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Abstract

This paper shows how range-flow can help to estimate
the elastic constants of complete objects. In our frame-
work, the object is deformed actively by a robotic device
pushing into the object. The robot senses the contact force
and surface displacement at the point of contact. This con-
tact object behavior alone is not sufficient to estimate elastic
constants. The displacement of the object’s non-contacted
surface needs to be taken into account. This paper presents
a method to estimate surface displacement from range-flow
calculated with trinocular stereo imagery. The observed ob-
ject behavior allows us to estimate the linear elastic mate-
rial constants of the object. To this end we will introduce
the boundary element method as a modeling tool for de-
formable objects in 3D imaging. The boundary element
method is a full discrete continuum mechanics model.

1 Introduction

Realistic deformation of virtual objects are required in
medical training simulators [5], in haptic interfaces for vir-
tual worlds [6] and in design of robotic tasks involving soft
materials [14, 15]. Biomechanical simulators can help to
predict and plan some surgical procedures [8]. Many tech-
niques have evolved over the years to model deformations
for graphical rendering [11]. These techniques vary from
full continuum models for elastic materials, include mass-
spring particle systems to very ad-hoc methods. But even
the most elaborate deformation model will be only as real-
istic as the match between simulated and physical material
properties. The measurement of these material properties
is commonly done in a “material oriented” way, e.g., by
destructive testing in physical and mechanical testing lab-

oratories. In contrast, this paper addresses the issue of ac-
quiring elastic properties of complete objects.

In recent years, some solutions to the real-time simula-
tion of linear elastic objects have been presented [13, 5]. In
particular, James and Pai [13] have applied the boundary el-
ement method in interactive visual and haptics simulation of
soft objects. However, the acquisition of deformable mod-
els for real objects is a major challenge. This paper shows
how the boundary element method allows us to construct
such models given the object geometry, a displacement and
force field for the object. We measure the displacement field
over the surface of the object by range-flow.

Range-flow is the task of matching depth information
over time. The range flow constraint equation [12, 26] is
the three-dimensional equivalent of the optical flow equa-
tion. Estimating range-flow is an even harder problem than
optical flow because of the increased dimensionality. Nev-
ertheless, there has been recent progress in range flow es-
timation [26, 24, 25], sometimes also referred to as scene
flow [25].

Deformable models have been applied in computer vi-
sion in order to regularize the solution to shape and mo-
tion estimation of non-rigidly deforming objects [17, 20].
The role of the (physics-based) deformable model in these
works is to facilitate the vision task at hand, and not to
model the physical deformation at all. Typically, the forces
in a regularization framework are associated with image
data, while the elastic behavior of the model regularizes the
influence of these noisy data onto the deformable model.

Our approach to calculating range-flow is a combination
of simultaneous 2D-optical flow with stereo-depth informa-
tion. This approach has been followed before [25, 27, 23],
however, in our approach we utilize the redundancy of im-
agery to reduce the error in the very noise-sensitive optical
flow. In this paper, we do not employ the boundary ele-
ment method to regularize range-flow, rather we follow a
purely local approach. We rely on the high quality cali-



bration of a commercial trinocular stereo system1. Because
of the choice of stereo vision and optical flow we require
objects to have sufficient visual texture. (Sufficient texture
is texture which leads to an unique peak in the area-based
correlation at the correct disparity in the stereo matching or
at the correct location in the search area for optical flow.)
We felt this to be of no great inconvenience since we are
dealing with a (robotics) laboratory environment and most
objects have either sufficient visual texture or visual texture
can be added trivially. Also note that the deformable model
derived with the boundary element method is independent
of the method for calculating range-flow.

This paper outlines our general approach in Section 2.
The equations for the deformable model are summarized
in Section 3. Section 4 states our solution to the range-
flow task and provide some evaluation of its performance.
Finally, Section 5 gives results for a geometrically simple
linear-elastic object and compares it with a simple standard
destructive test.

