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Abstract

Stochasticlocal searchalgorithmsbasedon the WalkSAT ar-
chitectureareamongthebestknown methodsfor solvinghard
andlarge instancesof the propositionalsatisfiabilityproblem
(SAT). The performance and behaviour of thesealgorithms
critically dependson thesettingof thenoiseparameter, which
controlsthegreedinessof thesearchprocess.Theoptimalset-
ting for the noiseparametervariesconsiderablybetweendif-
ferenttypesandsizesof probleminstances;consequently, con-
siderablemanualtuning is typically requiredto obtain peak
performance. In this paper, we characterisethe impactof the
noisesettingon the behaviour of WalkSAT and introducea
simpleadaptive noisemechanismfor WalkSAT that doesnot
requiremanual adjustmentfor differentprobleminstances.We
presentexperimentalresultsindicatingthatby usingthis self-
tuning noisemechanism, variousWalkSAT variants(includ-
ing WalkSAT/SKC andNovelty

�
) achieveperformancelevels

closeto theirpeakperformancefor instance-specific,manually
tunednoisesettings.

Introduction and Background
TheWalkSAT familyof algorithms(Selman,Kautz,& Cohen
1994; McAllester, Selman,& Kautz 1997) comprisessome
of the most widely studiedand best-performing stochastic
local search(SLS) algorithms for the propositionalsatisfi-
ability problem (SAT). WalkSAT algorithms are basedon
an iterative searchprocessthat in eachstepselectsa cur-
rently unsatisfiedclauseof the given SAT instanceat ran-
dom (according to a uniform probability distribution), se-
lects a variable appearing in that clauseand flips it, i.e.,
changesits truth valuefrom true to falseor vice versa. Dif-
ferent methods are used for the variable selectionwithin
unsatisfiedclauses,giving rise to various WalkSAT algo-
rithms (McAllester, Selman,& Kautz 1997; Hoos 1999;
Hoos& Stützle 2000a). All of theseusea parametercalled
thenoiseparameterto control thedegreeof greedinessin the
variable selectionprocess,i.e., thedegree to which variables
arelikely to beselectedthat,whenflipped,leadto amaximal
decreasein thenumberof unsatisfiedclauses.

The noiseparameter, which for all WalkSAT algorithms
except for WalkSAT/TABU representsa probability and
hencetakesvaluesbetweenzeroandone,hasa major im-
pacton theperformanceof therespectivealgorithm, asmea-
suredby the probability of finding a solution, i.e., a model
of the given formula, within a fixed number of steps,or by
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the expectednumber of stepsrequired for finding a solu-
tion. Not only is therea significantquantitative impact of
the noiseparametersettingon performance,but the quali-
tative behaviour of the algorithm can be different depend-
ing on the noisesetting. In particular, it hasbeenshown
that for sufficiently high noisesettings,the other important
parametercommon to all WalkSAT algorithms, the num-
berof stepsafterwhich thesearchprocessis restartedfrom
a randomly selectedvariableassignment (alsocalledcutoff
parameter) haslittle or no impact on the behaviour of the
algorithm (Parkes & Walser 1996; Hoos & Stützle 1999).
For low noisesettings,however, finding an appropriatecut-
off setting is typically crucial for obtaining good perfor-
mance(Hoos& Stützle2000a). Fortunately, for many of the
most prominent and best-performing WalkSAT algorithms,
including WalkSAT/SKC, WalkSAT/TABU, Novelty � , and
R-Novelty� , peakperformanceis obtained for noisesettings
high enough thatthecutoff parameterdoesnot affect perfor-
manceunlessit is chosentoolow, in whichcase,performance
is degraded.This leavesthenoisesettingto beoptimisedin
orderto achieve maximal performanceof theseWalkSAT al-
gorithms.1

Unfortunately, findingtheoptimalnoisesettingis typically
a difficult task.Becauseoptimalnoisesettingsappearto dif-
fer considerably depending on the given problem instance,
thistaskoftenrequiresexperienceandsubstantialexperimen-
tationwith various noisevalues(Hoos& Stützle2000a). We
will seelater that even relatively minor deviations from the
optimalnoisesettingcanleadto a substantialincreasein the
expectedtime for solving agiveninstance;andto makemat-
ters worse,the sensitivity of WalkSAT’s performancew.r.t.
thenoisesettingseemsto increasewith thesizeandhardness
of the probleminstanceto be solved. This complicatesthe
useof WalkSAT for solving SAT instancesaswell as their
evaluation, andhencethedevelopment, of new WalkSAT al-
gorithms.

