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Abstract

StochasticLocal Search(SLS) algorithmsare amongst the
mosteffective approachesfor solving hardandlarge propo-
sitional satisfiability (SAT) problems. Prominentand suc-
cessfulSLS algorithmsfor SAT, including many members
of the WalkSAT and GSAT families of algorithms,tend to
show highly regular behaviour when applied to hard SAT
instances:The run-timedistributions (RTDs) of thesealgo-
rithmsarecloselyapproximatedby exponential distributions.
The deeperreasonsfor this regular behaviour are,however,
essentiallyunknown. In this study we show that thereare
hardprobleminstances,e.g., from thephasetransitionregion
of the widely studiedclassof Uniform Random3-SAT in-
stances,for which theRTDs for well-known SLSalgorithms
suchasGWSAT or WalkSAT/SKC deviatesubstantiallyfrom
exponential distributions. We investigatetheseirregular in-
stancesandshow that the respective RTDs canbe modelled
usingmixturesof exponential distributions. We presentev-
idencethat suchmixture distributions reflectstagnationbe-
haviour in thesearchprocesscausedby “traps” in theunder-
lying searchspaces.This leadsto the formulationof a new
modelof SLS behaviour asa simpleMarkov process.This
modelsubsumesandextendsearliercharacterisationsof SLS
behaviour andprovidesplausibleexplanationsfor many em-
pirical observations.

Introduction and Background
The propositionalsatisfiability problem (SAT) is a model
combinatorial problem whoseconceptual simplicity facili-
tatesthe designand analysisof algorithms for other hard
combinatorialproblems. For thepastdecade,various types
of stochasticlocal search(SLS) methods have beenap-
pliedverysuccessfullyto SAT. TheseincludetheGSAT and
WalkSAT familiesof algorithms (Selman,Kautz,& Cohen
1994; Gent & Walsh 1993; McAllester, Selman,& Kautz
1997), as well as several otheralgorithms basedon simi-
lar ideas(Gu 1992; Wah & Shang1997; Wu & Wah2000;
Schuurmans& Southy2000; Schuurmans,Southy, & Holte
2001). GSAT and WalkSAT algorithms have beenexten-
sively studiedin theliterature,andincludesomeof thebest-
performing SAT algorithmsknown to date(Hoos & Stützle
2000a; Schuurmans,Southy, & Holte 2001). Comparedto
other state-of-the-art SAT algorithms, suchas Satz(Li &
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Anbulagan1997), thesemethods are rathersimplistic and
it is notwell understoodhow they cansolvemany classesof
large anddifficult SAT instancessurprisingly efficiently. It
is alsolargelyunclearunderwhichconditions(i.e., onwhich
types of instances,andfor which parametersettings)these
SLSalgorithms work well.

The run-time behaviour of GSAT and WalkSAT algo-
rithms when appliedto hardSAT instancesand when us-
ing sufficiently high noiseparametersettings,is typically
characterisedby exponential run-time distributions(RTDs)
(Hoos1998; Hoos& Stützle1999). Here,“sufficientlyhigh”
includes the rangein which optimal performance, as re-
flectedin minimal meanrun-time, is achieved. TheseRTD
characterisationcanbeextendedto easierSAT instancesby
using a generalised classof exponentialdistributions that
supports modelling the initial searchphase(asreflectedin
the left tail of a run-time distribution), during which the
successprobability increasesfasterthanfor a memory-less
searchprocesscharacterisedby anexponentialRTD (Hoos
1998).

