
Generating Tailored Examples to Support Learning via Self-explanation

Cristina Conati and Giuseppe Carenini
Department of Computer Science
University of British Columbia

Vancouver, BC, Canada, V6T 1Z4
{ conati, carenini} @cs.ubc.ca

Abstract

We describe a framework that helps students learn from
examples by generating example problem solutions
whose level of detail i s tailored to the students’ domain
knowledge. The framework uses natural language
generation techniques and a probabili stic student model
to selectively introduce gaps in the example solution, so
that the student can practice applying rules learned from
previous examples in problem solving episodes of
diff iculty adequate to her knowledge. Filli ng in solution
gaps is part of the meta-cogniti ve skill known as self-
explanation (generate explanations to oneself to clarify
an example solution), which is crucial to effectively
learn from examples. In this paper, we describe how
examples with tailored solution gaps are generated and
how they are used to support students in learning
through gap-filli ng self-explanation.

1 Introduction
Studying examples is one of the most natural ways of
learning a new skill . Thus, substantial research in the field
of Intelli gent Tutoring Systems (ITS) has been devoted to
understand how to use examples to enhance learning. Most
of this research has focused on how to select examples that
can help a student during problem solving [e.g., Burrow and
Weber 1996; Aleven and Ashley 1997]. In this paper, we
focus on how to describe an example solution so that a
student can learn the most by studying it previous to
problem solving. In particular, we address the issue of how
to vary the level of detail of the presented example solution,
so that the same example can be equally stimulating for
learners with different degrees of domain knowledge.

This problem is novel in ITS, as it requires sophisticated
natural language generation (NLG) techniques. While the
NLG field has extensively studied the process of producing
text tailored to a model of the user’s inferential capabiliti es
[e.g., Horacek 1997; Korb, McConachy et al. 1997; Young
1999], the application of NLG techniques in ITS are few
and mainly focused on managing and structuring the tutorial
dialogue [e.g., Moore 1996; Freedman 2000], rather than on
tailoring the presentation of instructional material to a
detailed student model.

The rationale behind varying the level of detail of an
example solution lies on cogniti ve science studies showing
that those students who self-explain examples (i.e., generate
explanations to themselves to clarify an example solution)
learn better than those students who read the examples
without elaborating them [Chi 2000]. One kind of self-
explanation that these studies showed to be correlated with
learning involves filli ng in the gaps commonly found in
textbook example solutions (gap filli ng self-explanation).
However, the same studies also showed that most students
tend not to self-explain spontaneously. In the case of gap
filli ng, this phenomenon could be due to the fact that gap
filli ng virtuall y requires performing problem solving steps
while studying an example. And, because problem solving
can be highly cogniti vely and motivationally demanding
[Sweller 1988], if the gaps in an example solution are too
many or too diff icult for a given student, they may hinder
self-explanations aimed at filli ng them.

We argue that, by monitoring how a student’s knowledge
changes when studying a sequence of examples, it is
possible to introduce in the examples solution gaps that are
not too cogniti vely demanding, thus facilit ating gap filli ng
self-explanation and providing a smooth transition from
example study to problem solving. We are testing our
hypothesis by extending the SE-Coach, a framework to
support self-explanation of physics examples [Conati and
VanLehn 2000].

The SE-Coach already effectively guides two other kinds
of self-explanations that have been shown to trigger learning
[Chi 2000]: (i) justify a solution step in terms of the domain
theory (step correctness); (ii) map a solution step into the
high-level plan underlying the example solution (step
utilit y). The internal representation of an example solution
used by the SE-Coach to monitor students’ self-explanation
is generated automaticall y. However, because the SE-Coach
does not include any NLG capabilit y, the example
description presented to the student and the mapping
between this description and the internal representation is
done by hand. Thus, each example has a fixed description,
containing virtuall y no solution gaps.

In this paper, we describe how we extended the SE-Coach
with NLG techniques to (i) automaticall y generate the

example presentation from the example internal
representation (ii) selectively insert gaps in the example
presentation, tailored to a student’s domain knowledge.

Several NLG computational models proposed in the
literature generate concise text by taking into account the
inferential capabiliti es of the user. [Young 1999] generates
effective plan descriptions tailored to the hearer’s plan
reasoning capabiliti es. [Horacek 1997] is an example of
models that take into account the hearer’s logical inference
capabiliti es. And [Korb, McConachy et al. 1997] proposes a
system that relies on a model of user’s probabili stic
inferences to generate suff iciently persuasive arguments.