2 Outline of Our Approach

The initial step in our approach is the acquisition of a
geometric object model. The boundary element model uti-
lized in our approach requires a watertight triangular mesh
model. For some objects this model maybe readily avail-
able while for other objects such a triangular mesh will
have to be generated from range measurements. Our ac-
tive measurement facility, ACME [19, 18], allows us to
acquire stereo range-data from varying viewpoints. The
range-data is registered in object coordinates. The data may
then be used directly in a surface reconstruction algorithm.
Currently we employ software from the National Research
Council of Canada to that end [22].

The ACME robotic facility allows us to position a rigid
probe on the surface of the object. The probe is driven into
the surface applying a force which is recorded together with
the position of the probe. The global deformation of the ob-
ject is observed with stereo-imagery from a calibrated view-
point. This viewpoint can be either pre-calibrated with an
optical target or calibrated on the fly with respect to the ob-
ject, given that the object geometry constrains the registra-
tion task sufficiently.

We assume that the object is well approximated as a
linear-elastic homogeneous isotropic material. The knowl-
edge of the traction at the probe tip and displacements of
at least two vertices are enough to estimate shear modu-
lus and Poisson’s ratio for the material of the object. In
practice however, measurements are noisy and we apply a
least squares estimation using all the vertices whose dis-
placements we can observe.

1Our stereo-system is a Color-Triclops produced by Point Grey Re-
search, Vancouver, Canada. (http:www.ptgrey.com)

3 Deformable Model

The deformable model is alinear elastic mapbetween
surface displacementu and surface tractionp (force per
area). Thelinear elastic mapconsists of the Green’s
functions of the boundary value problem associated with
the object’s elasto-static behavior. The linear elastic map
can be derived from the boundary integral equation [7, 3].
We employ the well-known triangular linear boundary ele-
ments [9, 4] and choose the shear modulusγ and Poisson’s
ratioν to represent the elastic constants of the material.

This section will quickly review the boundary element
method for linear elasto-static bodies and show how it can
be employed to estimate material properties. The notation
follows the Einstein summation convention. All formulae
are for the three-dimensional case with indicesi, j andk
ranging from1 to3. The indices are separated by comma for
partial derivatives (e.g.ui,j = ∂ui

∂xj
). Matrices are denoted

with bold capital letters while vectors are denoted with bold
lower-case letters.

Equation 1 is the boundary integral equation written as
a weighted residual statement over surfaceΓ of the elastic
body. The location of the load application isξ, while the
response location isχ and the distance between them isr
(body forces, e.g., gravity, are ignored here but are straight-
forward to include). Coordinatei is associated with the
point load, whilej is the coordinate of the response. The
weights of the equations, the termsp∗ij(ξ, χ) andu∗ij(ξ, χ),
are Kelvin’s fundamental solution for the 3-D Navier’s
equations for an infinite body with the same material prop-
erties subjected to an impulse point load. The fundamental
solution can be separated into terms only dependent on ge-
ometry and terms only dependent on material constants (see
Equation 2 and Equation 3; the surface normal is denoted
by n).

∫
Γ

u∗ij(ξ, χ)pj(χ)dΓ(χ) =

cij(ξ)uj(ξ) +
∫

Γ

p∗ij(ξ, χ)uj(χ)dΓ(χ) (1)

p∗ij(ξ, χ) =

1− 2ν

1− ν

r,inj − r,jni − δij
∂r
∂n

8πr2

− 1
1− ν

3r,ir,j
∂r
∂n

8πr2
(2)

u∗ij(ξ, χ) =
3− 4ν

γ(1− ν)
δij

16πr
+

1
γ(1− ν)

r,ir,j

16πr
. (3)

Here theKroneckerdelta,δij = 1 if i = j; 0 otherwise.
The boundary integral equation (Equation 1) can be de-

rived from the static equilibrium conditionσjk,j + bk = 0



which states that the stress tensor derivativesσjk,j (plus
possibly some external forcesbj , e.g. gravity) have to be
zero. The equilibrium condition is valid throughout the
body of an object giving rise to a volume integral. This
volume integral can be taken to the boundary through inte-
gration by parts (Green’s theorem). Details on the deriva-
tion of the boundary integral equation can be found in many
textbooks including [3, 9, 4].