As we will show in this study, for a small but signifi-
cantnumberof hardinstances,e.g., from thewidely studied
“phasetransitionregion” of theUniform Random-3-SAT in-
stancedistribution (Cheeseman, Kanefsky, & Taylor 1991),
SLSalgorithms suchasGWSAT or WalkSAT/SKC show a
behaviour that cannot be captured by thesemodels. This
irregular behaviour is interestingfor at least two reasons:
Firstly, aswill become clear later, it canbe seenasa type
of stagnationbehaviour that, if present,appearsto severely
degradeSLS performance asthe searchprogressesbeyond
a certainpoint. Clearly, a sufficient understandingof this
phenomenon is likely to bethekey towardseliminating the
undesirablebehaviour. Secondly, the irregularities provide
abasisfor refiningpreviousmodelsof SLSbehaviour; such
modelsarevaluable for purely scientificaswell asfor prac-
tical reasons,asthey improve our ability to understand,to
predict, and to improve the performanceandbehaviour of
SLSalgorithms for SAT.

In the following, we investigatethis irregular SLS be-
haviour in detail,focussingonGWSAT andWalkSAT/SKC,
two of themostwidely studiedSLSalgorithmsfor SAT, and
theprominentclassof UniformRandom-3-SAT “phasetran-
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Figure1: Left: Correlationbetweeninstancehardness(meanrun-time for WalkSAT with approx. optimal noisemeasured
in variable flips over 100 successfulruns/instance; horizontal) and ��� values(vertical) from testingthe RTDs of individual
instancesversusabest-fitexponentialdistributionfor SATLIB test-setuf100-430; thehorizontallinesindicatetheacceptance
thresholds for the0.01and0.05 acceptancelevelsof the ��� test.Right: IrregularWalkSAT RTDsfor outlier instances;notethe
deviation from atypicalexponentialdistribution, indicatedby theright-mostcurve.

sition” instances.1 We show that the corresponding RTDs
canbecharacterisedby simplemixtures of exponentialdis-
tributions, and provide evidence that this characterisation
appears to apply to all hardproblem instancesfor which ir-
regular SLS behaviour is observed. Empirical evidenceis
presentedfor an explanation of this phenomenon basedon
searchstagnationcausedby “traps” in theunderlyingsearch
spaces.Basedon theinsightsfrom our analysisof irregular
instancesandsearchstagnation, we developpeda concep-
tually simpleMarkov chainmodelwhich shows exactly the
samebehaviour asobservedfor GWSAT andWalkSAT/SKC
ontheirregularSAT instancesstudiedhere.Thismodel pro-
videssimpleandstraight-forwardexplanationsfor our em-
pirical results.Furthermore,it suggestsseveralintuitive and
testableconnectionsbetweenSLSbehaviour andthestruc-
tureof SAT instances.

Irregular Instances and Mixture Models
Our investigation starts with the observation that when
studying the RTDs for WalkSAT (using approx. optimal
noise settings)on sets of critically constrainedUniform
Random-3-SAT instances,therearehardinstances(asindi-
catedby a high expectednumberof searchstepsfor finding
a solution) for which thesearchbehaviour appears to devi-
atesubstantiallyfrom thetypicalmemory-lessbehaviour re-
flectedin exponentialRTDs. Figure1 shows thecorrelation
betweeninstancehardnessfor WalkSAT/SKC andthedevi-
ationof thecorresponding RTD from a best-fitexponential
distribution for test-setuf100-430, a setof critically con-
strainedUniform Random-3-SAT instancesobtained from
SATLIB2 (Hoos& Stützle2000b). This datawasobtained
using the samemethodas describedin (Hoos & Stützle

1Algorithm outlinesfor GWSAT andWalkSAT/SKC, aswell
asa detaileddescriptionof theUniform Random-3-SAT instances
usedin this studycanbefoundin (Hoos& Stützle2000a).

2www.satlib.org

1999). All RTDs reportedin this studyarebasedon at least
100 runs of the algorithm using cutoff parametersettings
high enough to guaranteethata solutionwasfound in each
run without usingany kind of restartmechanism. As noted
by Hoos& Stützle(2000a),thehigh ��� valuesconsistently
observed for easyinstancesaredueto effectsof the initial
searchphase. In thepresent study, we largely ignore theef-
fect of the initial searchphase,which hasbeenpreviously
discussedandcharacterisedin theliterature(Hoos& Stützle
2000a).