In contrast, our generation system tailors the content and
organisation of an example to a probabili stic model of the
user logical inferences, which allows us to explicitl y
represent the inherent uncertainty involved in assessing a
learner’s knowledge and reasoning processes. Furthermore,
our system maintains information on what example parts are
not initiall y presented (i.e., solution gaps), which is criti cal
to support gap-filli ng self-explanations for those students
who tend not to self-explain autonomously.

In the following sections, we first ill ustrate our general
framework for example generation. We then describe in
detail the NLG techniques used and an example of the
tailored presentations they generate. Finall y, we show how
the output of the NLG process supports an interface to guide
gap filli ng self-explanation.

2 The Framework for Example Generation

Example

Before run-time

Problem definition
(givens and goals)

Domain and planning rules

Problem
Solver

Solution graph

Example Generator

 User Interface

Long-term
user’s model
Long-term

user’s model

Before run-time
Templates

Explanation
strategies

Bayesian
network

Gap filli ng menu

Figure 1: Framework for example generation

Figure 1 shows the architecture of our framework for
generating tailored example presentations. The part of the
framework labelled “before run-time” is responsible for
generating the internal representation of an example solution
from (i) a knowledge base (KB) of domain and planning
rules (for physics in this particular application); (ii) a formal
description of the example initial situation, given quantities
and sought quantities [Conati and VanLehn 2000]. A
problem solver uses these two knowledge sources to
generate the example solution represented as a dependency
network, known as the solution graph. The solution graph
encodes how each intermediate result in the example
solution is derived from a domain or planning rule and from
previous results matching that rule’s preconditions.
Consider, for instance, the physics example in Figure 2
(Example1). Figure 3 shows the part of solution graph that
derives the first three steps mentioned in Example1 solution:

establi sh the goal to apply Newton’s 2nd Law; select the
body to which to apply the law; identify the existence of a
tension force on the body.

In the solution graph, intermediate solution facts and goals
(F- and G- nodes in Figure 3) are connected to the rules (R-
nodes) used to derive them and to previous facts and goals
matching these rules’ enabling conditions. The connection
goes through rule-application nodes (RA- nodes in Figure
3), expli citl y representing the application of each rule in the
context of a specific example. Thus, the segment of network
in Figure 3 encodes that the rule R-try-Newton-2law
establishes the goal to apply Newton’s 2nd Law (node G-try-
Newton-2law) to solve the goal to find the force on Jake
(node G-force-on Jake).

Figure 2: Sample Newtonian physics example

The rule R-goal-choose-body sets the subgoal to find a
body to apply the Newton’s 2nd Law (node G-goal-choose-
body), while the rule R-find-forces sets the subgoal to find
all the forces on the body (node G-find-forces). The rule R-
body-by-force dictates that, if one has the goals to find the
force on an object and to select a body to apply Newton’s
2nd Law, that object should be selected as the body. Thus, in
Figure 3 this rule selects Jake as the body for Example1
(node F-Jake-is the body). The rule R-tension-exists says
that if an object is tied to a taut string, then there is a tension
force exerted by the string on the object. When applied to
Example1, this rule generates the fact that there is a tension
force on Jake (node F-tension-on-Jake in Figure 3).

The solution graph can be seen as a model of correct self-
explanation for the example solution, because for each
solution fact it encodes the various types of self-
explanations relevant to understand it: step correctness
(what domain rule generated that fact), step utilit y (what

goal that fact fulfil s) and gap filli ng (how the fact derives
from previous solution steps).