3.1 Numerical evaluation

The integrals in Equation 1 can be numerically evalu-
ated over linear triangular boundary elements with Gaussian
quadrature. Linear triangular boundary elements approx-
imate an object’s surface by a triangular mesh and restrict
the solution for the displacement and traction to linear shape
functions over the triangular element.

In the following the traction vector field and the displace-
ment fundamental solution tensor are written asp(ξ) and
u∗(ξ, χ) respectively. The left-hand side of Equation 1 at a
mesh nodel is

(Gp)l =
∫

Γ

u∗(ξl, χ)p(χ)dΓ(χ).

The traction vector fieldp(ξ) over the boundary is approx-
imated with shape functionsp(χ) =

∑N
i=1 ϕ̂ i(χ)pi where

pi are the traction values at a node. Individual3 × 3 block
elementsGlm of the fundamental solution matrix are

Glm =
∫

Γ

u∗(ξl, χ)ϕ̂ m(χ)dΓ(χ).

The integrals are numerically evaluated by Gaussian
quadrature. The computation is performed by a change to
local baricentric coordinates for each element. The dis-
placement vector fieldu(ξ) and the right-hand side are
omitted here but are dealt with correspondingly. The dis-
cretized boundary integral equation is the matrix equation
Hu = Gp. For a mesh withN nodes, the matricesG and
H are of size3N × 3N . The displacement vector at the
nodesu and the traction vector at the nodesp are of size
3N .

Separating the geometric and material properties terms
as in Equation 2 and Equation 3, the overall matrix equation
of the boundary element formulation is Equation 4.

[
1− 2ν

1− ν
HA +

1
1− ν

HB + C
]
u

=
[

3− 4ν

γ(1− ν)
GA +

1
γ(1− ν)

GB

]
p (4)

with Cii = (1− δij)
[
1− 2ν

1− ν
HAij +

1
1− ν

HBij

]

Equation 4 allows for the estimation of material prop-
erties. The equation has to be rearranged for the specific
boundary condition at hand. The prescribed traction and
displacements are collected inx while the right-hand side
is the complementary set of tractions and displacements.
Exchanging elements in vectorsp andu to yield x andb
requires exchanging columns in matricesG andH to yield
G̃ andH̃. The modified equatioñHx = G̃b is solved with
the Green’s function matrixA. The matrixA in Equation 5
is what we refer to as thelinear elastic map. It is the prod-
uct of the inverse matrix associated with vector elements in
b times the matrix associated with vector elements inx.

G̃−1H̃x = Ax = b (5)

3.2 Estimation of Elastic Constants

Equation 4 and Equation 5 form the basis for our estima-
tion technique. We select a boundary configuration in which
the supporting surface is fixed, i.e., a displacement of zero
is described and the free surface has its traction prescribed.
This is the vectorx. In a probing step we apply some
non-zero traction close to some vertex of the surface. The
prescribed traction changes but not the boundary configura-
tion which allows us to combine several probings. For each
probing, we observe some part of right-hand-side vectorb.
The observation at the probing location is the local mea-
surement made with the robotic arm (Section 5) while the
global deformation is observed by range-flow (Section 4).

