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ABSTRACT 
We present an adaptive interface designed to provide tailored 
support for the understanding of written instructional material. 
The interface relies on a user model based on a Bayesian network, 
that assesses users’ understanding as users read the instructional 
material and try to understand it by generating explanations to 
themselves. The user model’s assessment is used by the interface 
to generate tailored scaffolding of further user’s explanations that 
can improve the user’s comprehension. After illustrating how the 
Bayesian user model assesses understanding from the user’s 
explanations and from latency data on the user’s attention, we 
discuss initial results on the effectiveness of the interface’s 
adaptive interventions. 

Keywords 
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1. INTRODUCTION 
Being able to provide tutoring tailored to the needs of individual 
students has been identified as one on the main reasons for the 
effectiveness of Intelligent Tutoring Systems [16]. Much research 
has been devoted to provide adaptive guidance during problem 
solving [16], but other instructional activities may benefit from 
tailored support, because their effectiveness generally depends on 
the students’ learning style and attitudes.  
For instance, several cognitive science studies indicate that the 
amount of learning from instructional material depends on 
whether students spontaneously generate explanations to 
themselves (i.e. self-explain) as they read the material [2]. 
However, most students do not self-explain spontaneously, 
because they overestimate their understanding and/or do not use 
their knowledge to elaborate what they read [14]. To help these 
students, we have devised an educational environment, the SE-
Coach, equipped with an interface providing the same adaptive 
guidance for self-explanation that has proven highly beneficial 
when administered by human tutors [2].  

To provide this guidance, the interface must draw the students’ 
attention to example parts that may be problematic for them and 
must be able to trigger self-explanations even from those students 
that do not have a tendency to self-explain. It is very important 
that the interface interventions be generated only when the student 
can benefit from the suggested self-explanations. Asking students 
to always make their self-explanations explicit to the system 
would burden the students who are natural self-explainers with 
unnecessary work, possibly compromising their motivation to 
deeply understand the instructional material. Thus, to determine 
when to intervene, the SE-Coach interface relies on a probabilistic 
student model (evolved from ideas proposed in [5]) that uses a 
Bayesian network [13] to assess how well students understand the 
instructional material by capturing both implicit self-explanation 
and self-explanations that the students generate via the interface.  
 Bayesian networks have been used in user modeling mostly to 
perform assessment during problem solving [4, 9, 11, 15]. We 
have extended their use to cover the sources of uncertainty 
involved in assessing learning from instructional material, in 
particular from example solutions. These sources of uncertainty 
include monitoring users’ reading behavior through their focus of 
attention and assessing learning from users’ explanations. 
Although there has been increasing interest in using data on users’ 
attention to develop intelligent interfaces [7, 8], our model is one 
of the first to actively use these data in an adaptive system. Also, 
although other systems have been devised to improve learning by 
triggering users’ explanations [1, 12], little research exists on how 
to monitor these explanations to assess learning. 
In the rest of the paper, we briefly describe the SE-Coach’s 
interface (see [6] for a more detailed description of the interface 
design and evaluation). We then illustrate how the student model 
Bayesian network is created automatically for each example. Next, 
we discuss how the SE-Coach’s interface is dynamically modified 
by using the student model’s assessment to elicit further self-
explanation targeted to improve the user’s example 
understanding. We finally discuss initial results on the 
effectiveness of the tailored support provided by the SE-Coach’s 
interface. 

2. INTERFACE FOR EXAMPLE STUDY 
The SE-Coach interface allows students to read and self-explain 
example solutions (like the physics example in Figure 1) under 
the coach’s supervision. Since eye-tracking and natural language 
understanding are still not powerful enough to reliably monitor 
these tasks, the SE-Coach interface includes two alternative 
mechanisms: a masking interface to track students attention and a 
set of menu based tools that allow students to constructively 
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generate self-explanations. Figure 2 shows how the Newtonian 
physics example in Figure 1 is presented with the masking 
interface in the version of the SE-Coach implemented within the 
Andes tutoring system for Newtonian physics [17]. To view an 
example part, the student needs to move the mouse over the box 
that covers it. When the student uncovers an example part, a “self-
explain” button appears, as a reminder to self-explain. Clicking on 
this button activates more specific prompts that suggest two kinds 
of self-explanations known to be highly effective for learning 
[14]. They are: (1) explain an example solution step in terms of 
domain principles (step correctness); (2) explain the role of a 
solution step in the underlying solution plan (step utility).  
The interface provides tools to help students generate these two 
kinds of explanations. To explain step correctness, the student can 
activate a Rule Browser (see Figure 3a), containing a hierarchy of  
rules that represent principles in the instructional domain and 
reflect the content of the SE-Coach’s knowledge base. The 
student can browse the rule hierarchy to find a rule that justifies 
the uncovered part and receives feedback on the correctness of her 

