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Abstract

We present a Bayesian mixture model for probabilistic latent semantic analysis of
documents with images and text. The Bayesian perspective allows us to perform au-
tomatic regularisation to obtain sparser and more coherent clustering models. It also
enables us to encode a priori knowledge, such as word and image preferences. The
learnt model can be used for browsing digital databases, information retrieval with
image and/or text queries, image annotation (adding words to an image) and text

illustration (adding images to a text).



1 Introduction

Recent probabilistic latent semantic analysis (PLSA) models for the analysis of text (Hof-
mann 1999) and text and images (Barnard and Forsyth 2001) have led to many exciting
developments in computer vision, image understanding, multimedia database browsing, and
document retrieval. Here, we extend one of the proposed models, namely a flat mixture
model, by adopting the Bayesian paradigm and by allowing other categorical and/or con-
tinuous variables. (We restrict ourselves to this simple mixture model only for tutorial
purposes. The Bayesian treatment of aspect an hierarchical models is presented in (de
Freitas and Barnard 2001).) This paradigm allows us to encode preferences for application
specific words and images. It also allows us to perform regularisation according to the
principle of Ockham’s Razor. That is, if two models describe the data reasonably well, the

simpler model is automatically chosen.

2 Model Specification

Let X £ (xi,...,X;,...,Xy,,) denote a collection of n, documents in a heterogeneous
database!. Each document x; is assumed to have n, different attributes, x; = (Xi15---»Xia,
.--,Xin,)- Attributes may be categorical or continuous. Examples of categorical attributes
include standard document meta-data such as movie ratings, media type or word presence
(does the document contain a specific word?). Features derived from images and other
multimedia signals are typically continuous-valued attributes. (It should be noted that our
database is non-relational in that relations such as “next to” are not treated.) In general,
the goal of the analysis will be to group documents into homogeneous classes in a probabilis-
tic way. To accomplish this, each document x; is assumed to be drawn from the following

finite mixture model

Ne Ne na
Xi|‘P %1 ZACP(X’i‘GC) = ZAC Hp(xi,a|0a,c)a (1)
=1 a=1

c=1

where ¢ £ (), ) encompasses all the model parameters, A denotes the mixing weights, 8
denotes the parameters of the mixture component densities, and n. denotes the number of
components. The mixture model is defined on the standard probability simplex {A : A, >

0 for all cand >..°; Ac = 1}. Generating a document involves two steps. First, we select

!NOTATION: We use boldface Roman letters to refer to collections of items and italic Roman letters
to refer to individual items. For example, a single word is written as w;, while a group of n, words is
written as w £ Wi, = (wi,...,Wn, ). For simplicity, we use x; to denote both the random variable and

its realisation.



a mixture component with probability A, and, then, we sample the document from this
mixture component.

From a modelling and inference perspective, it is often convenient to introduce the latent
allocation variables z; € {1,...,n.} to indicate that a particular document x; belongs to a
specific group c. These indicator variables {z;;¢ = 1,...,n;} correspond to an i.i.d. sample

from the distribution
plzi=c) = A independently for ¢ =1,...,nc.

One can now express the mixture model in a different form that will be useful for our

subsequent derivations

Te(2:)
p(xzazz = C“P H [ Hp X4 a|0ac ] s (3)

c=1 a=1

where [.(z;) = 1 if x; belongs to group ¢ and I.(z;) = 0 otherwise. Note that marginalising
over z; in equation (3) allows us to recover the expression given by equation (1). The
learning problem under consideration is either known as supervised learning (when the
allocation variables are known) or as unsupervised learning (otherwise).

Under our modelling assumptions, the likelihood function for the entire data set is given

by

X|(p ﬂzc:)\ prza|0ac Z EC: HAcsz xza|0acz (4)
i=1 c=1 a=1 c1=1 Cngy=11=1 a=1

In the following subsections we describe the various forms that this likelihood can take

depending on the type of attributes.

2.0.1 Continuous attributes

The algorithms developed in Section 3 apply to any type of mixture component density
belonging to the exponential family. However, we will concentrate on Gaussian and multi-
nomial densities.

In this paper, Gaussian attributes arise because we treat various image features (colour,
texture, etc.) as samples from Gaussian distributions (Barnard and Forsyth 2001, Belongie,
Carson, Greenspan and Malik 1997). That is, each instance of z;, is an ng,-dimensional

vector drawn from the normal distribution, z; 4 ~ No,, (K cr Za,c), With density

_ 1 _
p(xi,a|0a,0) = |27T2a,6‘ 1/2 €Xp (_5 (Xi,a - Na,c)l za,}: (Xi,a - Ha,c)) ) (5)

where the parameter vector contains the means and covariances 8, . = (uayc, 3a.c)- If, for

example, we have a mixture model with n, Gaussian attributes, we can represent it as



follows e na
xilo ™3] Mg, (Ba e Bae)-

=1  a=1
This mixture of Gaussian products can be expressed as a mixture of multivariate Gaus-
sians of size ). ng, with a block diagonal covariance. In general, the structure of this
covariance depends on how we partition the Gaussian attributes. As the dimension of the
vectors increases so does the number of covariance parameters that we have to estimate.
As suggested in (Hunt and Jorgensen 1999), one could start with a diagonal covariance
(assume independence) to estimate the parameters, assign observations to the clusters and

then study the within cluster correlation matrices. Variables that are highly correlated may

then be grouped into a subvector and the estimation procedure is repeated.

2.0.2 Categorical attributes

Let us assume that the a-th attribute can take n, discrete values, more precisely let x; , €
{1,...,4,-..,ny}. The probability of the j-th value of x; , occurring is defined as dq ; 4
p(Tia = j|0ay), with 37 da.c; = 1. We can model the distribution of this variable using

the multinomial model

P(XialBa) = Haafgj;” . (7)

Thus, in the categorical case, the parameter vector is given by 0, . = 84.c = (Jg,c,1,-- -+ 0a,cny )-
Note that we only need n, — 1 parameters because of the normalisation condition. If we
have a mixture with several categorical variables, it can be expressed as

Ng Ny

x; | wd Zz\ HHJGJC?;”). (8)

= a=1j=1

If we have several categorical variables, we can either assume that some of them are inde-

pendent
Ny Ny
_ I(xi,a) Tx(xi,a)
p(xi’a|0a’c) - H eavcaj H Vayc5k ’
j=1 k=1

or we can allow them to covary so as to take into account their correlations a priori

Nyy XMy,

1(%4,a
p(xi;a|0aic) = H 5a{£i§, ).
=1

This, of course, introduces extra parameters and poses the same trade-offs that we discussed
in the context of Gaussian attributes in Section 2.0.1.
Categorical variables abound in text and multimedia applications. In information filter-

ing, we can use categorical variables to model document features such as ratings (how much



do people like the movie discussed in this document?) or indicator variables (does a partic-
ular object appear in the document?). In text mining tasks, typically arising in language
modelling, machine translation and information retrieval, we can use categorical variables
Ziq to model how frequently a word a appears in a document x; (Beeferman, Berger and
Lafferty 1999, Hofmann and Puzicha 1998, Nigam, McCallum, Thrun and Mitchell 2000).
Similarly, we can extend this analysis to model documents with hypertext links in the
World-Wide Web (Cohn and Hofmann 2001).