Oneobviousapproachfor developing a self-tuningmech-
anism for the noise parameter in WalkSAT is to build on
McAllesteret al.’s “invariants” that relateoptimalnoisepa-
rametersettingsto certainstatisticsof thenumber of unsatis-
fied clausesover a (partial)WalkSAT trajectory(McAllester,

1It may be notedthat Novelty
�

andR-Novelty
�

have an addi-
tional secondary noiseparameter, which, however, seemsto have
lessimpacton performancethantheprimarynoiseparameter. Fur-
thermore,one uniform settingof this parameterseemsto achieve
excellentperformancefor a broadrangeof SAT instancesand in-
stancetypes(Hoos1999;Hoos& Stützle2000a).
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Figure1: Left: Noiseresponsefor Novelty � on easy, medium,andhardinstancesfrom test-setflat100-239-100. Right:
RTDs for for WalkSAT/SKC on SAT-encodedblock world planning instancebw large.b for approx. optimal, lower and
higher noisesettings.

Selman,& Kautz1997). Recently, it hasbeendemonstrated
that theseinvariantscanbe usedas the basisfor automati-
cally tuningthenoiseparameterin WalkSAT/SKC(Patterson
& Kautz2001). It shouldbenoted, however, thattheserela-
tionshipsareof anapproximatenatureandthatthusfar, they
haveonly beestablishedfor WalkSAT algorithms.

The approachfollowed in this paperis basedon a more
general principle thatcaneasilybegeneralised to SLSalgo-
rithmsotherthantheWalkSAT architectureandto hardcom-
binatorial problemsdifferent from SAT. It substantiallydif-
fersfrom themethod proposedin (Patterson& Kautz2001),
which optimisesthe noise setting for a given problem in-
stanceprior to the actual(unmodified) searchprocess,dur-
ing which thenoiseparametersettingis heldfixed. Thekey
ideabehind our noisemechanismis to usehigh noisevalues
only whenthey areneeded to escapefrom stagnationsitua-
tions in which thesearchprocedureappearsto make no fur-
therprogresstowardsfinding a solution. This ideais closely
relatedto themotivation behind Reactive Tabu Search(Bat-
titi & Tecchiolli 1994) andIteratedLocal Search(Lourenço,
Martin, & Stützle 2000), two high-performing SLS algo-
rithmsfor combinatorialoptimisation.Applied to WalkSAT
algorithmssuchasNovelty � , thisapproachnotonlyachieves
a remarkably robustandhigh performance,in somecasesit
also improvesover the peakperformance of the bestprevi-
ouslyknown WalkSAT variant for therespectiveproblemin-
stance.

The Noise Response
We usethetermnoiseresponseto referto thefunctional de-
pendency of the local searchcoston thesettingof thenoise
parameter. Thenoiseresponsecapturesthecharacteristicim-
pactof the noisesettingon the performanceof a given al-
gorithm for a specificproblem instance.Local search cost
(abbreviatedlsc) is definedastheexpectedtime requiredby
a givenalgorithm (for specificparametersettings)to solve a
given problem instance. We estimatelsc by taking the av-
erageof anempiricalrun-time distribution (RTD). Sincethe
varianceof WalkSAT RTD is typically veryhigh,stableesti-
matesof lsc requireempirical RTDsbasedona largenumber

of successfulruns. Unlessspecificallystatedotherwise,the
lsc measurementsreportedin this paperarebasedon at least
250successfulruns.Furthermore,random restartwithin runs
wasgenerally disabledby settingWalkSAT’s cutoff parame-
ter effectively to infinity. As we will seelater, this doesnot
affect thepeakperformance of thealgorithmsstudiedhere.