We employ an iterative method to solve for shear mod-
ulusγ and Poisson’s ratioν. First, the surface integrals in
Equation 4 are calculated. This is a very expensive com-
putation (O(TNM) with T the number of triangles,N the
number of vertices andM the number of integration points),
however, it needs to be done only once for a given triangular
mesh. (It also has to be performed in any forward problem,
e.g., when rendering the elastic response of the object.) We
pick an initial guess for the unknownsγ andν and calculate
A. The objective functionF = (α(Ax− b))2 is evalu-
ated (α selects the observations made). We used the Matlab
functionfmins, an implementation of the Nelder-Mead sim-
plex method, for the minimization task at hand. However,
note that simpler methods should be sufficient because of
the low dimensionality of the problem, the limited range of
possible values for Poisson’s ratioν and the shear modulus
γ acting like a scale factor. The single deformation objec-
tive function can be trivially expanded to multiple deforma-
tion in the same configuration. The vectorsx1 · · ·xn and
b1 · · ·bn are stacked vertically to formX andB, respec-
tively. The1×N observation vectorsα1 · · ·αn are stacked
horizontally to form matrixαM.
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Figure 1. Range-flow processing: overview at
T=0 (initialization) and T=1

Range-flow shown is at T=4; at T=1 there is no
deformation since the probe is only just touching the

object’s surface.

We have developed a novel surface deformation mea-
surement technique utilizing a trinocular stereo vision sys-
tem. The technique tracks visual surface texture in three
spatial dimensions, i.e., it calculates the range-flow of the
deformable object’s surface. The basic idea is to utilize the
redundancy in the imagery provided by a trinocular stereo-
system to increase robustness. We calculate optical flow
with an area-based matching technique in all three cameras
of the stereo-system. The disparity information is utilized to
combine the optical flow results, as well as to add the third
spatial dimension. In our approach, area-based matching is
based on the normalized cross-correlation. We selected the
normalized cross-correlation because of reports of its good
performance in area-based matching [10] and because of its
linearity with respect to pixel location. An overview of the
range-flow calculation is shown in Figure 1. A geometric
model of the undeformed surface of the object under test is
either assumed known or acquired beforehand. This geo-
metric model and the tracking capabilities of the system al-

low to segment the three-dimensional flow into surface flow
and non-surface flow. In the following, we provide more
detail on combining the optical flow results from the three
cameras.

The images from stereo cameras are rectified such that
the epipolar lines are aligned with the image axes. The re-
sult of the stereo processing with thePoint Grey Research
Triclops library is a triplet of row, column and subpixel dis-
parity at each valid pixel in the reference image. A pixel
is valid in our algorithm if the stereo processing produces a
result and if the corresponding 3-D point is on the surface
of the undeformed object. In order to decide if a point is on
the surface, the 3D point-cloud is segmented and registered
with the triangular mesh model of the object. We track the
valid pixels in the reference image. The optical flow cor-
relation scores are combined with the aid of stereo dispari-
ties. The from-pixel and to-pixel in the reference image are
mapped with sub-pixel disparities into the stereo images,
then the correlation between these locations is calculated
(see Figure 1). Equation 6 expresses the normalized cross
correlation of two image windows at column sub-pixel lo-
cation given linear geometric image intensity interpolation.
The window size is2∗n+1. The correlation is specified for
pixel a at location rowra and columnca plusp = 0 . . . 1
and pixel b at locationrb andcb plusq = 0 . . . 1.

Assigning a confidence measure for optical flow results
has been identified as a hard problem [1]. The integration
of the results from all three stereo cameras into the refer-
ence camera frame allows us to reject outliers, especially
if they are generated by viewpoint dependent effects (e.g.,
highlights) or the flow result is unstable because of the am-
biguous correlation results (lack of texture, multiple mo-
tions, etc.). We apply a voting scheme and accept the result
only if all cameras are in good accordance, i.e. the opti-
cal flow results from all stereo images have to be in the 8-
neighborhood of the maximum correlation score. Our vot-
ing scheme rejects outliers rather than trying to find the cor-
rect flow. The robust optical flow techniques of [2] (multiple
motions within an aperture) or the SSD-based regularization
method of [16] (minimizing the effect of discretization er-
rors in the flow) could be combined without our technique
and should lead to denser results.