In the text scenario, we often assume that the data is available as a co-occurrence table
of word counts N, where n;, = [N]; . denotes the number of times word a appears in
document x;. For computational simplicity, we model documents by adopting the standard
bag of words model. That is, we ignore word order and other contextual information. This
is a standard naive Bayes assumption whereby, given a cluster, each word is assumed to be
independent of the remaining words. The cluster variable, therefore, models the correlation
between the words. From these assumptions, each text document is distributed according
to e -

x; % > ] e, (9)
c=1 a=1
where n,, in this case, denotes the number of words in the vocabulary (dictionary), n;. =
> o Mi,a denotes the total number of words in document x;, and dq 4 P(Zi,4|04,c) denotes
the probability of each word a in cluster ¢, with ), d,. = 1. For notational simplicity,
we have ignored the normalisation factor of the multinomial density (we assume that the
document length is class-independent).

One can extend the text model by incorporating links into the table or word counts N
(Cohn and Hofmann 2001). This information is of great relevance in the design of search
engines (Brin and Page 1998, Kleinberg 1998). In (Cohn and Hofmann 2001), the text and
links are weighted by the heuristic constants o and (1 — ). In the Bayesian framework, this

weighting is performed by the prior and can be automatically computed using the data.

2.0.3 Mixed attributes

It is natural to combine categorical and continuous attributes in multimedia applications.
We may cluster documents with words and images by combining a multinomial model for

the words and a Gaussian model for the image features (Barnard and Forsyth 2001)

» Ne Naw Nag
iid 5ni,aw _Tl 1 ! 2_1
Xi ™~ ZAC H Gw,C H |27TE‘19’C| exp |\~ 2 Xijag ™ Hag,c ag,c \ Xisag™ Hag,c
c=1 aw=1 ag=1

where, in this case, ng = ngw + neg denotes the total number of attributes. Note that the

Gaussian attributes can have different dimension.



Note that a particular attribute @ can correspond to a mixture distribution. For example,
conditionally Gaussian attributes, also known as location-scale models (Chang and Afifi
1974, Krzanowski 1983, Hunt and Jorgensen 1999, Olkin and Tate 1961), are often used
to model within-cluster associations between a discrete variable and several continuous
variables. Here, each instance of z; 4 is an ng, + 1-dimensional vector, where the first ng,
entries are drawn from the normal distribution conditionally on a categorical variable ¢
(last entry). In mathematical terms, one has z;q ~ Ny, (K c(t), Za,c(t)). The categorical

variable is assumed to be multinomially distributed.

2.1 Prior specification

Our Bayesian extension of the maximum likelihood approach is justified by the following

points

1. Ill-conditioning: In the maximum likelihood framework, the likelihood is often un-

bounded. For example, when dealing with mixtures of Gaussians, nothing prevents a
mixture component density from being assigned to a single observation. When this
happens, the variance goes to zero and the likelihood goes to infinity, thus causing
serious ill-conditioning problems. To circumvent this common problem, people either
prune components by hand or add extra tuning parameters as in ridge regression
(Marquardt and Snee 1975). From a Bayesian perspective, the introduction of a prior

reduces this problem.

2. A priori knowledge: One can use the prior to specify domain-specific knowledge (some

rules derived from an expert) or subjective preferences (favouring simpler models).

3. Regularisation: Since the data set is finite and noisy, one needs to take care of not
overfitting the data. We will show later that the prior distribution can be used to
favour simpler (smooth) models that avoid fitting the noise and, therefore, extrapolate

reasonable well.

4. Multiple overlapping copies of clusters: ML estimation often splits an underlying cat-

egory into several components with identical parameters whose component weights
Ac add up to the correct one. Bayesian estimation avoids this problem by specifying

priors that favour sparse models.

5. Starting point for more sophisticated modelling: The Bayesian perspective lays the

groundwork for more sophisticated models that enable us to, for example, achieve

robustness with respect to the specification of the prior distributions (no parameter



tuning), perform model selection, extend point estimators to average estimators and
consider different loss functions in a principled way: see for example (Andrieu, de

Freitas and Doucet 2000, Bernardo and Smith 1994, Stephens 1997).

We follow a hierarchical Bayesian strategy, where the unknown parameters ¢ = {\, u, 2
d} and the allocation variables z are regarded as being drawn from appropriate prior dis-
tributions. We often acknowledge our uncertainty about the exact form of the prior by
specifying it in terms of some unknown parameters (hyperparameters). These hyperparam-
eters are, in turn, assumed to be drawn from appropriate hyperpriors. The idea of this
hierarchical approach is that by increasing the levels of inference, we can make the higher
level priors increasingly more diffuse. That is, we avoid having to specify too many param-
eters and, therefore, are more likely to obtain results that are independent of parameter

tuning.

Figure 1: Directed probabilistic graphical model for our LSA model.

As shown in Figure 1, our hierarchical Bayesian model has the following three levels of

inference

Level I: p(x|p,2z) Hp xi|p, z;)

Level II: p(ep,zn) = Hp (0, 2ilm)

Level III: p(n)



where, in the case of mixtures with Gaussian and discrete components, the parameters are
0 = (X, 0,p,Y), and the hyperparameters are n = (a, 8, w, k,7, A). We discuss our choice

of prior and hyperprior models in the following subsections.

2.1.1 Priors on the mixing variables and categorical parameters

The allocation variables z; are assumed to be drawn from a multinomial distribution, z; ~
M. (1; A), which admits the density

Nec

plalA) = T[N,

c=1
We place a conjugate Dirichlet prior on the mixing coefficients A ~ Dy (a), having the

following density
I'(ao)
A% 1] _n, 11
T(ay)---T(an,) H (X Ae=1} (11)

c=1

pP(Ale) =

where I'(-) denotes the Gamma function and ey = ), . Similarly, we place a Dirichlet

prior distribution on each d, ., and assume that these priors are independent

Ne Mg /BaCO) N 5 1

6|ﬁ }:[1 }_[1 ﬁa c, 1 (ﬁa,c,nv) j=1 Ja’c,’j,] H{Zj Ja,e,j=1}" (12)
For example, in the text mining application, we can place a single Dirichlet prior over the
word probabilities d, . as follows

Ta

ﬁOc Ba,e—1
p(818) = Hmc iy 1L o (13)

¢ a=1

To limit the computational and storage cost, it is often reasonable to set all the hyper-

parameters to the same value 3, .., = .