Measuring the noise response for more than 300 SAT
instances(most of which were taken from the SATLIB
BenchmarkCollection), including SAT-encoded planning
andgraph colouring problems, we found that the noisere-
sponsefor WalkSAT/SKC, Novelty � , and R-Novelty � al-
wayshasthe samecharacteristic, concave shape:Thereex-
ists a unique optimalnoisesettingminimising lsc; for noise
higherthanthis optimal value, lsc increasesmonotonically;
likewise, lsc increasesmonontonically asnoiseis decreased
below theoptimumvalue(typicalexamplesareshown in Fig-
ure 1). The response curve is asymmetric,with a steeper
increasein lsc for lower-than-optimal thanfor higher-than-
optimalnoisevalues,andthereis noevidencefor discontinu-
ities in any of its derivatives.

Asaconsequenceof thisshapeof thenoiseresponsecurve,
there is a certainrobustnessw.r.t. minor variations in the
noisesettingaround theoptimalvalue. Furthermore, lower-
than-optimal noisevaluestend to causesignificantly more
difficulty in solving a problem instancethan higher-than-
optimalnoisevalues. (This is particularly thecasefor some
of thebest-performing WalkSAT variants,suchasNovelty �
andR-Novelty � .)

It has been previously observed that for optimal and
higher-than-optimal noisesettings,WalkSAT andotherSLS
algorithms for SAT show exponentialRTDs (Hoos& Stützle
1999). For lower-than-optimalnoisesettings,RTDs indicate
stagnationbehaviour reflectedin an increase in the varia-
tion coefficient (mean/stddev) with decreasingnoise(Hoos
& Stützle 2000a). (Typical RTDs are shown in Figure 1.)
Becauseof theeffect of the initial searchphasethat is most
pronouncedfor relatively easyproblem instances(relative to
their size)around the optimal noisevalue,the variationco-
efficient canalsoslightly increaseas the noiseis increased
beyond its optimal value.

Therehasalsobeensomeevidencein theliteraturethatfor
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Figure2: Approx. optimalnoisevaluesvs. lsc for Novelty �
on test-setflat100-239-100.

setsof syntacticallyvery similar problem instances,in par-
ticular for test-setssampledfrom Uniform Random-3-SAT
distributions (Cheeseman, Kanefsky, & Taylor1991), theop-
timal noisevaluesfor WalkSAT/SKC arevery similar (Hoos
& Stützle1999). This observationappears to hold for other
setsof syntacticallysimilar problem instancesaswell asfor
otherWalkSAT variants.A typical example is shown in Fig-
ure 2; note that despitethe syntacticalsimilarity of the in-
stancestherearesubstantialdifferencesin local searchcost,
which,however, arenotsignificantlycorrelatedwith optimal
noisesettings.It maybenotedthatevenat 250triesper in-
stancethe lsc estimates,andhence our estimatesfor optimal
noisesettings,areoftennot very stable.For thetest-setused
in Figure2, differencesin searchcostbetweenthe extreme
optimal noisevaluesobtained weresmallerthana factorof
1.5.

However, optimal noisesettingsvaryconsiderablywith in-
stancetype and size (McAllester, Selman,& Kautz 1997;
Hoos& Stützle2000a). This is particularly noticable for the
widely usedSAT-encoded blocksworld planning instances
(Kautz & Selman1996; Hoos & Stützle 2000b), where
the optimal noisevaluesappearto decrease monotonically
with problemsize. For otherinstancetypes,including Uni-
form Random-3-SAT instancesandSAT-encodedFlat Graph
Colouring instances,theoptimal noisevalueis apparently not
affectedby instancesize. Overall, it appears that for those
typesof SAT instanceswhere optimal noisechanges with
instancesize, larger instancestend to have smalleroptimal
noisevalues(cf. Table1).

