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Abstract

We present a novel, flexible statistical approach for modelling music and
text jointly. The approach is based on multi-modal mixture models and
maximum a posteriori estimation. The learned models can be used to
browse databases with documents containing music and text, to search
for music using queries consisting of music and text (lyrics and other
contextual information), to annotate text documents with music, and to
automatically recommend or identify similar songs.

1 Introduction

Variations on “name that song”-types of games are popular on radio programs. DJs play a
short excerpt from a song and listeners phone in to guess the name of the song. It is not
surprizing to anyone that callers often get it right when DJs provide extra contextual clues
(such as lyrics, or a piece of trivia about the song or band). In this paper, we attempt to
reproduce this ability for carrying out information retrieval (IR) by presenting a method for
querying with words and/or music.

We focus on monophonic and polyphonic musical pieces of known structure (MIDI files,
full music notation, etc.). Retrieving these pieces in multimedia databases, such as the
Web, is a problem of growing interest [1, 2, 3]. A significant step was taken by Downie [4],
who applied standard text IR techniques to retrieve music by, initially, converting music to
text format. Most research (including [4]) has, however, focused on plain music retrieval.
To the best of our knowledge, there has been no attempt to model text and music jointly.

We propose a joint probabilistic model for documents with music and/or text. This model
is simple, easily extensible, flexible and powerful. It allows users to query multimedia
databases using text and/or music as input. It is well suited for browsing applications as
it organizes the documents into “soft” clusters. The document of highest probability in
each cluster serves as a music thumbnail for automated music summarisation. The model
allows one to query with an entire text document to automatically annotate the document
with musical pieces. It can be used to automatically recommend or identify similar songs.
Finally, it allows for the inclusion of different types of text, including website content,
lyrics, and meta-data such as hyper-text links.



2 Model specification

The data consists of documents with text (lyrics or information about the song) and musical
scores in GUIDO notation [1]. (GUIDO is a powerful language for representing musical
scores in an HTML-like notation. MIDI files, plentiful on the World Wide Web, can be
easily converted to this format.) We model the data with a Bayesian multi-modal mixture
model. Words and scores are assumed to be conditionally independent given the mixture
component label.

We model musical scores with first-order Markov chains, in which each state corresponds
to a note, rest, or the start of a new voice. Notes’ pitches are represented by the interval
change (in semitones) from the previous note, rather than by absolute pitch, so that a score
or query transposed to a different key will still have the same Markov chain. Rhythm is
represented using the standard fractional musical measurement of whole-note, half-note,
quarter-note, etc. Rest states are represented similarly, save that pitch is not represented.
See Figure 1 for an example.

Polyphonic scores are represented by chaining the beginning of a new voice to the end of
a previous one. In order to ensure that the first note in each voice appears in both the row
and column of the Markov transition matrix, a special “new voice” state with no interval or
rhythm serves as a dummy state marking the beginning of a new voice. The first note of a
voice has a distinguishing “first note” interval value.
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Figure 1: Sample melody – the opening notes to “The Yellow Submarine” by The Beatles
– in different notations. From top: GUIDO notation, standard musical notation (generated
automatically from GUIDO notation), and as a series of states in a first-order Markov
chain (also generated automatically from GUIDO notation).

The Markov chain representation of a piece of music 
 is then mapped to a transition fre-
quency table ��� , where ����� ��� � denotes the number of times we observe the transition
from state � to state � in document 
 . We use � ��� � to denote the initial state of the Markov
chain. The associated text is modeled using a standard term frequency vector ��� , where
����� � denotes the number of times word � appears in document 
 . For notational simplic-
ity, we group the music and text variable as follows:  �"!$# � �&% � �(' . In essence, this
Markovian approach is akin to a text bigram model, save that the states are musical notes
and rests rather than words.



Our multi-modal mixture model is as follows:
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where
� ! # �'�3��� % �'� � � �4� % �'� � � � % ��� % ��� � � �4� ' encompasses all the model parameters and

where 5 � � � ��� � �7698 if the first entry of � � belongs to state � and is : otherwise. The three-
dimensional matrix �'� � � � % ��� denotes the estimated probability of transitioning from state
� to state � in cluster � , the matrix ��� � � ��� denotes the initial probabilities of being in state
� , given membership in cluster � . The vector ������� denotes the probability of each cluster.
The matrix �'� � � ��� denotes the probability of the word � in cluster � . The mixture model
is defined on the standard probability simplex # �������!; : for all � and < ���
���
 ���3�4�=6>8 ' .We introduce the latent allocation variables ? �A@ # 8 %4B�B�B
%&C 
 ' to indicate that a particular
sequence D � belongs to a specific cluster � . These indicator variables # ? �FE 
 6G8 %�B�B4B�%)CIH 'correspond to an i.i.d. sample from the distribution ��� ? � 6J���K6L������� .
This simple model is easy to extend. For browsing applications, we might prefer a hierar-
chical structure with levels M :
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This is still a multinomial model, but by applying appropriate parameter constraints we can
produce a tree-like browsing structure [5]. It is also easy to formulate the model in terms
of aspects and clusters as suggested in [6, 7].