2.1.2 Priors on the Gaussian parameters

When considering multivariate normal distributions, we adopt the following normal-inverse
Wishart prior (Bensmail, Celeux, Raftery and Robert 1997, Diebolt and Robert 1994,
McLachlan and Peel 2000)

Mg, ™ Nnga (wa,Ca 2a.,c/"ﬁa.,c)
2 1 ~ ana ('ra,c, Aa,c)
where W, (Ta,cs Aq,c) denotes a Wishart distribution, with density

\Ea,cl_%(“’c_"g“ - exp [_ %tr (E;iAa_,}:)]

2¥ecnan rimoe (1=ms0) | A g o o 1124 T (B (rac — L+ 1)

p(zg,i‘ra,c’ Age) =



In the above expressions, A, . is a symmetric, positive definite, ng, X ng, matrix, while K4 ¢

and r, . are regularisation parameters, with r, . > ng,. In the univariate case, the Wishart

-1
distribution reduces to a Gamma distribution Ga (T‘;’c , Ag’c) . Lastly, homoscedastic normal

components are handled simply by imposing the condition 3, . = 3, forallc € {1,...,n.}.

2.1.3 Hyperparameters, regularisation, empirical Bayes and model selection

The marginal posterior probability of the parameters p(ep, z|x) and the marginal likelihood
p(x|n) are two important distributions arising in Bayesian statistics. They are given in
terms of the following integrals (where, for notational simplicity, we have introduced the

parameter vector ¢ = (y,z))

p(lx) / p(ln, x)p(n|x)dn (16)

/ p(x|, m)p(d|m)de. (17)

p(x(n)

The marginal posterior is needed for computing parameters, such as the probability of a
particular word within a cluster given the document corpus. The marginal likelihood plays
a fundamental role in model selection. In particular, when comparing two model hypotheses
(#H1 and Hs), we need to compute the ratio of the marginal likelihoods (known as the Bayes

factor)

5. — JPxI® H1)p(¢[H1)de
12 = (x|, Ha)p(p|Ha)dp

Intuitively, this ratio provides a measure of whether the data has increased or decreased
the odds of one model with respect to the other. In our case, different model hypothesis
correspond to different sets of hyperparameters 7. Notice that the two marginals are related

via Bayes rule

p(x|¢)p(oln)

p(oPln,x) = T o) (18)
pnf) = PR, (19)

That is, the likelihood at the hyperparameter inference level becomes the normalising dis-
tribution (evidence) at the parameter inference level.

A rigorous Bayesian analysis would involve specifying the priors on the hyperparameters.
This would require that we develop computationally demanding estimation algorithms such
as variational methods or Markov chain Monte Carlo simulation. Here, we opt for more
pragmatic solutions. We either choose the hyperparameters based on our a priori prefer-
ences or use the data to estimate a point estimate of the hyperparameters. In the latter

case, we aim to find an n* that maximises p(x|n). That is, we are trying to find the most



likely model hypothesis. This approach of estimating the priors from the data is an em-
pirical Bayes method known as maximum likelihood type II (Carlin and Louis 2000, Good
1983). It is based on the assumption that p(n|x) is fairly sharply peaked around its mode

7n* and, consequently, approximations such as

p(¢lx) = p(dn*, x) (20)

are valid. We describe an EM algorithm for carrying out the maximisation of the marginal
likelihood in Section 3.3.

The Bayes Factor model selection approach has an inherent Ockham factor (regulariser).
If several hypotheses explain the data reasonably, simpler hypotheses will be preferred, even
if the prior probability does not favour the simple models (Gull 1988, Jefferys and Berger

1992, Mackay 1992). To illustrate this, consider a situation where we have to decide between

1-parameter model 2-parameter model
A A
p(@ x,Hy)
p(@ [x.H;)

. - (e H,)
! i L

(pMP

Ao

Al |

Figure 2: Comparing two models with uniform priors. The analysis shows that the Bayesian

approach will favour the simpler model as long as it explains the data.

a 1-parameter (H1) and a 2-parameter model (Hs). We choose uniform priors
1 1
Hi) =-— and He) = —5+—
p(¢| 1) Ad)* n p(¢| 2) A¢*A¢*
as shown in Figure 2. Let us assume that, around a very probable point ¢;,p, the posteriors
can be approximated as

1 1
p(duplx, Hi) = Ao and  p(duplx,Ha) = ApAG'



It follows from Bayes rule that the marginal likelihood for model H; is

p(x|H1) = p(x|pnp, H1)p(ParplH1)A

and consequently the Bayes factor is

o) | p(Klearp, ) p(#H)AG _ pl(xlarp ) A"
27 plH) ™ plbarp. o) p(@H)APAD  p(xlbasp, Ho) Db

Because A¢* > A¢, we see that the Bayes factor is the ratio of the likelihoods times a

B

factor that favours the simpler model. Even if we start with uniform distributions on the
parameters, the Bayesian approach will still favour the simpler hypothesis as long as it
explains the data.

In our mixture setting, if we initially guess more components than required, the Bayesian
method penalises the extra components. We can take this argument further by considering
the possibility of having an infinite number of components a priori. In the mixture model, if
0. is an element of @, it follows that A = (A1,..., Ay, ) may be interpreted as a probability
distribution over @, with A\, = Pr(@ = 0.) for c = 1,...,n, (Titterington, Smith and Makov
1985). If G(-) denotes the probability measure that puts mass A, at the support point 8.,

model (1) can be expressed in terms of the following Lebesgue-Stieltjes integral

p(xile) = /@ p(x;10)dG(8).

That is, we have and infinite number of components, but they are appropriately weighed by
the prior G(6). Notice that instead of sampling parameters, we could simply sample prior

distributions (Dirichlet process).

2.2 Posterior distribution

The posterior distribution p(z, ¢|x) can be obtained by multiplying the prior and likelihood
distributions and then normalising this product. This distribution is the solution to the
inference problem in Bayesian statistics. From it, we can derive any estimates of interest,
such as the mean, mode and high probability intervals. Since the data is i.i.d, the posterior

can be factorised as follows
p(z, plx) = Hp (2, olxi) = [ [ pzile, x:)p ().