The deviations reflectedby high ��� valuesfor hard in-
stances,someof which arehighlightedin Figure1, areof a
differentnature. Closerinspectionreveals that theseirreg-
ular RTDs have anuntypically high coefficient of variation
(stddev/mean); all of themcanbewell aproximatedby mix-
turesof exponentialdistributionsof theform�
	�� � � ���

�����
��� ������� ��!#" �$	�� � � ���
�&%'�
�(� � � �*)

where

�$�(� �+�-,/.10324!5"76 	(8
9;:
is thecumulativedistribution

of anexponentialdistribution with median

�
andthe �

�
are

themixtureweights.It shouldbenotedthatwhile for large <
suchmixturescanapproximateany cumulative distribution
functionarbitrarilywell, all approximationspresentedin this
studyusetwo componentsonly andarehencesignificantly
morerestricted.Sincetheapproximatedempirical RTDsare
generally basedon at least1,000 runseach,goodapprox-
imations with this restrictedmixture model reflecta rather
surprisingregularity of theunderlyingSLSbehaviour rather
thananoverfitting effect dueto anoverly flexible model.

Additional experimentsshowed the sametype of “out-
lier instances”for SATLIB test-setsuf50-218 anduf20-
91; in all cases,WalkSAT andGWSAT showedRTDs that
could bewell approximatedby2-component mixturesof ex-
ponential distributions. (See,e.g., Figure 2; theseresults
arereported in moredetail in the extended versionof this
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Figure2: RTD for WalkSAT(noise=0.55)on hardirregular
instancefrom test-setuf50-218 andapproximationby 2-
componentmixture of exponentialdistributions.

paper.) Overall, using2-component mixturesof the previ-
ously mentioned generalisedexponentialdistributions, all
observed RTDs couldbeperfectlyapproximatedto thede-
greesupported by the samplesize underlying the empiri-
cal RTD data. (Thequality of theseapproximationscanbe
seen,in a slightly different context, in Figure5.) Interest-
ingly, theextremetails of all irregular RTDs areextremely
well approximatedby a model fitted to the whole distribu-
tion. In particular, thereis noindication for so-called“heavy
tails”, ashave beenreported for the RTDs of certainhigh-
performing randomisedcompleteSAT algorithms (Gomes,
Selman,& Kautz1998).

Multiple Competing Solutions?
Perhapsthemostobviousexplanationfor theobservedmix-
tureRTDsis basedonthefollowing idea:For instanceswith
multiple solutions, onecouldassumethateachsolution(or
clusterof solutions)hasits own “basin of attraction”, and
that the attractivity of thesebasinsmight sometimesdiffer
widely betweenvarious solutions. If conditional of being
pulled into onegivenbasin,theRTD of GWSAT or Walk-
SAT were an exponential distribution, then a biasedran-
dom selectionof the respective basinat the beginning of
the searchprocesswould leadto the observed exponential
mixture RTDs. Sucha selectioncould be the resultof the
fact that GWSAT andWalkSAT both start the searchat a
randomly chosenassignment.

Thereare two ways of investigatingthe validity of this
explanation: The first is basedon a modificationof the al-
gorithmssuchthatthesearchprocessis nolongerinitialised
randomly, but at a specificvariable assignment. If thepro-
posedexplanation of the irregular searchbehaviour were
correct, using the fixed initialisation for the irregular in-
stancesfromaboveshouldresultin regular RTDswhich,de-
pending on the fixed initial assignmentchosen,correspond
to the componentsof the mixture obtained for random ini-
tialisation.A secondvalidationexperimentusestheunmodi-
fiedalgorithms(with random initialisation)andstudiestheir
RTDs on single-solutioninstances.If theattractivity of dif-

ferent solutionswerethesolecauseof mixture RTDs, these
should notbeobservedonsinglesolutioninstances.