2.1 Prior specification

We follow a hierarchical Bayesian strategy, where the unknown parameters
�

and the al-
location variables Q are regarded as being drawn from appropriate prior distributions. We
acknowledge our uncertainty about the exact form of the prior by specifying it in terms
of some unknown parameters (hyperparameters). The allocation variables ? � are assumed
to be drawn from a multinomial distribution, ? � �SR ��� ��8 E �������)� . We place a conjugate
Dirichlet prior on the mixing coefficients ������� �UT ��� �3VW� . Similarly, we place Dirich-
let prior distributions T � � �,XY� on each ��� � � ��� , T � � �3Z[� on each ��� � � � % ��� , T ��- �3\]� on each��� � � ��� , and assume that these priors are independent.

The posterior for the allocation variables will be required. It can be obtained easily using
Bayes’ rule:
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3 Computation

The parameters of the mixture model cannot be computed analytically unless one knows
the mixture indicator variables. We have to resort to numerical methods. One can imple-
ment a Gibbs sampler to compute the parameters and allocation variables. This is done by
sampling the parameters from their Dirichlet posteriors and the allocation variables from
their multinomial posterior. However, this algorithm is too computationally intensive for



the applications we have in mind. Instead we opt for expectation maximization (EM) algo-
rithms to compute the maximum likelihood (ML) and maximum a posteriori (MAP) point
estimates of the mixture model.

3.1 Maximum likelihood estimation with the EM algorithm

After initialization, the EM algorithm for ML estimation iterates between the following
two steps:

1. E step: Compute the expectation of the complete log-likelihood with respect to the dis-
tribution of the allocation variables � ML 6 ��� � ��� � � � � �
	 old � % � 
���� ��� Q % � % � � � � � ,
where

� � old % represents the value of the parameters at the previous time step.

2. M step: Maximize over the parameters:
� � new % 6 ��� ��� ���

� � ML

The � ML function expands to
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In the E step, we have to compute ���3� � 
 � using equation (3). The corresponding M step
requires that we maximize � ML subject to the constraints that all probabilities for the pa-
rameters sum up to 1. This constrained maximization can be carried out by introducing
Lagrange multipliers. The resulting parameter estimates are:
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3.2 Maximum a posteriori estimation with the EM algorithm

The EM formulation for MAP estimation is straightforward. One simply has to augment
the objective function in the M step, � ML, by adding to it the log prior densities. That is,
the MAP objective function is

� MAP 6 ��� � ��� ! � �"	 old � % � 
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The MAP parameter estimates are:
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CLUSTER SONG ������� �	�
2 Moby – Porcelain 1
2 Nine Inch Nails – Terrible Lie 1
2 other – ’Addams Family’ theme 1
...

...
...

4 J. S. Bach – Invention #1 1
4 J. S. Bach – Invention #8 1
4 J. S. Bach – Invention #15 1
4 The Beatles – Yellow Submarine 0.9975
...

...
...

6 other – ’Wheel of Fortune’ theme 1
...

...
...

7 The Beatles – Taxman 1
7 The Beatles – Got to Get You Into My Life 0.7247
7 The Cure – Saturday Night 1
...

...
...

9 R.E.M – Man on the Moon 1
9 Soft Cell – Tainted Love 1
9 The Beatles – Got to Get You Into My Life 0.2753

Figure 2: Representative probabilistic cluster allocations using MAP estimation.

These expressions can also be derived by considering the posterior modes and by replacing
the cluster indicator variable with its posterior estimate ����� � 
 � . This observation opens up
room for various stochastic and deterministic ways of improving EM.

4 Experiments

To test the model with text and music, we clustered on a database of musical scores with
associated text documents. The database is composed of various types of musical scores –
jazz, classical, television theme songs, and contemporary pop music – as well as associated
text files. The scores are represented in GUIDO notation. The associated text files are a
song’s lyrics, where applicable, or textual commentary on the score for instrumental pieces,
all of which were extracted from the World Wide Web.

The experimental database contains 100 scores, each with a single associated text docu-
ment. There is nothing in the model, however, that requires this one-to-one association
of text documents and scores – this was done solely for testing simplicity and efficiency.
In a deployment such as the world wide web, one would routinely expect one-to-many or
many-to-many mappings between the scores and text.

We carried out ML and MAP estimation with EM. The The Dirichlet hyper-parameters
were set to V 6 8 % X96 8 : % Z 6 8 : % \ 6 


. The MAP approach resulted in sparser (reg-
ularised), more coherent clusters. Figure 2 shows some representative cluster probability
assignments obtained with MAP estimation. By and large, the MAP clusters are intuitive.
The 15 pieces by J. S. Bach each have very high (� � : B �
�	� ) probabilities of membership
in the same cluster. A few curious anomalies exist. The Beatles’ song The Yellow Subma-
rine is included in the same cluster as the Bach pieces, though all the other Beatles songs
in teh databse are assigned to other clusters.