Using Bayes rule, the first term on the right hand side can be expanded in terms of its

likelihood and prior

0e) ]

[ Ac Hgaﬂ)(
Ec' 1>‘c’ Ha 1p(xza|0ac’)

p(xilzi, p)p(zilp) _ ln-[

p(zi")oaxi) = p(Xz|(P)

c=1



Hence, we have z;|(p,x;) ~ My, (1;€;), where

Ac Ha 1p(xi,a|0a,c)
Zc’:l Ae Ha:l p(xi,aleu,c’)

Using this result, the posterior distribution can be expressed in the general form

Mg Ne Ng Ne A [T Xi.a|0a.c Te(2:)
plo, ) o [HA”‘” 1”H [Lp(6ucl ”HH[ st B ] (24)

a=1c=1 1=1c=1

A
gi,c =

(23)

In the following subsections, we derive expressions for the posterior in the specific cases of

categorical and Gaussian attributes.

2.2.1 Posterior for categorical attributes

When considering a categorical attribute a, we can substitute the likelihood of equation (8)

and the prior of equation (12) into equation (24) to obtain

Ne Tle Tg Ty
ctoe— EH i,a)le(2:)+Basei—1
p<z,¢|x>o<(nxz+a ) TT ] [ 6Z e ttacs=t |

c=1 c=la=1j=1

where k, £ Yoo Ig(zi) denotes the total number of documents assigned to class c. Accord-

ing to this unnormalised posterior, one draws
A(z,x, ) ~ Dy, (k1 + o1y, kn, + ap,) (26)

and for each cluster ¢ and each attribute a, one draws

da,cl(z, %, B8) ~ (Z]leza A7) + Bae,dy - Zﬂnuxm zﬂ—kﬂacnv). (27)

For example, in text mining, using the likelihood defined in terms of equation (9) and the

prior of equation (13), we have

p(z, p|x) (H )\kc+ac—1> (ln‘[ ﬁ 52 nialle(2i)+Ba,e— ) _

c=1a=1

Therefore, we may draw

0 |(Z X, a (Z n;, 1]I Zz + ,81 cy - Zni,naﬂc(zi) + 5na,c> . (29)

2.2.2 Posterior for Gaussian attributes

By multiplying the priors of equation (14) and the likelihood of equation (5) and completing

squares, one obtains the following conjugated posterior values for u and X

p’a,c'(zv X) ~ Nnga (wz,ca (kc + "ia,c)_l 2a.,c)

Bl (%) ~ Way, (ke +7ae, AL



where the new expressions for the Gaussian mean “’2, and Wishart variance parameter

c

AZ,C are
wz,c = (kcia,c + ’%a,cwa,C) (kc + Ka,c)_l
* -1 cha,c — _ ’ -1
Aa.,c = Aa,,c + kcva,c + W(xa,c - wa,c)(xa,c - wa,c) ,
c a,c
with .
_ 1 &
Xa,c = k_ Z ]Ic(zz)xz,a
€ =1
1 &
Va,c 2 - z ]Ic(zi) (Xz a xa,c) (xz a — Xa c),
¢ =1

3 Computation

The parameters of the mixture model cannot be computed analytically unless one knows
the mixture indicator variables. As a result, we have to resort to numerical methods. In
this section, we present EM algorithms (Baum, Petrie, Soules and Weiss 1970, Dempster,
Laird and Rubin 1977) to compute the ML and MAP point estimates of the mixture model.
Although the convergence rate of EM is linear and very slow if the mixture components are
very close, it is very simple, easy to program and guaranteed to converge monotonically to a
local maximum of the likelihood function p(x|¢) (Lindsay 1988, McLachlan and Peel 2000,
Redner and Walker 1984). In particular, the design of EM algorithms is straightforward
when the family of densities p(-|¢p) possesses a sufficient statistic of fixed dimension ¢(x) for
the parameters ¢. When this is the case, p(x|e) can be factored into two terms p(x|p) =
p(x)p(p|t(x)) such that p(x) is independent of ¢ and the kernel density p(¢|t(x)) only
depends on x through the sufficient statistics. Among the distributions of interest, only the
exponential families have this property. Lastly, we present an maximum likelihood type II

algorithm to estimate the hyperparameters.

3.1 Maximum likelihood estimation with the EM algorithm

After initialisation, the EM algorithm for ML estimation iterates between the following two

steps.

1. E step: Compute the expected value of the complete log-likelihood function with re-
spect to the distribution of the allocation variables QM = Ep(afx,0 0100y [l0g p(2, %[0)],
where <p(°1d) refers to the value of the parameters at the previous time step.

2. M step: Perform the following maximisation ¢(**) = arg max QV".
¢



The Q“" function can be expanded as follows (see Appendix B)

x

Zip (zi = c|xi, ) log [ Hp Xia|0a,c) ] . (33)

=1 c=1

In the E step, we have to compute p(z; = c|x;, ¢(®9)), which can be easily accomplished as

follows

p(zi =c x'|‘P(OId)) _ >‘c HZ; p(xi,a|0a,c)
22’0 lp(zl =c » X4 |90(01d)) 220:1 Aot HZil p(xi,a|0a,c’)

Hence, the E step for a model with a single categorical variable (a-th attribute) involves

p(zi = c|xi, ) =

=& (34)

computing

Ty xv, a)
Eie = AT S (35)
¢ v oLi(Xia)"
Z’ 1)‘6' H;L l(sa]c J

The corresponding M step requires that we maximise QY™ subject to the constraints

Doty A =1and 377%, dg,c,; = 1. Appendix C.1 shows how to use Lagrange multipliers to

c=1

accomplish this goal. The resulting expressions are

L e T i(%4.0)E
= Zfi,c and (5a,c,j — Zz_l njm(xz,a)fz,c. (36)
e i=1 Zi:1 i,

In the text mining example, Q“" is given by
Zzp 2 = C|Xza old) log [ Hé-nza]
i=1 c=1

Hence, under the constraint Y %, d = 1, the EM derivation for text documents yields

)\ Ta 5'”'7, ,a

a=1

n
Ec’ 1 /\C' Ha 1 a.lc;I
1
= n_ Z&i,c
T =1

S o E?:wl ni,a&i,c
a,c —
’ Zzn:wl ni,:gi,c

For Gaussian attributes, the E step is again a straightforward application of equa-

§i,c

tion (34). It is also not hard to show that by maximising the Q" function, under the
constraint that probabilities add up to one, one obtains the following update equations in

the M step (McLachlan and Peel 2000, Chapter 3)

Ha,c = Tac, 2T_

a,c,1

a,c,1 a,c,1

2(JL,c:(TacS T, TacZTa32>T ;



with

Ng
A
Ta,c,l = E gi,c
i=1
Ny
A
Ta,c,2 = E §i,cxi,a
=1

Mg
A . —
Ta,c,3 = § éz,cxz,axi,a
i=1

In the case of homoscedastic components, the update for the estimate of the common

covariance is

1 &
211 = n_ ZTa,c,lza,c (40)
T =1

where 3, . is as in equation (39). The remaining estimates stay as in the heteroscedastic

case.