For the first approach, we measuredRTDs for a modi-
fied versionof WalkSAT thatalwaysstartsat a specificas-
signmentappliedto oneof theirregular instancesfrom test-
setuf50-218-1000. Figure3 (left) shows the RTD for
WalkSAT/SKC with thestandard,randomisedinitialisation
as well as RTDs for a WalkSAT/SKC variant that always
startsthesearchfrom thesamegiveninitial assignment. The
specific initial assignmentsusedherewere the following:
oneat Hammingdistance10 from oneof the instance’s 48
solutions,onesettingall variablesto false,andoneat Ham-
ming distance50 to a specificsolution. With theexception
of this lastcase,theresultingRTDsaremixturedistributions
rather thanpure(generalised)exponentials,an observation
thatdoesnot support theexplanationproposedabove. It is
interestingto notethat for this instance,themaximal Ham-
ming distancebetweenany two solutions is only 16, while
themeanHammingdistancebetweensolutionsis 7. Hence,
it appearsthatonly whenthesearchis initialisedHamming
distantfromthelooselyclusteredsolutions,WalkSAT shows
a simpleexponentialRTD. (This resultis furtherconfirmed
by theRTDs for additional initial startingassignments, not
shown here.)

For our investigation of the secondapproach,we gener-
atedsetsof single-solution Uniform Random-3-SAT phase
transitioninstances.This wasdoneby generating Uniform
Random-3-SAT instancesin the usual(unbiased)way and
subsequentlychecking for eachinstancewhetherit hasex-
actly one solution.3 For the threetest-setsthus obtained,
WalkSAT/SKCRTDsweremeasured(usingapprox.optimal
noise)andfittedwith exponentialdistributions,asdescribed
in theprevioussection.As canbeseenin Figure3 (right),
the samekind of outlier instancesasfor the standardUni-
form Random-3-SAT test-setscanbe detected.The RTDs
for theseoutlier instancesareverysimilar to thoseshown in
Fig. 1 andcanbeequallywell approximatedby mixturesof
exponentialdistributions. Theseresultsindicate thatsingle
solution instancescan exhibit the sameirregular SLS be-
haviour, characterisedby mixture RTDs, as instanceswith
multiple solutions. Furthermore, it may be notedthat test-
setsof single-solution instancesshow a variability in search
cost betweenthe instancessimilar to the respective unre-
stricted test-sets. This clearly indicatesthat factors other
thansolutiondensityhave an important impacton the per-
formanceof SLSalgorithmslike WalkSAT. (Similar results
wereobtained for test-setsof critically constrainedsingle-
solutioninstanceswith 50and20variables.)

It maybenoted thattheobservationsfrom thefirst of the
two experimentsdescribedabove still allow for anexplana-
tion in which theattractionareasof severalor all solutions
(or solutionclusters)overlap at mostor all locations in the
given searchspace.While consistentwith thenatureof the
randomisediterative improvement searchprocess underly-
ing WalkSAT/SKC andGWSAT, this modifiedhypothesis
would still not explain the occurrenceof mixture RTDs on

3This test was performedusing REL SAT, version2.00 (Ba-
yardo& Pehoushek 2000).
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Figure3: Left: RTDs for WalkSAT with fixed initialisation for irregular instance#168 from test-setuf50-218-1000.
Right: Correlationbetweenmeanrun-time for WalkSAT (horizontal)and �=� values(vertical) from testingtheRTDs of indi-
vidual instancesversusabest-fitexponentialdistributionfor test-setuf100-430-1000-s1; thehorizontal linesindicatethe
acceptancethresholds for the0.01 and0.05acceptancelevelsof the �=� test.

single-solution instances.
Overall, theevidencefrom thetwo experimentsdoesnot

support our initial hypothesisthatmixture RTDs aresimply
causedby thepresenceof multiple solutions andrespective
basinsof attraction.

