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Abstract: The bulk of applications for haptic feedback employ direct rendering 
approaches wherein a user touches a virtual model of some “real” thing, often 
displayed graphically as well. We propose a new class of applications based on 
abstract messages, ranging from “haptic icons” – brief signals conveying an ob-
ject’s or event’s state, function or content – to an expressive haptic language for 
interpersonal communication.  Building this language requires us to understand 
how synthetic haptic signals are perceived, and what they can mean to us. 
Experiments presented here address the perception question by using an effi-
cient version of Multidimensional Scaling (MDS) to extract perceptual axes for 
complex haptic icons: once this space is mapped, icons can be designed to 
maximize both differentiability and individual salience. Results show that a set 
of icons constructed by varying the frequency, magnitude and shape of 2-sec, 
time-invariant wave shapes map to two perceptual axes, which differ depending 
on the signals’ frequency range; and suggest that expressive capability is maxi-
mized in one frequency subspace. 
Keywords: Haptic interfaces, icon design, multidimensional scaling analysis. 

1 Introduction 
Sensory overload is a common problem with contemporary computer user interfaces, 
particularly for those that connect users to computation embedded in portable devices 
and non-desktop environments. These are increasingly pervasive, often have complex 
functionality, and are frequently used in contexts which pose multiple demands on a 
single sensory modality: e.g., accessing a cell phone while driving or sitting in a thea-
tre, or using a remote control that requires visual inspection while watching TV. A 
theme of our group’s research is to create ways in which an underutilized haptic sense 
can absorb more of the demand that modern interfaces place on vision and audition. 

With few exceptions, haptic force feedback research has been devoted to direct 
rendering of virtual environments. Most force feedback devices enable 3D manipula-
tion of graphically displayed models, and tend to be expensive and non-portable. They 
are used in desktop applications such as training simulators for laparoscopic surgery, 
sculpting of 3D models and design of mechanical assemblies. The user feels and ma-
nipulates the same thing he sees; the graphical image is rendered haptically. 

Haptic feedback is well suited for a radically different kind of contribution, poten-
tially of much larger scope, by rendering abstract models or concepts as a new modal-



 
 

 2 

ity for communication. At the lowest level, devices and objects notify users of an 
event, their identity or their current state or contents. Simplistic versions, such as 
pager vibrators, have existed for years. However, we argue that this binary or ampli-
tude-graded signal contains far less intelligible information than may be possible with 
systematic, perceptually guided design; and that in the future, it may support expres-
sive and nuanced communication that qualifies as a new haptic language. 

1.1 Haptic Icons 
We define “haptic icons” for our purpose as brief computer-generated signals, dis-
played to a user through force or tactile feedback to convey information such as event 
notification, identity, content or state. While these icons might also be constructed 
from real texture or mechanisms, this would not permit dynamic computer control and 
is ultimately of narrow applicability. Synthetic icons may be experienced passively or 
explored actively; they may be composed from one or many parameters; their signal 
can be steady or vary over time (e.g., a sinusoid with an amplitude envelope that in-
creases or decreases). The haptic icon editor of Enriquez et al. illustrates the possible 
variety [4]. However, this kind of manual, intuitive design makes it difficult to predict 
whether a set of icons will be either easily distinguishable or salient in combination. 

1.2 Approach: Perceptual Design 
The first step towards abstracted haptic communication is to understand how synthe-
sized haptic signals are perceived: which parameters are most salient, how they inter-
act perceptually, and what kind of signals are easily distinguished. We wished to rep-
resent this knowledge in a multi-dimensional design space, within which an icon de-
signer can systematically compose a set of icons with specified characteristics and 
maximum information carrying capacity. For example, to create a set of 5 easily dis-
tinguished icons, he could pick 5 maximally spaced locations in a volume defined by 
the parameters that his display can control, and rotate them to find the most appealing 
set. This early stage is a necessary prerequisite to the specification of higher-level 
characteristics that will eventually support assignment of semantic meaning. 