RuleR

Fact/GoalF/G

Rule ApplicationRA

R - try - Newton - 2law

F- Jake -is - the - body

R- goal - choose - body

R- body - by - force

RA- goal - choose -b ody

RA - body - by - force

G- goal - choose - body

G- force - on- Jake

G- try - Newton - 2law

RA- try - Newton - 2law F - hangs - from - rope

G- find - forces

F- tension - on- Jake

RA- find - forces

RA - tension - exists

R- tension - exists

R- find - forces

RuleR

Fact/GoalF/G

Rule ApplicationRA

RuleR

Fact/GoalF/G

Rule ApplicationRA

R - try - Newton - 2law

F- Jake -is - the - body

R- goal - choose - body

R- body - by - force

RA- goal - choose -b ody

RA - body - by - force

G- goal - choose - body

G- force - on- Jake

G- try - Newton - 2law

RA- try - Newton - 2law F - hangs - from - rope

G- find - forces

F- tension - on- Jake

RA- find - forces

RA - tension - exists

R- tension - exists

R- find - forces

Figure 3: Segment of solution graph for Example1

In the SE-Coach, every time a student is shown an
example, the corresponding solution graph provides the
structure for a Bayesian network (see right bottom side of
Figure 1) that uses information on how the student reads
and self-explains that example to generate a probabili stic
assessment of how well the student understands the example
and the related rules [Conati and VanLehn 2001]. The prior
probabiliti es to initiali se the rule nodes in the Bayesian
network come from the long-term student model (see Figure
1), which contains a probabili stic assessment of a student’s
current knowledge of each rule in the KB. This assessment
is updated every time the student finishes studying an
example, with the new rule probabiliti es computed by the
corresponding Bayesian network.

 In the SE-Coach, the solution graph and Bayesian
network described above are used to support students in
generating self-explanations for correctness and utilit y only.
No explicit monitoring and support for gap filli ng self-
explanation is provided. This is because in the SE-Coach,
the description of the example solutions presented to the
student and the mapping between these descriptions and the
corresponding solution graphs are done by hand. This
makes it impossible to tailor an example description to the
dynamicall y changing student model by inserting gaps at the
appropriate diff iculty level for a given student. We have
overcome this limitation by adding to the SE-Coach the
example generator (see right part of Figure 1), a NLG
system that can automaticall y tailor the detail l evel of an
example description to the student’s knowledge, in order to
stimulate and support gap-filli ng self-explanation.

3 The Example Generator (EG)
EG is designed as a standard pipelined NLG system

[Reiter and Dale 2000]. A text planner [Young and Moore
1994] selects and organizes the example content, then a

microplanner and a sentence generator reali ze this content
into language. In generating an example, EG relies on two
key communicative knowledge sources (right part of Figure
1): (i) a set of explanation strategies that allow the text
planner to determine the example’s content, organization
and rhetorical structure; (ii) a set of templates that specifies
how the selected content can be phrased in English.

The design of these sources involved a complex
acquisition process. We obtained an abstract model of an
example’s content and organisation from a detailed analysis
of the rules used to generate the solution graph. This was
combined with an extensive examination of several physics
textbook examples, which also allowed us to model the
examples’ rhetorical structure and the syntactic and
semantic structure of their clauses. To analyse the rhetorical
structure of the examples, we followed Relational Discourse
Analysis (RDA) [Moser, Moore et al. 1996], a coding
scheme devised to analyse tutorial explanations. The
semantic and syntactic structure of the examples’ clauses
was used to design the set of templates that map content into
English.

We now provide the detail s of the selection and
organisation of the example content. In EG, this process
relies on the solution graph and on the probabili stic long
term student model. It consists of two phases, text planning
and revision, to reduce the complexity of the plan operators
and increase the eff iciency of the planning process. Text
planning selects from the solution graph a knowledge pool
of all the propositions (i.e., goals and facts) necessary to
solve a given example, and it organizes them according to
ordering constraints also extracted from the solution graph.
The output of this phase, if reali zed, would generate a full y
detailed example solution. After text planning, a revision
process uses the assessment in the student’s long-term
model to decide whether further content selection can be
performed to insert appropriate solution gaps. Text planning
and revision are described in the following sub-sections.

3.1 Text Planning Process
The input to the text planner consists of (i) the abstract

communicative action of describing an example solution;
(ii) the example solution graph; (iii) the explanation
strategies. The planning process selects and organizes the
content of the example solution by iterating through a loop
of communicative action decomposition1. Abstract actions
are decomposed until primiti ve communicative actions
(executable as speech acts) are reached. In performing this
task, the text planner relies on the set of explanation
strategies that specify possible decompositions for each
communicative action and the constraints dictating when
they may be applied. These constraints are checked against

1 Communicative actions satisfy communicative goals. So, text
planning actuall y involves two intertwined processes of goal and
action decomposition. To simpli fy our presentation, we only refer
to communicative actions and their decomposition.