Traps and Search Stagnation
An alternateexplanation of theobservedirregularbehaviour
is basedon the assumptionthat for the respective problem
instances,thelocal searchprocesssomehow getstrappedin
regionsof thesearchspacethatareattractiveyetdonotcon-
tain solutions. Intuitively, oncetrapped in sucha region, it
might take quite long before anSLS algorithm managesto
escapefrom this region andfind a route that finally leads
to a solution. In this case,the mixture RTDs observed for
the previously identified irregular instancesreflect a stag-
nationof the searchprocesscausedby suchtraps. If this
explanationwerecorrect,weshould beableto observemix-
tureRTDsandhighsearchcostfor SAT instancescontaining
suchtraps.

To investigatethis hypothesis, we first devised a way
of combining two single-solution instancesinto a new
SAT instancethat contains one solution and a trap: For
a single-solution instance> over ? variables,

. � )A@�@A@B);.�C ,
let D , > 0E2F,/� � )�@A@�@A)G� C 0 denotethe unique model of> , i.e., > is true under the variable assignment

. �IH 2� � )A@�@A@�)G. C H 2J� C . Then for given single-solution in-
stances> );K , we definethepluggedcombination instancesL�M !N� > );KO� and

L�M 6P� > );KO� asfollows:L�M !N� > );KO��2 QR� � �
,TS�U.5V �WX � �ZY

� X 0A[ :R� � �
,�U.\V �WX � �P]

� X 0A[
C
WX � �
S^� X

where D , > 0_2`,/� � )A@A@�@A);�aCP0 is the unique modelof > ;
and L�M 6b� > )cKO�12 L�M !N� Kd) > �e@
Thisconstructionusesadiscriminator variable

U.
to “switch”

betweenthe two component instances. Furthermore,the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000 100000 1e+06 1e+07 1e+08

P
(s

ol
ve

)�

# steps

#815
#74

CP1(#815,#74)
0.49*ed[3700]+0.51*ed[5*10^6]

CP2(#815,#74)

Figure 4: RTDs for GWSAT (noise=0.55)oneasyinstances
from test-setuf100-430-1000-s1 andpluggedcombi-
nations and approximation with 2-component mixturesof
exponentialdistributions.(TheRTD for CP2(#815,#74)
canbeequally well approximatedwith a 2-componentmix-
tureof exponentials.)

solutioncorresponding to oneof the componentinstances
is plugged by adding a single clauseof length ? . Note
that adding this clausedoesnot affect the objective func-
tion value (number of unsatisfiedclauses)of any assign-
ment otherthanthe plugged solution; this implies that the
differencebetween

L � > )cKO� and
L�M !N� > );KO� is only visible

to GWSAT or WalkSAT whentherespective searchprocess
hasreachedtheimmediateneighbourhoodof D , > 0 .

Wenow assumethatsingle-solution instancesthatareex-
tremelyeasyfor a given SLS algorithm aremadeeasyby
thefactthattheir singlesolutionis veryattractive for theal-
gorithm. Basedon this assumption, pluggedcombinations
of easysingle-solution instanceswould containa very at-
tractive trap, which shouldrender themsubstantiallymore
difficult to solve thantherespectivecomponentinstances.
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This conjecture wasconfirmed experimentally. Figure4
shows a typical result, illustrating the hardnessof plugged
combinationsof easysingle-solution instancesas well as
theirregular RTDs obtainedby solvingtheseinstanceswith
GWSAT, which can be very well approximatedby two-
component mixtures of exponential distributions. When
usingmixturesof generalisedexponentialdistributions4 to
model the initial searchphase,we obtainperfectapproxi-
mations(seeFigure 5). Analogous resultswere obtained
in numeroussimilar experimentsusingothercomponentin-
stancesandtest-sets.Overall, this confirmsour hypothesis
that traps, i.e., attractive areasof the searchspacethat do
not containsolutions,canleadto searchstagnationandthe
sametypeof irregular behaviour aspreviously observedfor
“outlier” Random-3-SAT instances.5