The goal of the research presented here is to establish a viable method for mapping 
haptic perception of complex stimuli in terms of key input dimensions for synthesized, 
passively presented haptic icons. We have chosen to analyze synthetically composed 
icons rather than natural ones (e.g. real textures) because we are looking specifically 
for a mapping between controlled display parameters to human perception. 

Our approach is based on Multidimensional Scaling Analysis (MDS), which has al-
ready proved useful for perceptual mapping. Once validated for a small number of 
design parameters, this technique is easily extensible. 

2 Previous Work 

2.1 Human Perception of Forces and Textures 
There is substantial literature on human tactile and force perception; most relevant 
here are studies that focus on perception of synthetic stimuli. E.g., Tan, Srinivasan, et 
al summarize a series of experiments determining various perceptual capabilities, 
including pressure, stiffness, position resolution and force magnitude [15]; while 
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Klatzky & Lederman have studied texture perception extensively, most recently touch-
ing through a stylus [8]. These results apply to “pure”, single-parametered stimuli, and 
do not place them in an information-bearing context.  

Nesbitt asked participants to explore objects with various rendered properties 
(hardness, roughness and inertia) and rank them in sets [11]; however, it appears that 
only one parameter was varied at a time, and levels adjusted independently. 

Tan, Durlach, et al studied information transmission of complex synthesized signals 
composed by varying frequency, amplitude, motion direction and finger location [14]. 
Participants identified the middle stimulus in a sequence of three stimuli randomly 
selected from a given stimulus set. Rinker et al. examined human ability to discrimi-
nate finger movements according to amplitude and frequency with the goal of receiv-
ing synthesized speech information [13]. While revealing important clues about the 
amount of information we’ll eventually be able to encode in haptic signals, these stud-
ies do not address methodical design of sets of signals to maximize the information 
capacity of the group as a whole.   

2.2 Iconography for Other Senses 
Graphical and auditory icons have long been integral to computer interfaces, as a 
means of indicating functionality, location and other low-dimensional information. 
Easily identified by the user, they can be used to relate specific functions to abstract 
controls. Auditory and synthetic haptic icon design share key attributes: for example, 
both must be generally be temporally sequential.  

Gaver et al. [5] defined “auditory icons” as representations of objects or notions 
that embody a literal, intuitive meaning: the sound of a paper being crushed indicates 
deleting a computer file. However, there is no systematic basis for determining rela-
tive icon salience or differentiability, which can lead to problems. For example, the 
sound of an unimportant event might dominate the signal for an urgent event. Con-
versely, Brewster et al. focused on quantifying people’s ability to perceptually differ-
entiate “Earcons”: sounds and rhythms with no intrinsic meaning, whose meaning has 
to be learned [1]. They found that structuring bursts of sound aided in differentiation, 
as did varying musical timbre rather than using simple tones.  

Our own approach shares more philosophically with Brewster’s, but we also have a 
long-term aim of adding the intuitive benefits of Gaver’s approach when we better 
understand the perception of complex haptic stimuli. 

2.3 Multidimensional Scaling of Perceptual Quantities 
MDS is a tool for analyzing complex scenarios, and provides a means of representing 
complex perceptual data by uncovering its hidden structure [2]. The algorithm takes as 
input a dissimilarity matrix containing perceived distances between N items (here, 
haptic icons) and places them in a Euclidean space of specified dimension, such that 
inter-item distances approximate the specified dissimilarities. Stress is a measure of 
the fitness of the space’s dimension based on perceived distances between stimuli: as 
with data modeling in general, a higher-order model might provide a tighter fit (lower 
stress value), but at the cost of the model’s abstraction and/or clarity. 

Once an appropriate dimensionality has been found, some ingenuity may be re-
quired to interpret the meaning of the axes, particularly in the absence of accepted 
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statistical measures. The dimensions recovered by perceptual MDS are taken to be the 
most salient aspects, and the stimulus coordinates recovered in the scaling are inter-
preted as the location of the objects along these salient aspects.  