3.2 Maximum a posteriori estimation with the EM algorithm

The EM formulation for MAP estimation is straightforward. One simply has to augment
the objective function in the M step, Q“", by adding to it the log prior densities. That is,
the MAP objective function is

QMAP = Ep(z|x,(p(°1d)) [logp(z7 X, (P)]
= Ep(ax,p @) [logp(z, x[p) + logp(e)]
= QY +logp(yp)

This is done in Appendix C.2. The resulting expressions for a model with a single discrete
attribute are

Z;Zl £i,c +a.—1 Z?:acl ]Ij(xi,a)fi,c + ﬁa,c,j -1

>‘ = and 6 . — 41
c Ny + Zc’ Oélc — Te a,c,j Z';l:ml ic+ Zj' /Ba,c,j’ — Ty ( )
and, in the particular case of text
5 — Z;L:ml ’ﬂz’,afi,c + ,Ba,c - 1 (42)
e Zzn:ml N Eic + Zaf Ba',c — Na
These expressions can also be derived by considering the posterior modes
k -1 k -1
Mode[)\c|z,x,a] _ c+0£c I — c+0£c I
ch (k)cl + OAC) — Ng¢ Ng — Ne + Zc’ oy,
Mode[b,j|z,x, B] = 22 1j(%i,a)Le(2i) + Base,j — 1 _ i li(ia)le(zi) + Baej — 1
>y (303 L (xia)Te(2i) + Baye,r) — mo ke =m0+ 35 Bae.g
Zz‘ n’i,a]lc(zi) + Bae— 1 . EZ ni,a]lc(z,-) + Bae—1

Modeldg c|z,x, 8] = =
el Bl = S S e L) + ) — e S melzs) + S e — e



and by replacing the cluster indicator variable with its posterior expectation. The ML

updates follow by setting the Dirichlet hyper-parameters to a uniform prior (¢ — 1 and

B —1).
Similarly, in the Gaussian case, we can compute the MAP estimates by maximising the

log-posterior to obtain

Ha,c = (Ta,c,2 + ﬁa,cwa,c) (Ta,c,l + ﬁa,c)il
2:a,c = (Ta,c,l + 7rac — nga)_l (A;i + Va,c + Ka,c(wa,c - I*"a,,c) (wa,c - I*"a,c),>
with

Ny
Va,c £ Z gi,c(xz’,a - I"‘a,c) (xi,a - /-‘a,c)l
i=1

By adopting uninformative priors with & — 0, rq . — ng, and A~! — 0, the MAP estimates

of p,y . and X, . simplify to the estimates of equation (39).

3.3 Estimating the hyperparameters

In Appendix D, we derive the M step of an EM algorithm to maximise p(n|x) in the case of
discrete distributions. It works by maximising the expected marginal log-likelihood given

by
QE = IEp(z\x,'rl) [logp(z,x|'r,)]
= Epaxm) [log / p(z,x|p)p(p|n)dy

This results on a set of equations that needs to be iterated in order to increase the lower

bound on the marginal likelihood

(new) . v (Z?:ml éi,c + OéC) B \I/(Ogc)
¢ ‘U (ng + desiae) =V (D00 )

v (Z?:ml fi,cﬂj(xi,a) + ﬁa,c,j) - \II(/Ba,c,j)
O (S0 (0 € (%ia) + Bueg) ) — ¥ (02 B )

where U(a,) £ 6%6 log () is the digamma function. It is also possible to derive faster
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Bue = Bascs

Newton-Raphson schemes as shown in Appendix D. However, one has to take care that
this algorithm does not become numerically unstable. Lastly, it is also possible to derive
estimators to compute the hyperparameters of the Gaussian components, as discussed in

(Chen 1979, Gelman, Carlin, Stern and Rubin 1995).



4 Applications

4.1 Classification and information retrieval

An important facility for image and text databases, such as the World-Wide Web, is retrieval
based on user queries. We wish to support queries based on text, image features, categorical

variables or combinations of these, as depicted in Figure 3. We also would like the queries

Typica queries

Search results

"TIGER" Search engine

—
\

Figure 3: In multimedia databases, we may want to retrieve documents using images, text

or cartoons.

to be soft in the sense that the combinations of items is taken into consideration, but
documents which do not have a given item should still be considered. Finally, we would like
the queries to be easily specified without reference to images already found. Mathematically,
the problem of probabilistic classification of a new observation (query x,) into one of the
n. populations reduces to the derivation of

p(xq|zq = c)p(zq = ¢[X1n,) 4
N _ _ ( 8)
/=1 p(xl:nz‘zq =cC )p(zq =cC |x1:nw)

p(zq = C|XQ’x1:nm) = D

That is, to computing the probability that the query belongs to cluster c. Note that the

first term in the numerator results from the following marginalisation

p(xglzg = ¢) = / p(xglzg = ¢, @)p(@l7y = C)dip (49)



4.1.1 Browsing, data visualisation and data mining

Mixture models are very suitable for studying coherence within groups. They allow us
to visualise the data and identify hidden patterns. This feature is of great benefit when
browsing image databases. Typically, setting up image databases so that their content is
easy to internalize and thus navigate is difficult, and normally involves much human input.
One of our goals in this work is to automate this task.

A key issue to browsing is whether the clusters found make sense to the user. If the user
finds the clusters coherent, then they can begin to internalize the kind of structure they
represent. Furthermore, a small portion of the cluster can be used to represent the whole,
and will accurately suggest the kinds of pictures that will be found by exploring that cluster
further.

4.1.2 Data compression

Clustering methods allow us to obtain a lower dimensional representation of the items in
the database. This may reduce storage requirements and increase the efficiency of retrieval
systems. In general, it is easier to search over a structured and lower dimensional space of

clusters than to search over all the items in the database.

4.1.3 Annotation, Illustration and Recognition

Within our framework, one can build an application that takes text selected from a docu-
ment, and suggests images to go with the text (Barnard and Forsyth 2001). This “auto-
illustrate” application is essentially a process of linking pictures to words. However, it
should be clear by symmetry that we can just as easily go the other way, and link words to
pictures. This “auto-annotate” process is very interesting for a number of reasons. First,
given an image, if we can produce reasonable words for an image feature, then we can use
existing text search infrastructure to broaden searches beyond the confines of our system.
For example, consider image search by user sketch. If the sketch contains an orange ball in
the upper right corner, the annotation model might return the words “sun” and “sunset”.
These words can, in turn, be used to search for images that match the sketch using a text
based search engine.