Basedon this explanation, we now presenta simpeab-
stractmodel for theobserved SLSbehaviour. Note that the
behaviour of an SLS algorithm for SAT, suchas GWSAT
or WalkSAT, appliedto a givenSAT instancecanbe mod-
elled as a Markov chain. Intuitively, the statesof this
chainrepresent areasof the searchspace,i.e., setsof vari-
ableassignments thatareconsideredequivalentin a certain
sense.Simpleexamples for suchsetsof equivalent states
areall assignments at a certainHammingdistancefrom the

4This classof distribution is characterisedby the cumulative
distribution functionfhgBi�j k+l*m1l-nBo&p�qPr�sut3vawyx(z|{B}�~5���&��� �A�-�c�����
in most cases,empirical RTDs can be excellently approximated
with aspecialcaseof thisdistribution for which

n�s�t
.

5It shouldbe notedthat WalkSAT’s behaviour on the plugged
combinationinstancesis slightly different from GWSAT’s. This
differenceis dueto thevariableselectionmechanismin WalkSAT
andtheoccurrenceof thediscriminatorvariablein all clausesof a
pluggedcombinationinstance;a detaileddiscussioncanbe found
in theextendedversionof thispaper.

nearestsolution,all assignments thatsatisfya certainnum-
ber of clauses,or all assignmentsthat belongto a specific
certainplateauregion (Frank, Cheeseman,& Stutz 1997;
Yokoo1997; Hoos1998). Thetransitionsbetweenthestates
thusdefinedcorrespondto the conditional probabilities of
reaching a specificstatefrom a given current state. Note
thatthesetransitionprobabilitiesdependon theproblemin-
stanceaswell on theSLSalgorithm appliedto it.

Here, we will considera simplified version of such a
model of SLS behaviour. Our model consistsof a Markov
chainwith < states� � )�@A@�@A) � � (seeFigure6a).Let Y

�&� X bethe
probability for a transitionfrom state� to state� . We make
thefollowing assumptions:

Y �
� � 2�! (1)Y �
� �
	�� 2�! (2)� �c� !�� � � < H Y

�&� ��� � 2 Y
���E�

(3)� ��� !O� � � < H Y
�/� � 	 � 2 Y 	

�E�
(4)Y 	

2�!#"
Y
�

(5)

Thefirst assumptionreflectsthe fact that state � � is an ab-
sorbing staterepresentingthesolution(s)of thegiven prob-
lem instance;SLS algorithms for SAT typically terminate
assoonasa solution is found. Assumption(2) statesthat� � is a reflectingboundary; it capturestheintuition thatany
measure of distanceto a solutionmodelledby this Markov
chainwill have a finite upper bound. Theprimary purpose
of assumptions (3), (4), and(5) is to keepthemodelassim-
ple aspossiblewhile allowing it to representdifferencesin
problemsize(reflectedby < ) andtheattractivity of solutions
(reflected by Y

�
andY 	 ).Interestingly, thissimpleMarkov chainmodelshowspre-

cisely the sametypeof behaviour asGWSAT or WalkSAT
applied to typical SAT instancesfor sufficiently high noise
parametersettings. This canbe seenempirically by com-
paring the respective RTDs, wherean RTD for the model
is definedas the distribution of the number of transitions
neededto reachthesolutionstate� � for thefirst time,start-
ing from � � (seeFigure6). It is worth noting that thesame
family of generalisedexponential distributions introduced
in (Hoos1998; Hoos& Stützle2000a) for accuratelymod-
elling thefull RTDs of GWSAT andvariousWalkSAT vari-
antscanalsobeusedto perfectlyapproximatetheRTDs for
theMarkov chainmodelpresentedhere. Unfortunately, so
far it could not be formally proven that the RTDs for the
model arealwaysapproximable by this family of distribu-
tions.