Some studies that have used MDS in sensory perception illustrate possible ap-
proaches, payoffs and pitfalls. They exhibit a variety of means for obtaining dissimi-
larity data and interpreting solution axes. 

The initial and most well-known use of MDS to model perception is Grey’s analy-
sis of timbre space, which resulted in a 3-D model of a percept which had long defied 
characterization [6]. Grey required participants to rate pairs of tones relative to one 
another. He employed synthetic rather than natural tones in order to control factors 
such as perceptual equalization, tone complexity and physical properties. 

Ward devised a collection strategy whereby participants sort stimuli into clusters, 
rather than rating stimulus pairs [17]. This drastically increased the efficiency of 
evaluating large sample sets, and improved repeatability and accuracy. 

Hollins et al. tested passive perception of real tactile surface texture [7]. Partici-
pants sorted 17 stimuli (e.g. wood, sandpaper, velvet) into categories on the basis of 
perceived similarity, from which a 3-D MDS solution space was derived. Two axes 
were roughly associated with hard/soft and slippery-sticky; the third was difficult to 
interpret. While valuable for understanding tactile perception, Hollins’ naturalistic 
stimuli does not clarify the synthesis of tactile sensations, since it is not clear how to 
relate simulation parameters to the sensory percepts identified. 

3 Experiments: General Method 
Two iterations of dissimilarity data collection (employing Ward’s cluster-sorting tech-
nique) and MDS analysis were performed. The first iteration was conducted with a 
broadly spaced set of stimuli, to survey the space; the second iteration focused on the 
subregion promising greatest sensitivity. Unlike many MDS studies of naturalistic 
stimuli, we chose not to obtain perceptual ratings or rankings in support of axis inter-
pretation at this time. Our own knowledge of the input parameters for these synthetic 
icons better served our primary goal of identifying a correspondence between icon 
design parameters and user ability to differentiate the resulting icons. 
Experiment Setup: The haptic interface was an actuated knob interfaced through an 
IO board in a 1.2 GHz Pentium 3 computer running Windows 2000 in realtime mode, 
with a haptic refresh rate of 1000 Hz. The knob was mounted directly on the shaft of a 
20-W Maxon DC motor with a 4000 cps post-quadrature optical encoder; the knob 
was rubber-covered brass, outer diameter 10.5 mm and length 16.5 mm (Figure 1). 
The motor/knob assembly was mounted horizontally on a table. Participants wore 
noise-canceling headphones to block audible artifacts. The experiment control and I/O 
software was written by the authors in Visual Basic and C++.  
Participants: University students recruited by posters were 20-29 years of age, naïve 
to haptic force feedback and paid $10 in cash for a 1-hour session.  
Choice of Icon Design Parameters: We used several criteria to choose an initial set 
of design parameters for the haptic stimuli. These were: (a) individual salience; (b) 
ease of experimental modification; and (c) our group’s near-term applications needs. 
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We are interested in “haptic glance” usage: situations where the user is transiently in 
contact with the device or a specific controller state (opening a door, pressing a but-
ton, or rapidly rotating a knob through many settings). With non-stationary signals, a 
user might miss the first part, or have to wait while a longer signal plays out. There-
fore we made the critical and conservative restriction to time-invariant or simple peri-
odic parameters, thus eliminating many salient variations including duration, time-
varying envelopes and serial combination. Approach validation provided an additional 
argument: since temporal cues are qualitatively different and therefore likely to domi-
nate spatial cues, we felt we were choosing a more subtle case in trying to maximize 
perceptual variation in these less salient but stationary factors. 
Aiming for a final stimulus set size of 30-50, we chose three primitives combined at 3-
4 levels each; the exact number and value of levels for each parameter to be deter-
mined based on pre-determined perceptual thresholds. Our choices were signal wave 
shape (initially sine, square, triangle and sawtooth), frequency and force amplitude. 
Determination of Perceptual Thresholds for Stimuli: To create a balanced stimulus 
set with parameters set at consistent “loudness”, we determined perceptual thresholds 
for the design parameters. These thresholds are likely to be a function of the haptic 
hardware, but we have developed an efficient technique for finding the minimum 
detectable (a) amplitude and (b) change in frequency for “pure” haptic stimuli [3]. 
Both tests are based on an adaptive identification technique [16].  