Because of the difficulty of obtaining ground-truth for
surface deformation, we evaluated our range flow algorithm
by tracking a moving rigid test object. We evaluated our
method with an object translating and rotating. In Fig-
ure 2 the estimated optical and range-flow for the test object
translating and rotating are shown.

Table 1 compares our range-flow result to the correct
translational motion. The correct motion is obtained from
reading back encoder values of high-precision linear posi-
tioning devices. The table shows the result for tracking the
object over eight time steps plus one time step for initializa-



Icorr(ra, ca, rb, cb) =
n∑

l=−n

n∑
k=−n

[
(Ira+l,ca+k − Īra,ca)(Irb+l,cb+k − Īrb,cb

)
]

CC(ra, ca, rb, cb, p, q) = (1− p)(1− q)Icorr(ra, ca, rb, cb) + (1− p)qIcorr(ra, ca, rb, cb) . . .

+p(1− q)Icorr(ra, ca+1, rb, cb) + pqIcorr(ra, ca + 1, rb, cb+1)
SCC(ra, ca, p) = ((1− p)(1 − p)Icorr(ra, ca, ra, ca) + 2.0(1− p)pIcorr(ra, ca, ra, ca+1) . . .

+ppIcorr(ra, ca+1, ra, ca+1)

NCC(ra, ca, rb, cb, p, q) =
√

CC(ra, ca, rb, cb, p, q)2/SCC(ra, ca, p)/SCC(rb, cb, q) (6)

tion. The tracking is initialized only with surface points in
the initialization time step. Therefore, the number of points
tracked decreases with each time step. The correlation win-
dow size is7x7 pixels with a search range of13x13 pixels.
The motion between steps is2.5mm. We report the true
and estimated values for the orientation and length of the
3D range-flow with respect to the initialization step. The
reference camera of the stereo-head is81.0cm away from
the center of the object coordinate frame (which is a typical
distance in our system to observe deformation from). Our
method produces results for translation to about1

2 millime-
ter accuracy which is sufficient for soft deformation. The
motion to the left-rear in the reference image (Table 1 (a))
produces better results than the motion to the rear-right (Ta-
ble 1 (b)). We suspect this to be due to the specific dominant
orientation of the intensity texture of the test object.

Table 2 summarizes the results for vertex displacement
estimation, again for the same translation test and for a ro-
tation test conducted in the same way. The rotation in each
step is2.0◦ to a total The vertex displacement is estimated
as the weighted average of filtered motion close to a vertex
(within 1cm). The motions are filtered by least median es-
timation followed by≥ 3σ outlier rejection. The remaining
motion is weighted averaged with1/(1 + d) based on the
distanced from the node. The error reflects both the error
in the vertex displacement as well as an error in the ini-
tial registration of the surface. The error in the orientation
is also due to the missing sub-pixel optical flow estimation.
This can be seen from the improvement in orientation as the
motion vectors become larger (especially in the orientation
test). We have not yet implemented a sub-pixel step after
the voting in the range-flow calculation, we suspect this to
improve the orientation results significantly.

Finally, Figure 3 shows the range-flow estimated for a
deforming object, a toy tiger.

5 Estimation Results

This section presents the results of our method on a test
object: a half of a soft (NerfTM) ball. The estimation re-

sults for the half ball are summarized in Table 3. We will
give further details on the estimation below. The linear elas-
tic model is a good approximation for the ball and the model
fitting is successful. The estimated parametersν and γ,
when used in simulation, produce results which closely re-
semble the recorded range-flow (see Figure 4).