The association of text with images is even more interesting from a computer vision
perspective because it is a form of minimally supervised learning of semantic labels for image
features (Barnard and Forsyth 2001). As shown in Figure 4, the goal of recognition would
be to label each of the image segments reasonably. Although extreme accuracy in this task is

clearly wishful thinking, we argue that doing significantly better than chance is useful, and
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Figure 4: Annotation (left) and recognition (right) goals.

with care could be used to further bootstrap machine recognition. Doing significantly better
than chance on this general task indicates that the system has learnt some correspondences
between image components and words. This means that the system has learnt, with minimal
supervision, something about recognition. This in turn is interesting in the face of a key
vision problem, namely how to approach general recognition. Systems have been built which
are relatively effective at recognizing specific things, usually under specific circumstances.
Doing well at these tasks has generally required a lot of high quality training data. We also
use a lot of data, but it is of a much more available nature. There is no shortage of image
data with text, especially if one includes video. It seems that the information required is
contained in these data sets, and therefore looking at the recognition problem in this way

should bear fruit.

5 Experiments

In this section, we present two synthetic examples to illustrate the behaviour of the various
algorithms. We then proceed to assess the performance of the algorithms on the Corel

annotated image database.

5.1 Synthetic experiments
5.1.1 Text only example

It is possible to create artificial documents by using a multinomial model to generate them.
This way we know the exact cluster and word probabilities and can use these to assess

the performance of the various learning techniques. In this first experiment, we randomly



generated 10 documents with 4 different words (allowing for repetition) from 2 clusters.
The two clusters were selected with probabilities 0.2 and 0.8. We then tried to estimate
the parameters of the generating model using the ML, MAP and empirical Bayes (EB)
approaches. For all the algorithms, the number of clusters was assumed to be 6 and the
number of EM iterations was set to 20. In the MAP case, we set « = 1 and 8 = 2. In

the EB case, the choice of these parameters is done automatically. Figure 5 shows the

o
S5l ]
<
0 Il Il Il
1 2 3 5
1
m
Lo.5 - B
<
0 Il Il Il
1 2 3 4 5 6

Cluster labels

Figure 5: Cluster probabilities for the simple text example. Both the MAP and EB ap-

proaches recover the true cluster probabilities.

cluster probabilities (\) computed by each method. Clearly, the MAP and EB approaches
recover the generating probabilities, but the greedy maximum likelihood approach fails to
accomplish this.

It is common in the LSA and LSI literature to prune the “negligible” clusters using
heuristic procedures. These ad-hoc methods play a substantial role in the end results. A
great advantage of the Bayesian approach is that this problem is eradicated to a large
extent. If one varies a threshold over the values of A and measures how many clusters are
active, the Bayesian methods perform better as shown in Figure 6. The figure also shows
that pruning, in the ML context, is very sensitive to the value of the chosen threshold.

We can assess the performance the three algorithms on a simple retrieval task. Docu-
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Figure 6: Effective number of clusters. Both the MAP and EB approaches are fairly insen-

sitive to cluster pruning. The same is not true of the ML technique.

ments where generated using the following word probabilities

0.10 0.00 0.40 0.50
0.60 0.39 0.00 0.01

5’I‘rue =

and the same cluster probabilities as before. After the EM maximisation, we queried the
models generated by the three algorithms using a document from the training set, one from
a test set and a single word. The queries and results are shown in Table 1. Given that the
queries originate from the same cluster, the EB method is the most consistent of the three.
The ability of assigning documents from the training and test set, that were generated by
the same cluster, to the same estimated cluster can be used as a measure of performance.
We repeated the experiment 100 times to compute the number of times the models failed
to assign the test and training set documents to the same cluster. To gain some insight
into the variance of this test, we repeated it 10 times. The results obtained are shown in
Table 2. They confirm that the Bayesian approaches are more reliable.

One of the problems with the ML approach is that it creates multiple repetitions of the
same mixture component so that the mixture weights of these repetitions add up, closely,
to the true mixture weight. The Bayesian schemes on the other hand place irrelevant

mixture components in regions of low probability. This is illustrated by means of an example



Query ML MAP EB

(2-12)| 0.050.00 0.38 0.33 0.21 0.04 | 0.00 0.07 0.00 0.01 0.03 0.90 | 0.00 0.99 0.00 0.00 0.01 0.00
(--32) | 0.490.00 0.078 0.07 0.04 0.32 | 0.00 0.02 0.00 0.01 0.00 0.97 | 0.00 1.00 0.00 0.00 0.00 0.00
(---1) 0.13 0.00 0.32 0.28 0.18 0.09 | 0.00 0.08 0.00 0.02 0.05 0.85 | 0.00 0.96 0.00 0.00 0.04 0.00

Table 1: The table shows the probabilities of cluster membership of a document from the
training set (top), a document from a test set (middle) and a single word. The three

documents belong to the same cluster. The EB and MAP methods outperform the ML

approach.
A ML | MAP | EB
(0.2 0.8) | Mean 38 5 3
Variance | 8 1 1
(0.5 0.5) | Mean 28 4 3
Variance | 6 2 1

Table 2: Number of times the algorithms fail to assign documents in the training and test
set (that originated from the same cluster in the generating model) to the same cluster in
the learnt models. The table shows results for two choices of the mixing proportions in the

generative model.
involving Gaussian distributions and text in the following section.

5.1.2 Text and arbitrary Gaussian features demo

In this example we cluster documents with three attributes: text with 4 words in the vo-
cabulary, a univariate Gaussian and a bivariate Gaussian. Fifty documents were generated
from two clusters with probability 0.5 each. We used the same word probabilities as in the
previous experiment and set the two generating Gaussians in the one-dimensional case to
N(0,0.01) and N (1,0.05). In the two-dimensional case, we set the two Gaussian clusters to
N([0.5 0.5),0.01I) and N([2 2]',0.05I). The hypothesized number of clusters was chosen
to be 6, while the number of EM iterations was fixed to 10. We chose the same discrete
prior parameters as before and selected the Gaussian hyperparameters as follows: k, . = 1,
Tae = 0, Wae = Ta,c,zTa_,cl,1 and A, . = ((Ta,c,g — Ta_,cl,1Ta,c,2Tfl,c,2) Ta_,cl,l)_l. We copied
these values from (Bensmail et al. 1997) as they seem ensure that the estimates are rela-

tively insensitive to reasonable changes in the prior. The EB method in this experiment

was only applied to estimate the hyperparameters c.