Finally, therearesignificantdifferencesin optimal noise
levels betweendifferent WalkSAT variants. This is not sur-
prising,considering thedifferencesin how thenoiseparam-
eter is usedwithin thesevariants; but it is relevant in this
context becauseit meansthat when comparing the perfor-
manceof the variance for a givensetof problem instances,
the noiseparameter settingneedsto be optimisedfor each
variant individually. This observationis particularlyrelevant
in thecontext of recentfindings thatnosingleWalkSAT vari-
antgenerally outperforms all others(Hoos & Stützle2000a).

These observations suggest the following approach to
manually tuning thenoiseparameter:For two initial guesses
for theoptimalnoisevalue,empirical RTDsaremeasuredand

lsc valuesarecalculatedfrom these.Thesetwo initial noise
valuesareguessedin sucha way that they are likely to be
slightly higher thantheoptimalnoisevalue. Assumingthat
the lsc measurementsare reasonably accurate,andexploit-
ing the typical concave shapeof thenoiseresponsecurve, a
simpleiterativemethodcanbeusedto narrow down theopti-
malnoisevalueby measuring additional lscvaluesfor appro-
priatelychosennoisesettings.Typically, RTDs for no more
thanfour noisevaluesneedto beevaluatedin order to obtain
a noisesettingfor which the lsc valueis no morethan20%
above the minimum. The initial guessesareoftenbasedon
obvious structural properties of the problem instances,such
astheratioof clausesto variables,or background knowledge
abouttheoriginof theprobleminstances,including thetrans-
formationsusedfor encoding theminto SAT.

Thedrawbackof this method is thatit requires solvingthe
probleminstanceunder consideration hundreds,maybethou-
sandsof times. This only makessensewhentuning an al-
gorithmfor a wholeclassof probleminstancesin a scenario
wherea large number of similar problem instanceshave to
be solved subsequently. According to our observation that
for severalwidely studiedclassesof SAT instancestheopti-
mal noisesettingsseemto be very similar or identicalover
wholedistributionsof probleminstances,thissituationis not
unrealistic(especiallyin the context of comparative studies
of SLSalgorithmsovera wide range of probleminstances).

WalkSAT with Dynamic Noise
Given the observationsmadein the previous section,it ap-
pearsvery desirable to have a mechanismthatautomatically
adjuststhe noiseparameterin sucha way that manualpa-
rametertuning is no longer necessaryfor obtaining optimal
performance.

Thereareat leastfour typesof informationthatcanpoten-
tially beusedby suchamechanism:

(a) background knowledge provided by the algorithm de-
signer; this knowledgemight reflectextensive experience
with the algorithm on various typesof instancesor theo-
reticalinsightsinto thealgorithm’s behaviour;

(b) syntactic information about the problem instance;for
SAT instances,thismayincludethenumberof clausesand
variablesaswell asinformationaboutclauselengths,etc.;

(c) information collectedover the run of the algorithm so
far; in particular, thisincludesinformationaboutthesearch
spacepositions andobjective function valuesencountered
over the(incomplete)searchtrajectory;

(d) informationcollectedbyspecificmechanisms(oragents)
that perform certaintypesof “semantic”analyseson the
given probleminstances;this canincludeactive measure-
ments of propertiesof the underlying searchspace,such
asautocorrelationlengthsfor random walks (Weinberger
1990) or densityof local optima (Frank, Cheeseman,&
Stutz1997).