The results in Table 3 are from measured displacements
by range-flow and displacement and force at a probed ver-
tex. The force at a probed vertex has to be converted into
surface traction for the estimation. The observed force has
to satisfyf =

∫
Ω
(p). The surface is represented as a trian-

gular mesh and the shape functions for the tractions are lin-
ear. The force has to be the sum over all integrated traction
shape-function on elements connected to the probed vertex,
i.e.fi =

∑
j

1
6 (p1j

i + p2j
i + p3j

i ) |J |.
Table 3 also contains a comparison with a destructive

test. The test is a simple compression test of a cylindi-
cal material sample. The material sample is compressed
measuring force and the reduction in length of the cylin-
der. In practice, this works well for metal samples in com-
mon testing machines, however for soft elastic material it
is far less precise. For our test object, the object behav-
ior is greatly influenced by a membrane-like layer over its
surface, i.e. the cylinder cut will have to have that mem-
brane intact. For a compressed cylindical material piece the
Young modulus isE = Fl

Aδl
, whereF is the compression

force,l andδl is the height and the change in height of the
cylinder, respectively, andA the area of its circular end (see
e.g. [21]). For homogeneous isotropic linear-elastic ma-
terial, the relation between shear modulusγ and Young’s
modulusE is γ = E

2(1+ν) . This allows for the compar-
ison in table 3, which shows an excellent correspondence
between the material-based compression test and our com-
plete object-based method. The variation of the estimates
between single probes is mostly likely due to the misalign-
ment of the probe with respect to the surface. Combining
the measurement in one estimation step averages out the
noise nicely.

A visual comparison between the measured displace-
ment and the simulated displacement for a probing is shown



Angle [deg] Length[cm]
Mean σ Mean σ Encoder Command

67.0081 10.2836 0.2678 0.0340 0.2355 0.2500
64.7748 5.7253 0.5396 0.0402 0.4864 0.5000
64.8529 4.1890 0.8113 0.0464 0.7374 0.7500
64.8575 3.5898 1.0849 0.0571 0.9911 1.0000
64.9783 2.8942 1.3567 0.0626 1.2378 1.2500
65.0915 2.6112 1.6290 0.0697 1.4867 1.5000
65.1626 2.3755 1.9019 0.0770 1.7366 1.7500
65.2725 1.9633 2.1747 0.0827 1.9929 2.0000

Angle [deg] Length[cm]
Mean σ Mean σ Encoder Command

48.8813 7.4717 0.2367 0.0334 0.2230 0.2500
46.2486 4.5264 0.4926 0.0461 0.4750 0.5000
46.0249 3.3112 0.7404 0.0518 0.7146 0.7500
45.4467 2.6273 0.9997 0.0507 0.9729 1.0000
45.6313 2.6246 1.2471 0.0606 1.2161 1.2500
45.4051 2.5060 1.5086 0.0780 1.4705 1.5000
45.4808 2.4960 1.7614 0.0889 1.7192 1.7500
45.2843 2.3798 2.0266 0.0937 1.9736 2.0000

Table 1. Range-Flow Results for Translation
(a) Motion to the left-rear (b) Motion to the rear-right

The results are for the test-object in Figure 2. The reported 3D-angle is between the z-axis (optical axis) and the flow
vectors. The variation in the angle decreases with greater translation while the variation in vector length increases with
greater translation. The decrease in rotation indicates the influence of the discretization error in the optical flow. The

increase in variation in the length of the flow vector is due to a reduction in the density of the flow-field combined with
larger absolute flow values.

Translation in X Translation in Y Rotation around Z
Angle [deg] Angle [deg] Angle [deg] Length[cm]

Error σ Error σ Error σ Mean σ Command
10.9142 23.2285 7.4402 15.0430 23.5574 47.8135 0.2998 0.0518 0.3053
8.6968 20.3784 5.8115 11.7741 24.8044 58.0988 0.5928 0.0884 0.6089
7.9037 18.9947 5.2960 10.6937 19.1940 42.1753 0.8739 0.1468 0.9052
8.0567 21.4754 5.0309 10.2249 17.5430 41.4193 1.1370 0.2130 1.2070
8.3435 23.5471 4.8527 9.9227 13.7172 37.8691 1.4744 0.2350 1.5336
8.0368 24.2161 4.8800 9.994 12.2357 36.0586 1.7621 0.3434 1.8643
8.1894 26.5517 4.9821 10.1555 10.0026 32.9437 1.9929 0.4729 2.1297
7.9706 28.0945 4.9916 10.1864 8.2385 31.2005 2.1469 0.6727 2.3233