selection. To explain more about a rule, the student can activate a 
Rule Template, a dialog box containing a partial definition of the 
rule that has blanks for the student to fill in (see Figure 3b). This 
definition includes preconditions for and consequences of the 
rule-application and reflects the rule definition in the SE-Coach 
knowledge base. Clicking on a blank in the Template brings up a 
menu of possible fillers. When the student submits a completed 
template, the SE-Coach will give feedback on the submission 
correctness. To explain step utility, the student can activate a Plan 
Browser that displays a hierarchical tree representing an 
example’s solution plan. The student can search the hierarchy for 
the plan goal that most closely motivates the uncovered solution 
step and receives feedback on the correctness of the selected goal.   
The student’s reading and self-explanation actions are used to 
dynamically update the student model Bayesian network, that at any 
time during the interaction assesses the student’s understanding of 
the different example parts. If a student tries to close the example 
when the student model indicates that there are still some parts that 
are problematic for him, the interface generates a warning and 
highlights the corresponding masking boxes (shown darker in 
Figure 4). It also changes the “self-explain” button for each 
highlighted line, to indicate what interface tools the student should 
use to better self-explain the line (see Figure 4). As the student 
performs new reading and self-explanation actions to follow the 
interface suggestions, the boxes’ color and the related advice change 
dynamically to reflect the updates in the student model probabilities, 
as we will describe later. 

3. THE SE-COACH’S STUDENT MODEL  
3.1 Sources of Uncertainty  
Several sources of uncertainty affect the SE-Coach’s student 
model assessments and call for a probabilistic student model. The 
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first source stems from the fact that we do not want to force 
spontaneous self-explainers to always make their self-explanations 
explicit through the SE-Coach interface tools. Thus, the student 
model must be able to detect self-explanations generated through 
implicit reasoning. The only evidence that the student model can 
use to do so is latency data on student’s attention and estimates of 
student’s domain knowledge. If a student spends enough time 
viewing a line of instruction and has sufficient knowledge to self-
explain that line, we want the model to assess that likely the 
student self-explained the line correctly. But this adds uncertainty 
to the assessment, because both student’s attention and student’s 
knowledge cannot be unambiguously determined. 
The second source of uncertainty exists because students have 
different studying styles. Some students prefer to generate 
solution steps by themselves before reading them in the example, 
while others rely completely on the example solution and start 
reasoning about a solution step only when they read it [14]. 
Hence, depending on the student’s studying style, attention to a 
solution step can indicate not only self-explanation for that step 
but also derivation and self-explanation of subsequent steps. 
The third source of uncertainty is due to the fact that sometime 
examples leave out some solution steps (i.e., they have solution 
gaps). A student needs to self-explain these steps to understand 
the solution thoroughly. This adds an additional level of implicit 
reasoning that the student model needs to assess from latency data 
and knowledge estimates.  
Finally, little research exists on how people learn from menu 
selections and template filling. Thus, even when students generate 
correct self-explanations through the interface tools described in 
the previous section, there is uncertainty about how these self-
explanations reflect learning and understanding.  
The SE-Coach student model evolved from the Andes’ student 
model for problem solving [4], to formalize and handle in a 
principled way these sources of uncertainty, as we describe in the 
next sections. 

3.2 Generation of the Bayesian Network 
The student model Bayesian network is built automatically for 
each example. This is crucial to allow the extension of the SE-
Coach’s set of examples with relatively limited effort, given that 
the resulting networks are quite large and complex (in the order of 
hundred of nodes). To add a new example, a problem solving 
module builds a model of correct self-explanation (SE model) for 
the example, starting from (i) a knowledge base of rules 
describing domain principles and abstract planning steps; (ii) a 
formal definition of the example givens. The resulting SE model 
(see Figure 5b) is a dependency network that encodes how the 
intermediate facts and goals (F- and G- nodes in Figure 5b) derive 
from domain rules (R- nodes in Figure 5b) and from facts and 
goals matching the rules’ preconditions. These derivations are 
explicitly represented in the SE model by rule-application nodes 
(RA- nodes in Figure 5b) and correspond exactly to the self-
explanations for step correctness and step utility that the SE-
Coach targets. For instance, the node RA-body-by-force in Figure 
5b encodes the explanation that Jake is chosen as the body 
because a physics rule says that if we want to find a force on an 
object, that object should be selected as the body to which to 
apply Newton’s 2nd law. The node RA-goal-choose-body encodes 
the explanation that choosing Jake as the body fulfils the first 

subgoal of applying Newton’s 2nd law, i.e. selecting a body to 
which to apply the law.  
When a student opens an example, the student model Bayesian 
network for the current session is automatically created from the 
SE model and from a student’s long-term model. The structure of 
the Bayesian network derives directly from the SE model. All 
nodes in the initial network have binary values representing the 
probability that the student knows rules, goals and facts in the 
example solution and that she has explained the related 
derivations. Rule node priors derive from estimates of a student’s 
current domain knowledge stored in the long-term student model. 
This model also contains a probability η representing a student’s 
tendency to reason ahead, namely to derive the example solution 
autonomously rather than reading it in the example. The 
probability η is used to specify the conditional probability table 
(CPT) for rule-application nodes, defined as a Noisy-AND. The 
Noisy-AND models the following assumptions: (1) a student 