(Describe example1)

(Inform-about-problem find-force)

(Inform-about (choose-simple-body Jake))
(Describe-step choose-body)

(Inform-about-method Newton’s-2nd-Law)

(Describe-step body’s-properties)

(Describe-step all -forces-on-body)
(Inform-about (act-on Jake tension))

(Inform-about (act-on Jake weight))

(Show free-body-diagram)

(Describe-solution-method Newton’s-2nd-
Law)

(Describe-substeps-method Newton’s-2nd-Law)

Enable Goal:Act

Joint Step1:Step2

Enable Preparation:Act

Enable Goal:Act

Communicative action decomposition Intentional/Informational relations

Graphical
actions…

(Describe-step specify-component-equations)

(Describe-step write-component-equations)
(Describe-step choose-coordinate-axes)

(Describe-solution-method ?method
 :constraints
 (find-steps ?method ?steps)
 :sub-actions
 ((a1 (Inform-about ?method))
 (a2 (describe-method-steps ?steps)))
:relations
 ((r1 (Enable a2 a1))
 (r2 (Goal:Act a1 a2))))

(a)

(b)

Figure 4: (a) Sample explanation strategy. (b) Portion of the text plan

the solution graph and when they are satisfied the
decomposition is selected and appropriate content is also
extracted from the solution graph. For ill ustration, Figure
4(a) shows a simpli fied explanation strategy that
decomposes the communicative action describe-solution-
method. Possible arguments for this action are, for instance,
the Newton’s-2nd-Law and the Conservation-of-Energy
methods. Looking at the detail s of the strategy, the function
find-steps (:constraints field) checks in the solution graph
whether the method has any steps. If this is the case, the
steps are retrieved from the solution graph and the describe-
solution-method action is decomposed in an inform-about
primiti ve action and in a describe-method-steps abstract
action. The output of the planning process is a text plan, a
data structure that specifies what propositions the example
should convey, a partial order over those propositions and
the example rhetorical structure. A portion of the text plan
generated by EG for Example1 is shown in Figure 4(b).

The propositions that the example should convey are
specified as arguments of the primiti ve actions in the text
plan. In Figure 4(b) all primiti ve actions are of type inform.
For instance, the primiti ve action (Inform-about (act-on
Jake weight)) specifies the proposition (act-on Jake weight),
which is reali zed in the example description as “ the other
force acting on Jake is his weight” . In the text plan, the
communicative actions are partiall y ordered. This ordering
is not shown in the figure for clarity’s sake; the reader can
assume that the actions are ordered starting at the top. The
example rhetorical structure consists of the action
decomposition tree and the informational/intentional
relations among the communicative actions. For instance, in
(b), the rhetorical structure associated with the action
describe-solution-method specifies that, to describe the
solution method, the system has to perform two actions: (i)
inform the user about the method adopted; (ii) describe all
the steps of the method. Between these two actions the
Enable intentional relation and the Goal:Act informational
relation hold. All the informational /intentional relations
used in EG are discussed in [Moser, Moore et al. 1996]. We

clarify here only the meaning of the Enable relation because
this relation is criti cal in supporting gap-filli ng self-
explanations. An intentional Enable relation holds between
two communicative actions if one provides information
intended to increase either the hearer’s understanding of the
material presented by the other, or her abilit y to perform the
domain action presented by the other.

3.2 The Revision Process
Once the text planner has generated a text plan for the
complete example, the revision process revises the plan to
possibly insert solution gaps that can make the example
more stimulating for a specific student. The idea is to insert
solution gaps of adequate diff iculty, so that the student can
practice applying newly acquired knowledge without
incurring in the excessive cogniti ve load that too demanding
problem solving can generate [Sweller 1988].

The revision process performs further content selection by
consulting the probabili stic long-term student model that
estimates the current student’s domain knowledge. More
specificall y, the revision process examines each proposition
specified by a primiti ve communicative action in the text
plan and, if according to the student model, there is high
probabilit y that the student knows the rule necessary to infer
that proposition, the action is de-activated. De-activated
actions are kept in the text plan but are not reali zed in the
text, thus creating solution gaps. However, as we will see in
the next section, de-activated actions may be reali zed in
follow-up interactions.