A Detection Threshold test, based on 6 participants and 10 frequencies from 0.1-
200 Hz, was used to determine the smallest easily detectable torque magnitude as 
delivered by our setup. For the least sensitive wave shape at the least sensitive fre-
quency (sine at 0.1 Hz), participants required a force magnitude of 6.2 mNm to detect 
the signal 80% of the time. A Frequency Differentiation test confirmed that signals 
could be spaced as closely as 10% in frequency and still be distinguished.  
Initial Icon Composition: The triangle and sine wave shapes proved perceptually 
similar, so we eliminated the triangle. The DT test’s minimally detectable torque am-

 

Figure 1: Haptic display and experiment setup. A brass knob mounted directly on the motor 
shaft was covered with 1-mm rubber to prevent slipping while adding little compliance. The 
adjustable vise mount and cushioned armrest made the setup customizable and comfortable. 
Participants were asked to hold the knob lightly between thumb and index finger. 
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plitude level was doubled for the “low” magnitude setting; a “high” level was chosen 
before it reached annoying levels. Finally, frequency was varied exponentially in size, 
beginning with 0.5 Hz and maintaining uniform intervals of 10% or greater through 
100 Hz (the maximum our device could deliver without significant attenuation). 

4 Experiment 1 

4.1 Method 

Participants: Experiment 1 used 8 participants (4 females and 4 males, all right-hand 
writers), each completing one session. Pilot studies indicated this size would deliver 
stable data, as indeed it did for both experiments. 
Stimulus Set: The initial experiment used 36 stimuli, combining 3 wave shapes (sine, 
square and sawtooth), 4 frequencies (0.5, 5, 20 and 100 Hz) and 3 amplitudes (12.3, 
19.6 and 29.4 mNm), each with duration of 2 seconds. All force magnitudes are scaled 
as torque values in peak-to-peak mNm. 
Sorting procedure: An experiment session had 5 blocks. For each block, participants 
sorted stimuli – represented by graphical markers displayed haptically when clicked 
with a mouse (Figure 2) – into a number of groups; they were instructed to use “any 
criteria you want”. For the first block, participants chose the number of groups. For 
the remaining 4 blocks, the number of groups was pre-determined so as to form a 
completed test-set of approximately 3, 6, 9, 12, and 15 groups. Thus, if a participant 
freely selected 5 groups for the first block, in the following 4 blocks he was forced to 
employ (in random order) 3, 9, 12 and 15 groups. A session required ¾ -1 hour. 

Calculation of dis-
similarity matrix: For 
each block in the 
session, if two particu-
lar stimuli coincided 
in the same group, a 
similarity value equal 
to the number of 
groups for that block 
was assigned to the 
stimulus pair. These 
values were added for 
all blocks in the ses-
sion. For example, if 
stimuli 1 and 3 were 
grouped together for 
the blocks with 3, 9 
and 15 groups but not 
for the blocks with 6 
and 12 groups, the 
similarity measure for 
this pair was calcu-

 
Figure 2: Screenshot of the program used to obtain dissimilarity 
data from participants, after several placements. Each numbered tile 
on the bottom represents a single haptic icon. Participants could 
“feel” stimuli as many times as desired while sorting the tiles into 
groups (larger boxes on the top of the screen). 



 
 

 7 

lated as 3+9+15=27. The maximum possible similarity measure was thus 
3+6+9+12+15=45. 