4.1 Demonstrating the utility of multi-modal queries

A major intended use of the text-score model is for searching documents on a combination
of text and music. Consider a hypothetical example, using our database: A music fan is
struggling to recall a dimly-remembered song with a strong repeating single-pitch, dotted-
eight-note/sixteenth-note bass line, and lyrics containing the words come on, come on, get
down. A search on the text portion alone turns up four documents which contain the lyrics.
A search on the notes alone returns seven documents which have matching transitions. But
a combined search returns only the correct document (see Figure 3). This confirms the
hypothesis that integrating different sources of information in the query can result in more
precise results.

QUERY RETRIEVED SONGS

come on, come on, get down
Erksine Hawkins – Tuxedo Junction
Moby – Bodyrock
Nine Inch Nails – Last
Sherwood Schwartz – ‘The Brady Bunch’ theme song

The Beatles – Got to Get You Into My Life
The Beatles – I’m Only Sleeping
The Beatles – Yellow Submarine
Moby – Bodyrock
Moby – Porcelain
Gary Portnoy – ‘Cheers’ theme song
Rodgers & Hart – Blue Moon

come on, come on, get down
Moby – Bodyrock

Figure 3: Examples of query matches, using only text, only musical notes, and both text
and music. The combined query is more precise.

4.2 Precision and recall

We evaluated our retrieval system with randomly generated queries. A query � is com-
posed of a random series of 1 to 5 note transitions, ��� and 1 to 5 words, ��� . We then
determine the actual number of matches C in the database, where a match is defined as a
song  � such that all elements of � � and � � have a frequency of 1 or greater. In order to
avoid skewing the results unduly, we reject any query that has C���� or C �	� : .

To perform a query, we simply sample probabilistically without replacement from the clus-
ters. The probability of sampling from each cluster, �'�3� � � � , is computed using equation 3.
If a cluster contains no items or later becomes empty, it is assigned a sampling probability



of zero, and the probabilities of the remaining clusters are re-normalized.

In each iteration � , a cluster is selected, and the matching criteria are applied against each
piece of music that has been assigned to that cluster until a match is found. If no match is
found, an arbitrary piece is selected. The selected piece is returned as the rank- � ��� result.
Once all the matches have been returned, we compute the standard precision-recall curve
[8], as shown in Figure 4. Our querying method enjoys a high precision until recall is ap-
proximately

� :�� , and experiences a relatively modest deterioration of precision thereafter.

Figure 4: Precision-recall curve showing average results, over 1000 randomly-generated
queries, combining music and text matching criteria.

By choosing clusters before matching, we overcome the polysemy problem. For example,
river banks and money banks appear in separate clusters. We also deal with synonimy since
automobiles and cars have high probability of belonging to the same clusters.

4.3 Association

The probabilistic nature of our approach allows us the flexibility to use our techniques and
database for tasks beyond traditional querying. One of the more promising avenues of
exploration is associating documents with each other probabilistically. This could be used,
for example, to find suitable songs for web sites or presentations (matching on text), or for
recommending songs similar to one a user enjoys (matching on scores).

Given an input document, � , we first cluster � by finding the most likely cluster as de-
termined by computing ��� ��� ��� 
 ����� � � � (equation 3). Input documents containing text or
music only can be clustered using only those components of the database. Input documents
that combine text and music are clustered using all the data. Once the input document
has been clustered, we can find its closest association by computing the distance from the
input document to the other document vectors in the cluster. The distance can be defined
in terms of matches, Euclidean measures, or cosine measures after carrying out latent se-
mantic indexing [9]. A few selected examples of associations found in our database in this
way are shown in figure 5. The results are often reasonable, though unexpected behavior
occasionally occurs.



INPUT CLOSEST MATCH

J. S. Bach – Toccata and Fugue in D Minor (score) J. S. Bach – Invention #5
Nine Inch Nails – Closer (score & lyrics) Nine Inch Nails – I Do Not Want This
T. S. Eliot – The Waste Land (text poem) The Cure – One Hundred Years

Figure 5: The results of associating songs in the database with other text and/or musical
input. The input is clustered probabilistically and then associated with the existing song
that has the least Euclidean distance in that cluster. The association of The Wasteland with
The Cure’s thematically similar One Hundred Years is likely due to the high co-occurance
of relatively uncommon words such as water, death, and year(s).

5 Conclusions

We feel that the probabilistic approach to querying on music and text presented here is
powerful, flexible, and novel, and suggests many interesting areas of future research. One
immediate goal is to test this approach on larger databases. In the future, we should be
able to incorporate audio by extracting suitable features from the signals. This will permit
querying by singing, humming, or via recorded music. Combining this method with images
should be straightforward [5], opening up room for novel applications in multimedia [10].
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