Figure 7 shows the contour plot of the bivariate Gaussian clusters and the means of the
six clusters computed by the three algorithms. Note that the the Bayesian approaches place

some of the mixture components in a region of low probability. On the other hand, the ML

Gaussian attribute 2
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Figure 7: Contour plots of the bivariate attribute in the second synthetic example. The
figure also shows means of the cluster components found with the ML, MAP and EB

approaches.

approach places the mixture components at the same location. It still works because the
mixture components’ weights add up to the right value. It is, however, somehow wasteful

and unsatisfactory.

5.2 Large image and text database

We performed several experiments on the Corel image database. This database contains
images annotated with approximately 3 to 5 keywords each. The images on each of the
CDs provided by Corel are samples from a particular theme. This makes this database very
suitable for testing our algorithms.

We clustered the documents (each corresponding to one image and its keywords) using
3 different sets of attributes: text only, image features only and combined text and images.
The image features were derived from image histograms. Specifically, the image histogram

is projected onto a lower dimensional space of histograms. This space is found by PCA



on the space of image histograms for a much larger set of images: see Blobworld (Belongie
et al. 1997) for more details, but note that, in this example, the entire image is treated
as one blob and the histogram features (30 PCA components) are for the entire image. It
is, however, possible to use hierarchical models to treat the image as a mixture of blobs
(Barnard and Forsyth 2001).

We found that the MAP and EB approaches lead to more parsimonious representations

in each of the three testing scenarios?

. For example, when clustering the contents of the
first 10 CDs of the database (1000 documents), assuming the number of clusters to be 20,

the three algorithms yielded the cluster probabilities, A, shown in Figure 8. Clearly, the
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Figure 8: Cluster probabilities in the Corel example.

Bayesian schemes find a number of themes that is in more accordance with the human Corel
choice. In addition, the clusters are more coherent.

One of the advantages of combining image and text attributes in the model is that
people relate to images using both semantic and visual content. For example, if we want
pictures of tigers on light green grasslands, we might do a search with the word “tiger” and
a light grassland picture. This will hopefully not return images of tigers in dark places.
Figure 9 shows an example where clustering images from CDs containing tigers, using text

and image features, results in the two separate, coherent clusters.

%Since it is difficult to present these results in this paper format, we have made them available at

http://elib.CS.Berkeley.EDU/papers/clustering/bayesian/index.html.



Figure 9: Result of clustering documents using both images and keywords. The two example
clusters have obvious text and image semantics. That is, at the text level both groups relate
to the word “tiger” and at the image level there are tigers on light green grasslands and

tigers in dark places.
Results
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Figure 10: Results using text query with conjunction of words that does not appear in the

database. The model generalises to a reasonable extent.

We also performed some retrieval experiments using the learnt models. Figure 11 shows
that for a query consisting of a conjunction of words that does not appear in the database,

we are able to retrieve images where it is clear that the models are generalising reasonably.



Query

SUN TREE PLAIN SKY

SUNWATERBOATCLOUDS SUNLAND BOATS WATER SUN SEA WAVES SKY SUNCLOUDSLAND SKY SUN CLOUDS bay SKY

SUN leke PEOPLE BOAT SUN WATER TREES §RY SUN SEA WAVES §KY SUNMOUNTAIN CITY
WATER

Figure 11: Results using image query.

Results
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Arig SUN CLOUDS SEA SKY

SUNWATER TREEShils ~ SUN SEA WAVES CLOUDS  SUN CLOUDS WATER ships SUN CLOUDS SKY glow SUN CLOUDS BUILDINGS
WATER

Figure 12: Results using image query of Figure 11 with added text. The model still returns

images of sunsets, but this time there are trees.

Figures 10 and 12 show that the querying system works well and that by adding words to

an image we can bias the results in useful ways.



6 Conclusions

We have shown that we can improve probabilistic semantic modelling by adopting a Bayesian
approach. In particular, one is able to obtain more parsimonious and coherent models. We

are currently exploring many modelling, algorithmic, application, and validation extensions.
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A Notation

Specific meanings

n,  Number of attributes.

n.  Number of clusters.

nge  Number of documents.

n,  Number of discrete values.

n; o, Number of times word a appears in document 3.
n;. Number of words in document .

A Mixture coefficients.

z Mixture indicator variables.

d Parameters of multinomial components.

u Mean of Gaussian components.
b))

Covariance of Gaussian components.



Symbols

Z1:t
Z_j
Aij

Al:p,l:q,l:r

A
Stacked vector z1.y = (21, ..o, 251, 25 Zjg1s e 2t)'

Vector with j-th component missing z_; 2 (21, ey Zj—1y Zjtly nemy Zk)

Entry of the matrix A in the ** row and j** column.
Three-dimensional matrix of size p X g X 7.

Identity matrix of dimension n X n.

Matrix of ones of dimension n X n.

Matrix of zeros of dimension n X mn.

Euclidean n-dimensional space.

Distribution of z.

Deunsity of z.

Conditional distribution of z given y.

Joint distribution of z and y.

z is distributed according to p (dz).

Operators and functions

A
A-1
tr(A)
A
diag(z)
Ir(z)
b (d)
E(z)
var(z)
exp(-)
()
u()
log(*)
inf, sup
arg mzin

arg max
z

Transpose of matrix A.

Inverse of matrix A.

Trace of matrix A.

Determinant of matrix A.

Matrix with entries z in its diagonal.
Indicator function of the set F (1 if z €E, 0 otherwise).
Dirac delta function (impulse function).
Expectation of the random variable z.
Variance of the random variable z.
Exponential function.

Gamma, function.

Digamma function.

Logarithmic function of base e (In).
Extrema with respect to an integer value.
Extrema with respect to a real value.

The argument z that minimises the operand.

The argument z that maximises the operand.

!