ThisMarkov chainmodel canbeeasilyextendedto cases
where the probleminstancescontainthe kind of trap de-
scribedin the previous section. In particular, the plugged
combinationsinstancesdefinedabove canbemodelled in a
straight-forwardway: We just combinethetwo modelscor-
respondingto thecomponentinstancesintoabranchedchain
model, asillustratedin Figure6, whereoneof the two so-
lution statesis transformedinto a reflectingboundaryof the
model (thisstatecorrespondsto theplugged solution), while
theotherbecomesthesinglesolutionstateof thebranched
model.



. . .

. . .
trap

solution

. . .
solution

(a)

(b)

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000

P
(s

ol
ve

)�

#steps

mc(20,0.51)
ed[180]

mc(20,0.45)
ed[1650]

mc(20,0.42)
ed[8000]

Figure6: Left: Structure of simpleMarkov chainmodel(a) andbranchedmodel with trap (b); right: RTD for unbranched
model (a)with < 2�6

�
, Y
� 2 � @��h6

, andY 	
2 � @  ¢¡

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

BMCT[20,0.51,20,0.51]
BMCT[20,0.51,20,0.53]
BMCT[20,0.51,20,0.55]

0.24*ed[130]+0.76*ed[7000]
ed[6200]

Figure7: RTDs for branchedMarkov model with trapusing
different parametersettingscan be approximatedby mix-
turesof exponentialdistributions.

The RTDs for thesebranched Markov chainmodels are
remarkably similar to thoseobserved for the irregular SAT
instancesand for the pluggedcombination instancesstud-
iedbefore. Depending on thelengthof thetrapandsolution
branchesandtheir respective transitionprobabilitiesY 	£ andY 	¤ , we get the sametype of mixture distribution asprevi-
ouslyobservedfor GWSAT andWalkSAT/SKC.Consistent
with theintuition behind themodel andpreviousresultsfor
pluggedcombinationinstances,thetwo exponentialcompo-
nentsof the mixture RTD for the branchedMarkov chain
model are more prominent for longer and more attractive
trapbranches(seeFigure7).

In the light of this model, the mixture distributions that
arecharacteristicfor the irregular instancesreportedearlier
in this studyarelikely causedby prominenttrapsin theun-
derlying searchspaces.This hypothesisis consistentwith
the fact that many of the irregular instancesare relatively
hard,while noneweredetectedamongsttheeasiest10–15%
of the instanceswithin eachof therespective test-sets.The
model is also consistentwith our observationson the be-

haviour of WalkSAT when using fixed initialisation from
various points in the searchspace.Whenmodelling an ir-
regular instanceby a branchedMarkov chainwith a trap,
it is clearthat depending on the stateat which the Markov
processis initialised, we will observe the samequalitative
differencesin theresultingRTDs asobservedfor WalkSAT
with fixedinitialisation. In particular, wheninitialising at or
nearthe trapstate,the resultingRTD will show little or no
irregular behaviour, but an increasedsearchcostfor all but
theright tail of thedistribution. Notethathaving thesearch
spaceregions corresponding to the trap andsolutionstates
at high Hammingdistancewill maximise theareain which
the attractionof eitheronedominatesthe behaviour of the
searchprocessandwill thusleadto moreprominentirregu-
lar SLSbehaviour. Hence,it is reasonable to assumethatfor
a prominently irregular instance,initialising Hamming dis-
tant from the solutionsshouldbe equivalent to initialising
closeto a prominenttrap.

Conclusions and Future Work
Our study has shown that the run-time behaviour of two
well-known SLS algorithms, GWSAT andWalkSAT/SKC,
can be empirically characterisedby mixtures of exponen-
tial distributions with a small number of mixture compo-
nents. This extendsprevious empiricalresultsto instances
on which deviations from the typical, memory-less be-
haviour characterised by exponential distributions are ob-
served; these“irregular” instancesarenotuncommonin the
phasetransitionregionof Uniform-Random-3-SAT andtend
to behardwhencomparedto otherinstancesfrom thesame
problemdistribution.