As an ill ustration of the effects of the revision process on
content selection, compare the example solutions shown in
Figure 6 and Figure 7. Figure 6 displays the worked out
solution for Example2 which, similarly to Example1, does
not contain any solution gaps. In contrast, the same portion
of Example2 solution shown in Figure 7 is much shorter,
including several solution gaps. As previously described,
EG determines what information to leave out by consulting
the long-term probabili stic student model. In particular, the
concise solution in Figure 7 is generated by EG if the

student had previously studied Example1 with the SE-
Coach and generated self-explanations of correctness and
utilit y providing suff icient evidence that she understands the
rules used to derive Example1 solution. When selecting the
content for Example2, EG leaves out all the propositions
derived from the rules that the student has learned from
Example1. Notice, for instance, that the concise solution in
Figure 7 does not mention the solution method used and the
weight force. Also, the choice of the body and of the
coordinate system is only conveyed indirectly.

Figure 6 Portion of Example2 without solution gaps

Even if a student has suff icient knowledge to fill i n the
solution gaps inserted by the revision process, she may not
actuall y perform the required inferences when studying the
example. As a matter of fact, cogniti ve science studies show
that most students tend not to self-explain spontaneously
[Chi 2000]. Thus, once the text plan is revised and reali zed,
the system presents the concise example with tools designed
to stimulate gap filli ng self-explanation as we ill ustrate in
the next section.

4 Support for Gap Filling Self-explanation
To support gap-filli ng self-explanation, we have extended

the interface that the SE-Coach uses to support self-
explanations for step correctness and utilit y. In this
interface, each example’s graphical element and solution
step presented to the student is covered with grey boxes.
Figure 8(a) shows a segment of the example solution in
Figure 7 as presented with the masking interface.

To view an example part, the student must move the
mouse over the box that covers it, thus allowing the
interface to track what the student is reading. When the

Figure 7 Portion of Example2 with solution gap

(a)

(b)
Figure 8 Interface tools for gap filling self-explanation

student uncovers an example part, a “self-explain” button
appears next to it (see Figure 8(a)). Cli cking on this button
generates more specific prompts that suggest one or more of
the self-explanations for correctness, utilit y or gap filli ng,
depending upon which of them are needed by the current
student to full y understand the uncovered step. In particular,
the text plan produced by EG is the key element in
determining whether a prompt for gap filli ng is generated. A
prompt for gap filli ng is generated whenever some of the
primiti ve communicative actions that were de-activated
during the revision process are related through an Enable
intentional relation to the communicative action expressing
the uncovered example part. The rationale behind this
condition is that a solution gap with respect to an example
part comprises all the solution steps that were left out, but
whose understanding is a direct precondition to derive that
example part. For instance, given the example part
uncovered in Figure 8(a), there is only one solution gap
preceding it, namely the one corresponding to the
communicative action Inform-about (choose-simple-body-
Jake)2. As shown in Figure 8(a), the prompt for gap filli ng
is generated by adding the item “filli ng in missing steps” to
the self-explain menu. If the student cli cks on this item, the

2 Since the text plans for Example1 and Example2 are structurall y
the same, this can be verified in Figure 4(b)

Text item for gap

Fill i n the following miss ing step(s)

FILLING MISSING STEPS

Text item for gap

Submit Done

SOLUTION

The force N exerted on the wagon by
the ground is a normal force

The force N exerted on the wagon by the

ground is a normal force Self-Explain

Filli ng in miss ing step(s)

This fact is true because…

The role of this fact in the solution
plan is…

interface inserts in the solution text an appropriate number
of masking boxes, representing the missing steps (see
Figure 8(b), left panel, first box from top). The interface
also activates a dialogue box containing a blank for each
missing step, that the student can use to fill i n the step (see
Figure 8(b), right panel). Since the interface currently does
not process natural language input, the student fill s each
blank by selecting an item in the associated pull -down
menu. EG generates the entries in this menu by applying the
reali sation component to unrealised communicative actions
in the text plan (see Figure 1).

 The student receives immediate feedback on the
correctness of his selection, which is also sent to the
Bayesian network built for the current example (see Figure
1). The network fact node that corresponds to the missing
step is clamped to either true or false, depending on the
correctness of the student’s selection, and the network
updates the probabilit y of the corresponding rule
consequently. Thus, if the student’s actions show that he is
not ready to apply a given rule to fill a solution gap, this
rule’s probabilit y will decrease in the long-term student
model. As a consequence, the next presented example
involving this rule will i nclude the solution steps the rule
generates, giving the student another opportunity to see
how the rule is applied.

