particular, we sample � ���
�� and then propagate the mean V ������ and covariance W ���
�� of �%� with a Kalman filter:, ��
�a�- a.�"_0/ 1!243 ��
��a65 , ��
��a��"_8769 243 ��
��a�5�: a; ��
�a�- a.�"_0/ 1!243 ��
��a 5 ; ��
�a��"_ 1<243 ��
�a 5�= 76> 243 ��
�a 5 > 243 ��
�a 5�=? ��
�a / @A243 ��
�a 5 ; ��
�a�- a��"_ @A243 ��
��a 5 = 7CB 243 ��
�a 5 B 243 ��
��a 5 =D ��
�a�- a���_E/ @A243 ��
�aF5 , ��
�a�- a.�"_ 7�G 243 ��
��a�5�: a, ��
�a / , ��
��a�- a���_ 7 ; ��
�a�- a.�"_ @A243 ��
��a 5�= ? ��_ ��
��a 2 D aIH D ��
��a�- a��"_ 5; ��
�a / ; ��
�a�- a���_ H ; ��
�a�- a��"_ @A243 ��
��a 5 = ? ��_ ��
�a @A243 ��
�a 5 ; ��
�a�- a��"_KJ
where V ��L ���+NMPO �$� � 	�# M[ ���+ � , V � MQO �=� � 	�# A[ � � , # ��L ����RMSO �$# � 	�# M[ ���+ � , W ��L ����NMUTWV )X�?� � 	�# M[ ���� � , W � MTXV )T�
� � 	�# M[ � � and Y � MZTXV )X��# � 	�# M[ ���� � .

This is the basis of the RBPF algorithm that was adopted in [4]. Here, we introduce extra improve-
ments. Let us expand the expression for the importance weights:

��� � � ����S
[ �.	 #\M[ ���[ ��� S
[ � 	 # M[ � � � � ����S
[ ���+6	 #\M[ ���
� �I� S.[ ���� 	 # M[ ���� �

� �����h	 ��S.[ ���+ -O#GA[ ���[ �I� � 	 � S.[ ���+ -O# M[ � � (3)

\ ���m#6�
	 #\M[ ���+ -M�?S
[ ���)���m���
	 ��S
[ ���� -A#\M[ ���+
�[��I� � 	 � S.[ ���� -O# M[ � � > (4)



The proposal choice, [ �I�?S.[ ��	 #\M[ ���L�Q[ ������	 ��S.[ ���� -O#\M[ ��� � �I�?S
[ ����$	 #\M[ ������ , states that we are not sampling past
trajectories. Sampling past trajectories requires solving an intractable integral [10].

We could use the transition prior as proposal distribution: [ �I� � 	 � S
[ ���� -A# M[ � �K� ����� � 	 � S
[ ���� -A# M[ ���+ ���
���I� � 	 � ���� � . Then, according to equation (4), the importance weights simplify to the predictive density

��� \ ���
#$�.	�#\A[ ���+ -A��S
[ ���c� D � #$���A# ��L ���� - Y ���c> (5)

However, we can do better by noticing that according to equation (3), the optimal proposal distribution
corresponds to the choice [ ��� �
	 ��S
[ ���� -A#\M[ ��� � � �����
	 �?S
[ ����*-O#\M[ ��� . This distribution satisfies Bayes rule:

�Y��� � 	 � S
[ ���+ -A# A[ � �c� ���m#6�.	 #\A[ ���+ -A��S
[ �����������
	 ��S
[ ���� -A#\M[ ���+.�
�Y�m#6�
	 #\A[ ���+ -A��S
[ ����.� (6)

and, hence, the importance weights simplify to

��� \ ���m#6�
	 #\M[ ���+ -M�?S
[ ����.��� 3���
B � � 

�Y�m#6�
	 #\A[ ���+ -A��S
[ ���� -M�����)���m���
	 �������� (7)

When the number of discrete states is small, say 10 or 100, we can compute the distributions in equations
(6) and (7) analytically. In addition to Rao-Blackwellisation, this leads to substantial improvements over
standard particle filters. Yet, a further improvement can still be attained.

Even when using the optimal importance distribution, there is a discrepancy arising from the ratio� �I� S.[ ���� 	 # A[ � �	� � ��� S
[ ���� 	 # M[ ���+ � in equation (3). This discrepancy is what causes the well known problem of
sample impoverishment in all particle filters [5, 11]. To circumvent it to a significant extent, we note that the
importance weights do not depend on �.� (we are marginalising over this variable). It is therefore possible
to select particles before the sampling step. That is, one chooses the fittest particles at time ] & < using
the information at time ] . This observation leads to an efficient algorithm (RBPF2), whose pseudocode is
shown in Figure 4. Note that for standard PF, Figure 3, the importance weights depend on the sample � ������ ,
thus not permitting selection before sampling. Selecting particles before sampling results in a richer sample
set at the end of each time step.