For each participant, similarity values for each stimulus pair (0-45) were linearly 
converted to dissimilarity (1000-0), with 1000 being most unlike; and used to populate 
that participant’s dissimilarity matrix. An aggregate dissimilarity matrix was then 
constructed with the average values for all participants. Thus for Experiment 1, each 
cell of the final matrix contained the average of 8 values. The result was processed 
using Alscal PC [10] to obtain the MDS solution.  

4.2 Results 
Figure 3 (Right) shows stress (revealing fit to data for a selection of dimensions) for 
Experiment 1. It is conventional to use the marked “elbow” (seen here at 2 dimen-
sions) on the basis of parsimony and diminishing returns for the more complex model; 
although the fit does improve slightly for 4 dimensions. 3- and 4-D solutions (not 
shown) did not offer further clarification regarding disposition of input parameters to 
perceived axes. Figure 3 (Bottom) shows the 2-D MDS solution for the 1st icon set, 
and demonstrates a strong grouping based on frequency, particularly at 0.5 and 100 
Hz; in fact, frequency subsumes most of both dimensions, as evinced by its central 
occupation of 4 quadrants. Wave shape is probably of second importance in the 
groupings, followed closely by amplitude.  Stimuli sharing a 5 Hz frequency have the 
greatest spread of other stimulus parameters, followed by 20 Hz.  

5 Experiment 2 
Experiment 1 results suggested that frequency dominates our other parameters, except 

 
Figure 3:  (Left) MDS solution for the Experiment 1 icon set at 2 dimensions (average of
solutions for all participants). Marker size, shade and shape encode stimulus amplitude, fre-
quency and wave shape. (Right) Stress values for Exp. 1 MDS solutions at 1-5 dimensions. 
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in the region of 5 and to a lesser extent, 20 Hz. On the hypothesis that a stimuli set 
composed solely from this region would increase overall expressive capability, we 
performed an iteration focusing on frequencies between 5-20 Hz. 

5.1 Method 

Participants: Experiment 2 employed 9 right-handed participants (5F / 4M), each of 
whom conducted one session. 3 participants had also completed Experiment 1. 
Stimulus Set: To keep the stimulus set size reasonable, we used 30 stimuli: 3 wave 
shapes (sine, square and sawtooth), 5 frequencies (3, 7, 10, 16 and 25 Hz) and 2 am-
plitudes (12.3 and 24.5 mNm), each with duration of 2 seconds. 

5.2 Results 
Figure 4 (Left) shows the 2-D Experiment 2 MDS solution. Figure 4 (Right) shows 

the stress measure for Experiment 2. Again the greatest elbow in the curve suggests a 
2-D representation although in this case it is flatter overall; 3- and 4-D representations 
were examined and rejected. A few features of the 2-D solution bear mention:  

(a) While still most important, frequency does not dominate other parameters to the 
same extent. It maps roughly onto this solution’s horizontal axis, increasing from right 
to left; however, frequency axes for different wave shapes do not precisely align.   

(b) The circumflex arrangement of the stimuli in the two dimensional space – sug-
gested by the results of Experiment 1 but obvious here – is a common result in percep-
tual MDS experiments, a consequence of the participants’ judgments of the similarity 
of the stimuli as "very similar" when they shared the same frequency (regardless of 
wave shape or amplitude) and "very dissimilar" when they did not share the same 

 
Figure 4: (Left) MDS solution for the Experiment 2 icon set at 2 dimensions (average of
solutions for all participants).  (Right) Stress values for Experiment 2 MDS solutions.  
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frequency.  The resulting distri-
bution of judgments along the 
similar-dissimilar scale results 
in the stimuli being arranged as 
far as possible from each other 
in the two dimensional plane, 
thus the circumflex. 