Obviously, a self-tuning noisemechanism canintegratevari-
oustypesof information. In the following, we studya tech-
niquethat is basedon informationof type (a), (b), and(c).
Ultimately, we believe that information of type (d) should
alsobe integrated, leadingto a morerobust andevenbetter
performingalgorithm. However, from ascientificperspective



aswell asfrom anengineering pointof view, it seemsprefer-
ableto

�
startwith rather simpleself-tuning algorithmsbefore

studying complex combinationsof techniques.
Ourapproachis basedona simpleandfairly general idea:

Basedon the effect of the noisesettingon the searchpro-
cess,asdescribed previously, andconsistentwith earlierob-
servations by McAllester et al. (1997), it appearsthat op-
timal noisesettingsare thosethat achieve a good balance
betweenan algorithms ability to greedily find solutions by
following local gradients,andits ability to escapefrom local
minimaandother regionsof thesearchspacethatattractthe
greedy componentof thealgorithm, yetcontainnosolutions.
Fromthis pointof view, thestandard staticnoisemechanism
thatperformsnon-greedy(or not-sogreedy) searchstepsre-
quiredto escapefrom situationsin which the searchwould
otherwisestagnatewith a constant probability, seemsto bea
rathercrude andwastefulsolution. Instead,it appearsmuch
morereasonableto usethis escapemechanism only whenit
is reallyneeded.

This leadsto our adaptive noiseapproach, in which the
probability for performinggreedy steps(or noisesetting)is
dynamically adjustedbasedon searchprogress,asreflected
in thetimeelapsedsincethelastimprovement in theobjective
function hasbeenachieved. At the beginning of the search
process, we usegreedy searchexclusively (noise=0). This
will typically leadtoaseriesof rapidimprovementsin theob-
jective function value,followedby stagnation(unlessasolu-
tion to thegivenprobleminstanceis found). In thissituation,
thenoisevalueis increased.If thisincreaseis notsufficientto
escapefrom thestagnationsituation,i.e., if it doesnot leadto
an improvement in objective function valuewithin a certain
number of steps,thenoisevalueis further increased.Even-
tually, thenoisevalueshouldbehigh enoughthatthesearch
processovercomesthe stagnation, at which point, the noise
canbe gradually decreased,until the next stagnationsitua-
tion is detectedor a solutionto thegivenproblem instanceis
found.

Our first implementationof theadaptivenoisemechanism
usesverysimpletechniquesfor thebasiccomponentsof stag-
nationdetection,noiseincrease,andnoisedecrease. As an
indicator for searchstagnationwe usea predicatethatis true
iff no improvement in objective function valuehasbeenob-
servedover thelast ���
	 searchsteps,where 	 is thenum-
ber of clausesof the given problem instanceand �������� .
Every incremental increase in the noisevalueis realisedas����� � ������� �� ��� � �"! . the decrements aredefined as����� � ��� � ��� �$#%! , where��� is thenoiselevel and !&�('*)+# .

The asymmetry betweenincreasesand decreasesin the
noisesettingis motivatedby the fact that detectingsearch
stagnationis computationallymoreexpensive thandetecting
searchprogressandby the earlierobservation that it is ad-
vantageousto approximateoptimal noiselevels from above
ratherthanfrom below. After thenoisesettinghasbeenin-
creasedor decreased,thecurrent objective function valueis
storedand becomesthe basisfor measuringimprovement,
andhencefor detectingsearchstagnation.As aconsequence,
betweenincreasesin noiselevel thereis alwaysa phasedur-
ing which the trajectory is monitored for searchprogress
without further increasing the noise. No suchdelay is en-
forcedbetweensuccessivedecreasesin noiselevel.

It may be notedthat this adaptive noisemechanismuses
two internalparameters,� and ! , that control its behaviour.

While it appears that this merely replaced the problem of
tuning oneparameter, ��� , by the potentiallymoredifficult
problemof tuningthesenew parameters,thevaluesof � and
! usedin this studyweredetermined in preliminary experi-
mentsandthenkept fixed throughout the restof this study.
In particular, the samevaluesfor � and ! wereusedfor all
probleminstancesusedin our performance evaluation. As
we will seein thenext section,various WalkSAT algorithms,
whenusingthe adaptive noisemechanism introducedhere,
achieve very impressive performancefor thesamefixedval-
uesof � and ! , while thesamealgorithms,for thesamefixed
valueof ��� perform substantiallyworse.This indicatesthat,
while ouradaptivemechanismhassomepossibleinternal ad-
justments,theseadjustmentsdonothaveto betunedfor each
probleminstanceor instancetype to achieve good perfor-
mance.