As we have seen,the occurence of mixture RTDs can
beexplainedbasedon a trap-basedmodelof searchstagna-
tion. Somewhat surprisingly, we foundthat theempirically
observed behaviour of the searchprocesscangenerally be
modelledbyaverysimpleabstractmodel basedonbranched
Markov chains.Themodel is basedon theintuition thatthe
searchprocessimplementedby proceduressuchasGWSAT
or WalkSAT/SKC progressesthrough discretestages,each
of which hasa characteristic “distance” to the nearest so-



lution. It is not entirely clear if and how thesestages
aree¥ xplicitly manifestedin the form of easily identifiable
searchspacefeatures;ourcurrentunderstandingof SLSbe-
haviour suggeststhat thesearchstagesmight correspondto
extensiveplateauregions(Frank,Cheeseman, & Stutz1997;
Yokoo 1997; Hoos1999). Furthermore, it is likely that at
leastone type of trap corresponds to the “f ailed clusters”
observedby Parkes(1997). Wecurrentlyinvestigatethishy-
pothesisusingadvancedsearchspaceanalysistechniquesas
well astheRTD characterisationsandabstractsearchmodel
developedin this study. Furthermore,it appears to beinter-
estingtoexplorepotential connectionsbetweentrapsandthe
factorsunderlyingthehardnessof Random-3-SAT instances
studiedby Singeret al. (2000), in particularbackbone ro-
bustness.

Obviously, the simple Markov model is only an ap-
proximation of the behaviour of SLS algorithms such as
GWSAT or WalkSAT in the multi-dimensional,complex
searchspacescorresponding to the SAT instancesstudied
here. This approximation, however, seemsto capturethe
essentialfeatures for the observed behaviour; therefore, it
appears that by establishingthe relation betweenit and
identifiable features of the respective instances,consider-
ableprogresscanbemadetowardsa characterisationof the
factorsunderlying the hardnessof problem instancesw.r.t.
SLS algorithms. (It is worth noting that a slightly modi-
fiedMarkov chainmodel,wheretheprobabilitiesof staying
within thesamestatearenotzero, i.e., Y 	

�
Y
� �¦!

, shows
exactly thesametypeof RTDs asthesimplermodel studied
here.)

There is somepreliminary experimental evidence sug-
gesting that the RTD characterisationsand the abstract
Markov model presented heremight be ratherbroadly ap-
plicable.Apparently, thestagnationbehaviour typically ob-
served for GWSAT andWalkSAT whenusing lower-than-
optimalsettingsof thenoiseparametercanbecharacterised
andmodelled analogousto thebehaviour observedon irreg-
ularinstances.It appearsalsolikely thatourcharacterisation
generalisesto otherSLSalgorithmsfor SAT (suchasWalk-
SAT/TABU, Novelty

�
, and R-Novelty

�
), to randomised

systematicsearchalgorithmsfor SAT (suchasSatzRAND),
and to SLS algorithms for otherhardcombinatorial prob-
lems(suchasIteratedLocalSearchfor MaxSAT or theTrav-
elling SalespersonProblem). Theseobservationsand hy-
pothesisarecurrently underfurtherinvestigation.

Another directionfor future researchis of a moretheo-
reticalnature:It appears thatrelatively simpleprobabilistic
models suchasthebranchedMarkov chainmodelfor SLS
behaviour presentedhere,shouldbeamenableto theoretical
analysis,suchthat the full RTDs for thesemodelscanbe
characterisedanalyticallyratherthanexperimentally, aswas
donein this study. Unfortunately, for the model proposed
here,so far we have not beenable to find in the literature
or to derive analyticcharacterisations of the corresponding
RTDs. Furtherquestions of theoreticalinterest,suchasun-
derwhich conditionstheRTDs of a Markov processcanbe
characterisedby mixturesof exponentials,appearto bealso
currently unanswered.
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