(c) There is a clear separa-
tion between the sine and the 
square / sawtooth shapes. 
Effect of 3-Cluster: Every 
participant was required to 
perform one stimulus-sort into 
3 groups (as well as 6, 9, 12, 
and 15 groups). The 3-group 
was the most lightly weighted. 
Nevertheless, to ensure it was 
not responsible for the 3 domi-
nant groups seen especially in 
Figure 3 (if the stimuli grouped 
naturally into 4 groups, then 
forcing them into 3 might result 
in 3 tight groups plus 1 “unde-
cided’ group) we re-analyzed 
the data without the 3-group. 
The MDS solutions for both 

experiments were qualitatively similar to those shown.  
Projection: A projection of the input parameter space onto the Experiment 2 solution 
(Figure 5) suggests an interpretation of the accommodation of stimulus variability by 
the two solution axes: shape and magnitude share the vertical axis while frequency 
absorbs most of the horizontal axis. 
Expressive Capability: To more precisely ascertain the test frequency allowing the 
greatest perceived spread in other parameters, we defined a measure of “Discrimin-
ability” amongst a given set of icons for a specific frequency. Df is the square root of 
the sum of the squared distances between dissimilarity values (pre-MDS) for all stim-
uli sharing that frequency:  

1
2

1 1

  (discriminability of freq  = ) ( ) (1)    
N N

fij
i j i

f fD d
−

= = +

= ∑∑  

where N is the number of stimuli at a given frequency and dfij is the dissimilarity value 
for stimuli i and j, averaged over all subjects. Thus, a larger value for Df means more 
perceived variability due to non-frequency parameters at that frequency. Figure 6 
shows Df for each frequency tested in both experiments. 7-10 Hz permits the greatest 

 
Figure 5: Projection of design parameters onto the 
Exp. 2 MDS solution. Each marker represents the average 
MDS coordinates for all stimuli containing that parameter: 
the Frequency marker labeled “3 Hz” is the average of 
coordinates for 6 stimuli (30/5); Magnitude marker la-
beled “12.3 mNm” is the average of 15 stimuli (30/2). 
Markers of the same parameter are directly linked to sug-
gest the overall trend for that family.  
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spread (Exp. 2); and the narrower range of Exp. 2’s stimulus set results in higher over-
all discriminability. 

6 Discussion 
Number of Dimensions: Two dimensions appear to provide the best fit to the dissimi-
larity data collected for both sets of stimuli. The stress curve is flatter for the narrower 
frequency range of Experiment 2 (Figure 4); one possible interpretation is that as other 
parameters become more important, overall perception becomes more complex. Fur-
thermore, since it is to be expected that individuals vary in the complexity of their 
distinctions, the 2-D case might represent a reasonable generalization. 
Interpretation of Dimensions: A goal of our experiments was to relate our three 
stimulus design parameters to human perceptual dimensions. Perhaps the most impor-
tant finding of this study is that while both sets of stimuli are perceived in two dimen-
sions, our participant’s distribution of stimuli among (and hence presumably their 
interpretation of) those dimensions is markedly different for the two sets. For the first 
experiment, whose stimulus set exhibited wide variation in the most salient parameter, 
that parameter dominated both perceived dimensions. That is, participants sorted 
stimuli based on frequency and little else – yet found two dimensions out of one con-
trol parameter. In Experiment 2, all 3 parameters were evident in the MDS solution – 
frequency and shape the most strongly and most nearly orthogonal to one another, 
while magnitude shares shape’s dimension (Figure 5). 

The fact that frequency axes for different wave shapes do not precisely align in 
Figure 5 could mean that participants perceive frequency differently for each wave 
shape. This and similar observations for the other parameters imply a nonlinearity 
which will need to be accommodated in future icon design. 
Maximizing Expressive Capacity through Frequency: The inconsistent domination 
by frequency in Experiment 1 (least evident for 5 and 20 Hz) suggested that there 
might be a “sweet spot” for frequency where the signal’s information carrying capabil-
ity was maximized. Thus, choos-
ing a frequency range for the 2nd 
stimulus set which optimized 
discriminability permitted more 
stimuli to be distinguishable. 
Among the 5 frequencies consid-
ered in Experiment 2, 7 and 10 
Hz had the maximum expressive 
capacity according to our simple 
measure; and the entire range (3-
25 Hz) permitted a much greater 
expressive capacity of the stimu-
lus set as a whole than did that of 
Experiment 1 (Figure 6). 