Experimental Results and Discussion
Theadaptivenoisemechanismdescribedin theprevioussec-
tion canbeeasilyintegratedinto existing implementationsof
WalkSAT. In order to evaluateits performanceagainst peak
performanceasobtainedfor manually tunedstaticnoise,we
conducted extensive computational experiments on widely
usedbenchmark instancesfor SAT obtained from SATLIB
(Hoos & Stützle 2000b). The benchmark set usedfor our
evaluationcomprisesSAT-encodedblocksworld andlogistics
planninginstances,two typesof SAT-encodedgraph colour-
ing problems,critically constrainedUniform Random-3-SAT
instances,andSAT-encodedall-interval-seriesproblems. In
addition,primarily to assessscalingbehaviour, wegenerated
a new test-setof 100 critically constrained,satisfiableUni-
form Random-3-SAT instanceswith 400variablesand1700
clauseseach. The instanceslabelleduf , -hard are those
instancesfrom the respective critically constrainedUniform
Random-3-SAT test-setswith the highest lsc for WalkSAT
usingmanually tunedstaticnoise.

As can be seenfrom Table 1, Novelty � with dynamic
noiseperformsverywell, considering thefactthatit usedno
instance-specificparametertuning, andkeeping in mind that
whenusingthe standardstaticnoisemechanism, especially
for hardandlargeinstances,even relatively smalldeviations
from theoptimalnoisesettingcaneasilyleadto increasesin
lsc of morethananorderof magnitude. It maybenotedthat
theweakestperformanceis observed for the large DIMACS
graphcolouring instances,g125 17 andg125 18. Addi-
tionalexperiments(notshown here)indicatedthatby usinga
different stagnationcriterion, performanceontheseinstances
canbesignificantlyimproved; thisstagnationcriterion, how-
ever, doesnot perform aswell on the otherinstancestested
here.Similarly, we observedthatfor differentparameterset-
ings � and ! of the dynamic noisemechanism,the perfor-
manceonalmostall instancescanbefurtherimproved.These
observationssuggestthatmoresophisticatedmechanismsfor
adjustingthenoiseshouldbeableto achieve overall perfor-
manceimprovementsandin somecasesarelikely to exceed
theperformanceof thebestknown SLSalgorithmsfor SAT.

It is worth noting that in three cases,dynamic noise
achieves better performance than approx. optimal static
noise. At first glance,this might appearsurprising; how-
ever, it shouldbe notedthat the adaptive noisemechanism
doesnotmerelyattemptto find theoptimal staticnoiselevel,
but is ratherbasedon theideaof usingnoiseonly whenit is



instance nov+opt nov+dyn dyn / opt
lsc noise lsc noise lsc ratio

bw large.a 9,388 0.40 12,156 -�. /�0213-%. -
0 1.29
bw large.b 197,649 0.35 212,671 -%. 4
-213-%. -�5 1.08
bw large.c 0�. 5
076
89-;: 0.20 <%. 0=0>6=8?-=: -�.@8?A21B-�. -
C 1.16
log.c 123,984 0.40 141,580 -%. 4D/713-%. -
4 1.14
flat100-hard 139,355 0.60 111,772 -%. /
/E1B-�. -�0 0.80
g125 18 8,634 0.45 32,498 -%. 5
5�1B-�. -=/ 3.76
g125 17 -%. <D/F6=8?- : 0.25 8
. /%826=8?- : -�. C=G21B-�. -=4 1.68
uf100-hard 38,473 0.55 41,733 -%. /
GE13-%. -�0 1.08
uf250-hard 4%. 0�8�6
89- : 0.55 C�. A
C>6=8?- : -�. 4�0�1B-�. -
C 0.79
uf400-hard C
C;. A>6
89- : 0.55 C
C;. <H6=8?- : -�. 4�C�1B-�. -�8 1.00
ais10 8
. A
G>6
89- : 0.40 8
. 0=C>6=8?- : -�. 4
421B-�. -D/ 0.88