Table 2. Node Displacement Results for a Translation and Rotation
The results are for the test-object in Fig. 2. Node displacements are the median-filtered weighted average 3-D flow within

1cm of a node (see text for details). The displacement are transformed into object coordinates. The errors are larger then in
Table 1 since they are a result of both registration error and flow estimation error.

Figure 3. (a) 2D Optical Flow (b) 3D Range-Flow (c) Node Displacement
The 3D range-flow shows the distribution of the estimated flow vectors with brighter range-flow corresponding to larger

motions. The node displacement figure also shows larger movement being brighter. Dark surface is either stationary or no
estimate is available.



Figure 2. Optical Flow and Range-Flow
Tracked surface points during translation and rotation of a

rigid test object. First row, translation by5mm, second
row, rotation by 2.0◦ deg. around the object’s z-axis (up in

the image). The optical and range-flows show the
distribution of the estimated flow vectors. Brighter

range-flow corresponds to larger motion.

Node No. ν γ E
1 0.1183 0.7809 1.746
2 0.1878 0.6308 1.499
3 0.2227 0.6039 1.477
4 0.2516 0.6555 1.641
5 0.1857 0.6977 1.655
6 0.2009 0.6696 1.608
8 0.2089 0.6550 1.584
9 0.2007 0.6646 1.596
11 0.1868 0.7175 1.703
12 0.2082 0.7585 1.833
14 0.1997 0.7993 1.918
15 0.2084 0.7451 1.801
17 0.1192 0.7666 1.716
18 0.1366 0.7562 1.719
20 0.1400 0.7480 1.705
22 0.1264 0.7121 1.604
26 0.1442 0.9383 2.147

ALL the above 0.1730 0.7283 1.709
Test: - - ≈ 1.75

Table 3. Material Properties Estimation Re-
sults

The table lists the estimation results of the material
properties (shear modulusγ, Poisson’s ratioν and the

corresponding Young’s modulusE) for the half-ball. Each
row in the table contains the result for a separate estimation
based on the force probe location at the specified node(s).
Using data from all probes in a single estimation results in

values for the material properties very close to an
independent compression test for the material.

in Figure 4. The magnitude of surface displacement is in
very good correspondence in the simulation and the mea-
surement on the surface area not occluded by the probe.

Figure 4. Comparison of Measured and Sim-
ulated Displacement

From left to right: 3D range-flow, estimated displacement,
simulated Displacement.

The 3D range-flow shows the distribution of the estimated
flow vectors with brighter range-flow corresponding to

larger motions. The node displacement figure also shows
larger movement being brighter. Dark surface is either

stationary or no estimate is available. The estimated node
displacement forms a partial ring around the location of the
probe; the location itself and the other part of the ring are

occluded by the probe.

6 Conclusion

This paper shows how elastic constants of complete ob-
jects can be estimated. The method combines 3D range-
flow with a full continuum mechanics deformable model.
The deformable model describes the elastic behavior of the
object based on its surface geometry and material constants.
In our method 3D imaging is employed to find the object’s
geometry and the object’s material properties. We employ
a purely local but robust range-flow technique for the mea-
surement of surface displacements. We demonstrated the
effectiveness of the range-flow technique in the estimation
of elastic constants for a test object. Our on-going work fo-
cuses on more complicated models. It should be possible to
increase the geometric complexity of our test objects with
the described technique. However, we are also interested
in modeling elastic behavior of objects which deviates from
the homogeneous isotropic linear-elastic model. For such
objects the estimation of elastic constants may not be rea-
sonable, however directly estimating the Green’s function
would still enable applications in simulation, haptics and
computer vision.
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