Standard probability distributions

Bernoulli Br(z|a)

Beta Be(z|a, B)
Multinomial Mi(z|n, o)
Dirichlet Dy (z|cx)
Gaussian N (z|p, %)
Wishart Wy (2*1|r, A)
Gamma Ga (z|a, B)
Inverse Gamma ZG (z|la, B)
Poisson Pn (z|A)
Uniform Ua(z)

a?(1— )=y 1y (2)

kBl 227 (1 = 2)P Mg 1y (2)

(Z1 K k) Hf 105?1']12 2;=n

r a; _
I_EEF az) HZ 1zaz IHE z;=1

205" exp (—3 (2 — p) =71 (z — p))
2|7 30D exp[- Ltr(m-1A1)]
27k k(K| A |27 TF, T(L(r—1+1))

Q

a2 exp (=B2) Tp 1o0) (2)
a2 exp (=B/2) Ip 4o0) (2)
A% exp(— NI (2)

UA dz] - [4(z)

B Expanding the Q™" Function

The Q™" function can be expanded as follows

Q™ = Eyyjx,pt) {10% [

Te
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Ng Ne
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— e
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c1=1 cn j=1

This expression can be greatly simplified by noticing that

>

c1=1

S
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c1=1 ci—1=1ci1=1
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Cng =1 j=1,j#
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=L [e=1

= p(z = c|xi, )



Consequently, the Q"™ function simplifies to

T

Zip Zz—c|xzj (o1d) ]og[ Hp xza‘aac]

i=1 c=1

C M Step for Categorical Attributes

C.1 ML estimates

In the M step for categorical variables, we need to maximise Q“" subject to the constraints
YoreiAe=1and 2?21 q,c,; = 1. To compute A, we introduce Lagrange multipliers, y, and
maximise the Lagrangian

L:QML+U<1_ZC)\C)

c=1

by differentiating with respect to A\. and equating to zero. That is, we want to compute

{iipzz—c\xu (o1a) log[ prza|0ac +u<1—z,\>} - 0

i=1 ¢=1
Zp(zi=0|xz~,<p(°‘d)))\——u =0

i=1 ¢

Summing both sides over ¢ = 1, ..., n., we get 4 = n,. Therefore, the estimate for A., with

€i,c = p(zz = C‘Xi, ‘P(Old))a is
1 &
= n_ Z fi,c
T =1
When the mixture components are discrete, we need to compute

Ny  Te Ng Ty Ty

ol xza
553 ptes = e o [ T T4 |+ (1= Yot ) § = 0
ac,j i=1 c=1 a=1j=1 j=1
Ng
(o1d) 1
Zp(zi =cx;, ¢ )Hj(xi,a)r—/vt =0
i=1 a,c,J

Summing both sides over j =1,...,n,, we get u = > % p(z = c[x;, ) and, hence, the

estimate of 4 ; is
5 = > im Ti(xia) e
a,cC. -
' Z?:ml gi,c

C.2 MAP estimates

The unconstrained objective function is

Q¥ = QY +logp(yp)



Hence, to compute )\, we proceed as in the previous section by differentiating the augmented

Lagrangian with respect to A, and equating to zero

{izc:p ZZ—C|XZ ‘POld) IOg [ prza|0ac

1=1 c=1

+u<1—2/\) +
@
log | =7 =L Age~! =0
[ c1PO‘c 1;[

n
2 1
(p(zz- = cxi, ) + o — 1) Tk =0
i=1 ¢
Summing both sides over ¢ = 1,...,n., we get u = ngy —n. + ) . a.. Hence, the estimate

for . is
2?21 €i,c +aoa.—1
Ng + D p b — 1

Similarly, the constrained maximisation for d, . ; requires that we compute

c =

Ny T Ta T "
ZZp zi = c|xi, ) log | A, HH(SaJC);“’ + 1 1—25”,]- +
a 1 i=1 c=1 a=1j=1 j=1
re 22 T Baej) 13 Ba.c.i—1
oo [T P | | —
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c=1a=1 F 'Ba c’]) Jj=1
Mg 1
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e Zz 1&iet Z Ba N L (27}

D M Step for the Categorical Hyperparameters

To compute the hyperparameters, one has to maximise the expected marginal log-likelihood

as follows

Q% = By [logp(z,x|n)]

By 2/, 010 [log / p(z, x|p)p(pln)de



For instance, we can compute ¢, by maximising

Ng Ne Ta Le(zi) (ch o
Qg = Ep( |X ‘P(OId)) log/ H H (AC H p(xi,a|0a’c)) [ 'flc Fl a: H Aac—l
a=1

i=1c=1 c=1

Nc
87
X Ep(z|x,¢(o1d)){log e I‘l ¢ /H)\kc-l—oec 1dA}

B P(Z ac) T10e (ke + o)
= Bumptsn) {18 I125, ) I §zl<kc+ac))}

L ae rr [ ke + ac
= Byagpon) {1°gr< ey T e )}

_ 0 P(chlac) - P(Zz 1 Zc+a6)
= losg 5y =50

c=1

= logT (Z ac> —logT (nw + i oec) + i <logI‘ (i &ic+ ac) —log I‘(ac)>
c=1 c=1 =1

c=1

The derivative of Qg with respect to a, yields
a Ne Ne Ny
g, = BTQE =T (Z ac> - (nm + Zac> + U (Zfi,c + ac) — U(a,)
¢ c=1 c=1 i=1

where U(a.) £ %log ['(a.) is the digamma function. We may solve these fixed point

equations for a, using the following iterative updates (Minka 2000)

e — ac v (ZM1 §ie + ) — V(o)
¢ W (ng + Zc 1 ac) — (Z?il ac)

It is also possible to employ Newton-Raphson schemes (Narayanan 1991, Ronning 1989).

9? o

This requires that we compute the Hessian matrix as follows
- aacaak @

v’ (i ac) - (nw + i_:: ac> + diag (‘P'(i &ie + ac> - \IJ'(ac)>

where U/(-) is the trigamma function (second derivative). The Newton-Raphson algorithm

= 1nc XN

proceeds as follows
a(new) — a(old) + Hflg

1

where, for efficiency, H * can be expanded in terms of the matrix inversion lemma.



A similar estimate for .. ; can be obtained by first defining the objective function

E Ng Tc ](xza &iye Nie Mg P ﬁa c,]) Baey1
Qs — e [ T (A TTTT5 ) |[TET e T o o
1=1c=1 a=1j=1 c=1la=1 I/ =1
 log ﬁﬁr 1/6(16,] /H Zl %) &ivellj(Xi,0)+Bae,i — Y45

c=1a=1 an F 5‘1 CaJ v

LR (E 1 Bae,j) M P52 Giellj(Xia) + Basc,s)
_ 1 i= )
Z Z 0g F nv Zz L& c]I (xz,a) + ,Ba,c,j)) (/8(1,0,])

i=1

The derivative of QE with respect to (3, ; yields

_ 0 B
ga7c7.7 - aﬂa,c,j Qﬂ
=¥ Z /Ba,c,j Z (Z Ez c xz a) + ,Ba C,J) + 11’(2 Ei,c]lj(xi,a) + ﬂa,c,j) - IIJ(/BG,CJ)
Jj=1 7j=1 \i=1 i=1
The corresponding Hessian matrix is
Oa0ay ¢
Ty Ty Ty
= Lnoxne | U | D Baes| — ¥ (Z &-,cﬂj(xi,a)> + Base,j
=1 i=1 \i=
Ng Nz
i (V5556 s ) - w00
=1 =1

The fixed point updates follow from the previous case.
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