Table1: Novelty � with approx. optimal staticnoisevs. dynamic noisemechanismon individual benchmark instances.lsc
estimatesarebasedonatleast250runsfor all instancesexceptfor uf400-hard, for whichonly100runshavebeenconducted.
For Novelty � with dynamic noise,themeanandstandarddeviation of thenoiseover all runsarereported.
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Figure3: Correlationbetweenlsc for Novelty � with opti-
mal static noisevs. dynamic noisemechanism on test-set
flat100-239-100.

actuallyneeded. Nevertheless,ascanbeseenfrom compar-
ing the approx. optimal staticnoiselevels andthe statistics
over thenoiselevelsusedby thedynamic variants,thereis a
correlation betweenthe noiselevels usedin bothcases.An
interestingexceptioncanbeobserved for thehardRandom-3-
SAT instances,for which theadaptive noisemechanism uses
noiselevelsthataresignificantlylowerthantheoptimalstatic
noisesetting. Generally, the low variation in noiselevel for
the dynamic mechanismindicatesthat the noiselevels used
within runsonanindividual instanceareveryconsistent.

Table 2 shows the relative performance obtained by
Novelty � with dynamic vs. approx. optimal static noise
acrossfour of the test-setsof instancesusedin our evalua-
tion. Interestingly, thedynamic noisevariant achieves a sig-
nificantly lower variation in lsc acrossall test-sets,ascanbe
seenby comparingtherespective variationcoefficients(vc).
Furthermore,asillustratedin Figure3, thereis a very strong
correlation betweentheperformanceof bothvariants,with a
small but significanttendency for dynamic noiseto achieve
lower lsc thanstatic noiseon hard instances.This is con-
sistentwith the intuition that the adaptive noisemechanism
requiresacertainamount of timebefore reaching good noise

levels. (This“homing in” phenomenoncanbeobserved from
tracesof theactualnoiselevel over searchtrajectoriesof the
algorithm, notshown here.)

As notedearlier, a significantadvantagefor conventional
WalkSAT algorithms including WalkSAT/SKC, Novelty � ,
R-Novelty� with staticnoiselies in the fact that they show
memory-lessbehaviour for optimal noiselevels. This makes
their performance robust w.r.t. the cutoff parameter and
provides the basis for achieving optimal speedup using a
straight-forwardmultiple independenttriesparallelisation.It
turnsout thattheWalkSAT variants with dynamicnoisealso
have this property. In all cases,the respective RTDs canbe
approximatedwell with exponential distributions, which is
indicative of the samememory-lessbehaviour as observed
for approx. optimalstaticnoise.

So far, we have only comparedrun-times in termsof in-
dividual variable flips. But obviously, the time-complexity
of thesesearchstepsalso needsto be taken into account
whenassessingthe performanceof the new WalkSAT vari-
ants with dynamic noise. The time-complexity of search
stepswasmeasuredon a PCwith dualPentiumIII 733MHz
CPUs,256MB CPU cache,and1GB RAM running Redhat
Linux Version2.4.9-6smp. It wasfound thatfor Novelty � , R-
Novelty� , andWalkSAT/SLK on a broad setof benchmark
instances,theCPU-timepervariableflip wastypically about
5–10%higher for thedynamic noisevariantcomparedto the
respective versionswith standardstaticnoise.This confirms
thatevenwhenusinga straight-forwardimplementation,the
dynamic noisemechanismcausesonly a minimal overhead
w.r.t. the time-complexity of searchsteps. It may be noted
that in somecases,suchas for WalkSAT/SKC when run-
ning on bw large.c, searchstepswereup to 20% faster
for dynamic thanfor staticnoise.This is causedby the fact
that the time-complexity of WalkSAT searchstepsdepends
on the number of unsatisfiedclauses,which in thesecases
dropsmorerapidly in theinitial searchphasewhenusingthe
adaptivenoisemechanism.