5 Conclusions and Future Work
We have presented a tutoring framework that integrates

principles and techniques from ITS and NLG to improve the
effectiveness of example studying for learning. Our
framework uses an NLG module and a probabili stic student
model to introduce solution gaps in the example solutions
presented to a student. Gaps are introduced when the
student model assesses that the student has gained from
previous examples suff icient knowledge of the rules
necessary to derive the eliminated steps. The goal is to
allow the student to practice applying these rules in problem
solving episodes of diff iculty adequate for his knowledge.

Our framework is innovative in two ways. First, it extends
ITS research on supporting the acquisition of the learning
skill known as self-explanation, by providing tailored
guidance for gap filli ng self-explanation. Second, it extends
NLG techniques on producing user-tailored text by relying
on a dynamicall y updated probabili stic model of the user
logical inferences.

The next step in our research will be to test the
effectiveness of our framework through empirical studies.
These studies are crucial to refine the probabilit y threshold
currently used to decide when to leave out a solution step,
and possibly to identify additional principles to inform the
text plan revision. Additional future work involves NLG
research on how the example text plan can be used to
maintain the coherence of the other example portions, when
the student fill s a solution gap.

References

[Aleven and Ashley 1997] Aleven, V. and K. Ashley.
Teaching case-based argumentation through a model and
examples: empirical evaluation of an intelli gent learning
environment. AIED'99, Kobe, Japan, August 1997.

[Burrow and Weber 1996] Burrow, R. and G. Weber.
Example explanation in learning environments. Intelli gent
Tutoring Systems - Proceedings of the Third International
Conference, ITS '96, Springer, June 1996.

[Chi 2000] Chi, M. T. H. Self-Explaining Expository Texts:
The Dual Processes of Generating Inferences and
Repairing Mental Models. Advances in Instructional
Psychology. R. Glaser. Mahwah, NJ, Lawrence Erlbaum
Associates: 161-238, 2000.

[Conati and VanLehn 2001] Conati, C. and K. VanLehn.
"Providing adaptive support to the understanding of
instructional material". Proc. of IUI 2001, Internationa
Conference on Intelli gent User Interfaces, Santa Fe, NM,
January 2001.

[Conati and VanLehn 2000] Conati, C. and K. VanLehn.
“Toward Computer-Based Support of Meta-Cogniti ve
Skill s: a Computational Framework to Coach Self-
Explanation.” Int. Journal of AI in Education 11, 2000.

[Freedman 2000] Freedman, R. Plan-based dialogue
management in a physics tutor. Sixth Applied Natural
Language Processing Conference, Seattle, WA, 2000.

[Horacek 1997] Horacek, H. “A Model for Adapting
Explanations to the User's Likely Inferences.” UMUAI
7(1): 1-55, 1997.

[Korb, McConachy et al. 1997] Korb, K. B., R.
McConachy, et al. A Cogniti ve Model of Argumentation.
Proc. 19th Cogniti ve Science Conf, Stanford, CA, August
1997.

[Moore 1996] Moore, J. “Discourse generation for
instructional applications: Making computer-based tutors
more li ke humans.” Journal of AI in Education 7(2), 1996.

[Moser, Moore et al. 1996] Moser, M. G., J. D. Moore and
E. Glendeling. Instructions for Coding Explanations:
Identifying Segments, Relations and Minimal Units, TR
96-17 Univ. of Pittsburgh, Dept. of Computer Science,
1996.

[Reiter and Dale 2000] Reiter, E. and R. Dale. Building
NLG Systems, Cambridge University Press, 2000.

[Sweller 1988] Sweller, J. “Cogniti ve load during problem
solving: effects on learning.” Cogniti ve Science 12: 257-
285, 1998.

[Young 1999] Young, M. “Using Grice's maxim of
Quantity to select the content of plan descriptions.”
Artifi cial Intelli gence Journal 115(2): 215-256, 1999.

[Young and Moore 1994] Young, M. and J. Moore.
DPOCL: A Principled Approach to Discourse Planning.
Proc. 7th Int. Workshop on NLG, 13-20, 1994.