4. Results and Discussion

4.1. State estimation

We tested the three inference algorithms on 10 real datasets. A representative set of results is
depicted in Figure 5. The left graph shows the diagnosis error versus computing time per time-step (the
signal sampling time was 2 seconds), while the right graph shows the diagnosis error versus the number
of particles. The diagnosis error represents how many discrete states were not identified properly. It was
calculated for 25 independent runs (1000 time steps each). The graphs shows that RBPF2 always works
significantly better (low error rate and very low variance).

The graph in Figure 5 also shows that even for 1 particle, RBPF2 is able to track the discrete state
in real time. This is possible thanks to the high accuracy of the sensors (variance = 0.005). That is, the
distributions are very peaked and we are simply tracking the mode. Note that RBPF2 is the only filter that
uses the most recent information in the proposal distribution. Since the measurements are very accurate, it
finds the mode easily.

Figure 6 shows the tracking performance of the three algorithms when a step change occurs. By this
stage, PF has lost track entirely. RBPF fails to recover when the step occurs. RBPF2, on the other hand,
recovers reasonably quickly. Note that the step change leads to an increase in uncertainty. Hence, the
RBPF2 estimate of the variance of the continuous states increases accordingly.



Kalman prediction step� For i=1, . . . , N, and for
� a vC� fAi�iOiOf���� compute�w ��
�a�- a���_ d � a�j f �� ��
�a�- a.�"_ d � akj f �" ��
�a�- a��"_ d � a�j f �� ��
��a d � a�j� For i=1 , . . . , N , evaluate and normalize the importance weights

� ��
��a v xGd�" a � " _�` a���_hf �	��
��� ` a��"_ j%v { ��

� � ( _ � d �" ��
��a�- a���_ d � a�j f �� ��
�a d � akjIj xGd � a � �	��
�a.�"_ j
Selection step� Multiply/Discard particles $ �w ��
�a���_ f �� ��
�a���_ f �� ��
��� ` a��"_W% &
�( _ with respect to high/low importance weights � ��
��a to obtain �

particles $ w ��
��a.�"_ f � ��
��a��"_ f �	��
�� ` a��"_ % &
( _ .
Sequential importance sampling step� Kalman prediction. For i=1, . . . , N, and for

� a v6� fOi�iAi�f���� using the resampled information, re-compute�w ��
�a�- a���_ d � a j f �� ��
�a�- a.�"_ d � a j f �" ��
�a�- a��"_ d � a j f �� ��
��a d � a j� For
� a�v�� fOiOi�i�f	� � compute

xGd � a � � ��
��� ` a.�"_ f." _�` a j  � d �" ��
�a�- a��"_ d � a�j f �� ��
�a d � a�j�j x d � a � � ��
��a���_ j� Sampling step �	��
�a � x d � a�� �	��
��� ` a��"_ f." _�` a�j
Updating step� For i=1 , . . . , N, use one step of the Kalman recursion to compute the sufficient statistics$ w ��
�a f � ��
��a % given $ �w a�- a���_ d �	��
�a j f �� a�- a��"_ d �	��
�a j % .

Figure 4. RBPF2 algorithm at time ] . The algorithm uses an optimal proposal
distribution. It also selects particles from time ] & < using the infor-
mation at time ] .

4.2. Control system application

Figure 7 shows a feedback control system, where TIC201 represents a PID controller. (We used a
very conventional PID tuning technique [12] and a classical PID equation for this comparative simulation.)
This controller regulates the output water temperature around a set-point (44 �

�
) by manipulating the steam

flow. The basic PID control system has only one set of tuning parameters based on the Normal flow model,
which is the most representative state. The improved RBPF2-PID control system, on the other hand, has
a different set of tuning parameters for each operating condition. In particular, we use RBPF2 to determine
the most likely state. Consequently, the PID controller uses the best set of parameters for each discrete
state.

We simulated both control systems. Figure 8 shows the changes in operating conditions and the
corresponding performance for each control system. The RBPF2-PID exhibited a better transient response
(less overshoot and settling time). As shown in the left plot, the simple PID controller can become unstable.
This is a consequence of the PID controller maintaining the same tuning parameters despite changes in
dynamic behaviour. The RBPF2-PID system, on the other hand, showed stable behaviour.

It is important to note that we could improve this control system without state estimation by designing
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a standard feedforward/feedback strategy, but this would demand an additional sensor (e.g. FT203 input
water flow) and a nontrivial dynamic lead/lag function [13].

5. Conclusions

We presented a probabilistic method for state estimation and control of a complex industrial system.
Our experiments demonstrated that our approach, combining EM for parameter estimation and RBPF2 for
on-line real-time estimation, works well when controlling an industrial heat exchanger with a conventional
PID controller.



Figure 7. TIC201 : Temperature control system.
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