Thus, to maximize expressive 
capability in haptic icons which 
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employ frequency as a parameter, frequency range should be carefully considered; and 
at least for the set of design parameters and stimulus duration used here, a range be-
tween 5-20 Hz appears optimal in this regard. Frequencies outside this range may also 
be used, but the contribution from other design parameters will be less salient 
throughout the set. 
Evidence of Range Effect in Groupings: When a set of stimuli contains variations 
on a specific characteristic over a range, the results of a perceptual test for those stim-
uli might exhibit a clustering at the extremes of the range. The “Range Effect” is a 
consequence of the ability to identify one or both of the extremes more easily than 
points within it [12].  The extremes serve as anchors from which to base perceptual 
judgments, near which responses are grouped. The range effect may be one explana-
tion for the tight clustering observed in the MDS solution for Experiment 1 (Figure 3). 
If so, its lessened impact for the Experiment 2 stimulus set, which did not contain such 
extremes of frequency, could imply that to maximize expressive capability for a set as 
a whole, extremes should be avoided. 
Effect of Shape - Smooth vs. Jerky: As observed in Figure 5, there is a clear separa-
tion between the sine and the square / sawtooth wave shapes. This is likely due to the 
discontinuity of the square and sawtooth waves relative to the smooth derivatives of 
the sine wave (further supported by evidence that edges are processed early in the 
haptic pipeline [9]). However, Figure 4 suggests that separations between smooth and 
discontinuous shapes diminish with frequency; experience with the stimuli confirms 
that these shape differences were indeed less perceptible at higher frequencies. 
Passive Exploration: In these experiments, icons were temporally based and experi-
enced passively: participants could not explore them in time and space as they would, 
for example, spatially displayed surface textures. We chose this approach because of 
the nature of the space we are designing for. It constitutes an important limitation of 
the icon design space we addressed here, but not necessarily of the technique itself. 

7 Conclusions and Future Work 
The stimulus design, data collection and analysis techniques presented comprise an 
innovative approach to the design of haptic icons, which in turn portend a new com-
munication medium for interactive devices. Our results support the method’s promise. 

Specific contributions of the present study include observations that for synthetic 
haptic icons, (a) frequency plays a dominant perceptual role among a set of time-
invariant parameters; (b) users’ assignment of perceptual dimensionality is affected by 
the composition of the entire stimulus set, and specifically by the range of the domi-
nant parameter employed; (c) to maximize expressive capability of other design pa-
rameters, frequency should be varied around a relatively narrow range – probably 5-20 
Hz; and (d) beyond frequency, wave shape and finally force magnitude are most im-
portant perceptually among this set of parameters. 

The present study was confined to time-invariant parameters and passively felt 
stimuli. We used time-invariant signals because we are designing for “haptic glance” 
interactions; however, time-variant and actively explored signals will provide salient 
additional dimensions for longer signals. The results of this study underscore the chal-
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lenges in combining very salient with more subtle parameters without losing expres-
sive capability, but also demonstrate a powerful tool for optimizing this kind of de-
sign. We are presently extending our efforts in this direction. Likewise, we anticipate 
that the mode of usage will influence icon perception: does the user actively explore, 
what is his context, and what other demands are on his attention? For example, we are 
integrating the presented work into studies of conscious and nonconscious stimulus 
perception in the driving environment. 

The MDS technique tells us about differentiability, but not about meaning. Ongoing 
work addresses this by developing new methods, some MDS-based, for designing 
icons based on user ability to associate icons with targets and relate them to hierar-
chies. Thus this work is an integral first stepping stone to achieving our long-term goal 
of building a usable, designable haptic language. 
Acknowledgements: This work was supported in part by Immersion Inc., and espe-
cially by Chris Hasser. We also thank Jason Harrison, Vince di Lollo and Lawrence 
Ward of UBC. 
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