Due to spaceconstraints,in this paperwe report perfor-
manceresultsfor Novelty� with dynamicnoiseonly. Weob-
tained,however, empirical evidenceindicating thatthesame
adaptive noisemechanism appearsto work well for Walk-
SAT/SKC andR-Novelty � . Usingthesamevalues for � and
! asin thepresent study, theperformance(lsc) achieved by



test-set lsc for nov+opt lsc for nov+dyn
mean cv median mean cv median

flat100-239 17,205 1.18 10,497 21,102 1.07 13,231
flat200-479 495,018 1.70 241,981 573,176 1.47 317,787
uf100-430 J 2512.8 2.98 898.5 2550.9 2.16 1121.8
uf250-1065 53,938 5.26 8,755 64,542 4.72 13,015

Table2: Novelty � with dynamic vs.approx. optimalstaticnoiseonvarioussetsof benchmarkinstances.( , ) Thedatafor test-set
uf100-430 wascomputed for 100 randomly selectedinstancesfrom that set. ‘cv’ denotesthe coefficient of variation, i.e.,
stddev/mean,of thedistributionof lsc acrosstherespective test-sets.

R-Novelty � with dynamic noiseis within a factorof 1.5 of
theperformanceobtained usingapprox. optimalstaticnoise
settingsfor 8 of the 11 instanceslisted in Table1; in four
of thesecases,usingdynamic noiseresultsin substantially
betterperformanethan using approx. optimal static noise.
Evenbetterperformancecanbeachievedfor slightly differ-
ent � and ! settings.Similar resultswereobtainedfor Walk-
SAT/SKC; full reports ontheseexperimentswill beincluded
in anextendedversionof this paper (currently availableasa
technicalreport).

Conclusions
We have characterisedthe noiseresponseof WalkSAT al-
gorithms and introducedan adaptive noisemechanismthat
achieve very goodperformanceon a broad rangeof widely
usedbenchmarkproblemswhencomparedto thepeakperfor-
manceof traditionalvariantsof WalkSAT with staticnoise.

In principle, this adaptive noisemechanism is easilyap-
plicableto a muchwider range of stochasticlocal searchal-
gorithms for SAT andother combinatorial problems. This
is particularly attractive for other high-performancealgo-
rithms, such as WalkSAT/TABU (McAllester, Selman,&
Kautz1997) andGSAT with tabu lists(Selman,Kautz,& Co-
hen1994), DLM (Wu & Wah 1999), or ESG(Schuurmans,
Southy, & Holte 2001), which all have parametersthat are
in many waysanalogousto thenoiseparameterin theWalk-
SAT variantsstudiedhere.While theimplementationof our
adaptivenoisestrategy for thesealgorithmsis ratherstraight-
forward, its effectivity in termsof achieving good androbust
performanceremainsto beshown.

Another avenuefor further investigation is the develop-
ment and analysisof different and improved criteria for
searchstagnationwhichcanbeusedwithin ourgenericadap-
tive mechanism. We stronglybelieve that thesimplestagna-
tion criteriastudiedherecanbesubstantiallyimproved, e.g.,
by including measuressuchassearchmobility (Schuurmans
& Southy2000) or theonesusedin McAllesteretal.’s invari-
ants(McAllester, Selman,& Kautz1997). Furtherimprove-
mentsof thenoiseadaption mechanismandof adaptiveSLS
algorithmsin generalcouldpossiblybeachieved by integrat-
ing simplesearchspaceanalysistechniques into the search
control. Anotherpromising avenue for further investigation
is to studythe useof machinelearning techniquesfor iden-
tifying featuresthatareeffective for detectingsearchstagna-
tion or for predictingoptimal noisevalues.

Finally, it shouldbe notedthat the deeper reasons under-
lying thecharacteristic shapeof thenoiseresponsecurve for
WalkSAT algorithmsandtheshapeof thecorresponding run-
time distributions are unknown. Sincetheseare intimitely
connectedto crucialaspectsof SLSbehaviour, furtherinves-

tigation in this directioncould leadto improvements in our
understandingof current SLSalgorithmsandin thedesignof
futuremethods.
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