cannot perform a derivation if she does not know the 
corresponding rule and its preconditions; (2) there is a probability 
(noise) that the student does not apply the rule even when she has 
all the relevant knowledge. This is exactly the probability that a 
student does not reason ahead, 1-η. Although η generally depends 
on the student only, it can sometimes depend on the rule as well. 
For instance, most students taking introductory physics 
understand when they need to apply Newton’s 2nd law as soon as 
they read a problem’s statement. Thus, the rule R-try-Newton-
2law in Figure 5b is generally associated with a large η in the 
long-term student model. Fact and goal nodes (collectively called 
proposition nodes) deterministically depend on their parent rule-
application. Priors of root proposition nodes, representing the 
example givens, are set to 0 until the student starts reading the 
example text. 
As a student performs reading and self-explanation (SE) actions, 
the initial Bayesian network is dynamically updated with nodes 
representing these actions (see Figure 5a). In the next sections, we 
describe the semantics of the nodes representing student’s actions 
and how they influence the probabilities of nodes in the SE 
model.  

Read - l2 
 We choose Jake as bod y…  

long  

   0.95 

0.91 

0.81 

0.39 

  0.9 

  0.81 

F - Jake - is - the - body 

RA  - goal - choose  - body 

RA - body - by - force 

G - goal - choose - body 

G  - force - on - Jake 

G  - try - Newton - 2law 

RA  - try - Newton - 2law 

pb - choose - body 
  1.0 

Read - l2 

Read - l1 
Find  force on  Jake 

ok 

Read - l1 
Find  Tension Force exerted  
 on Jake by the rope 

ok 

long  

   0.95 

0. 

  0.97 F - Jake - is - the - body 

RA  - goal - choose  - body 

RA - body - by - force 

G - goal - choose - body 

G  - force - on - Jake 

G  - try - Newton - 2law 

RA  - try - Newton - 2law 

R - try - Newton - 2law 
  0.95 

R - try - Newton - 2law 
  0.95 

R  -   b ody - by - force 
  0.5 

R  -   b ody - by - force 
  0.5 

R - goal - choose  - body 
  0.91 

R - goal - choose  - body - 
SE-action 
Pb-choose-body 

  1.0 

(a) Student’s actions (b) SE M odel 

1  

5  

2  

3  

4  

Figure 5: Segment of student model for example 1 



3.2.1 Read nodes.  
 Read nodes (nodes with prefix Read in Figure 5a) represent 
viewing items in the masking interface. The values of read nodes 
reflect the duration of viewing time and are set by comparing the 
total time a student spent viewing an item (TVT) with the 
minimum time necessary to read it (MRT). We currently compute 
the MRT for each item by assuming the reading speed of an 
average-speed reader (3.4 words/sec.,[10]). Depending upon the 
result of the comparison, the value of a read node can be LOW 
(TVT < MRT, time insufficient for reading), OK (TVT≈MRT, 
time sufficient for reading only) or LONG (TVT >> MRT, time 
sufficient for self-explanation).  
Each read node connects to the SE model node reflecting the 
semantic content of the viewed item (see link 1 and 5 in Fig. 5). 
These links indicate that viewing time influences the probability 
of knowing the related content. When a proposition node has 
input from both a read node and a rule-application node (e.g., F-
jake-is-the-body in Figure 5), then a student can acquire the 
corresponding proposition either by reading it in the example or 
by deriving it from rules and previous propositions. This 
relationship is represented in the CPT for proposition nodes 
whose content a student has viewed in the example solution (see 
Table 1). If a rule-application node is TRUE (i.e., the student 
explained the corresponding derivation), by definition the 
proposition node is TRUE (i.e., known by the student). 
Otherwise, the probability of knowing the proposition node is 
small if reading time is LOW (probability p1 in Table 1) and high 
when the time is OK or LONG (probabilities p2 and p3 
respectively in Table 1) .  

Table 1: CPT for a proposition node the student viewed 

READ LOW OK LONG 

T 1.0 1.0 1.0 
RULE-
APPL F p1 < 

0.5 
p2>0.

9 
p3> p2. 

 Some proposition nodes in the Bayesian network may not be 
connected to a read node, even after the student has viewed all the 
elements in the example solution. This happens when the solution 
omits some of the steps, as it often happens in instructional 
material. In Figure 5, for instance, the nodes G-try-Newton-2law 
and G-goal-choose-body cannot have any read node pointing to 
them, because these goals are not explicitly mentioned in the 
example. A student can know unmentioned propositions only by 
deriving them from rules and other example propositions.  
The fact that the student viewed an example item does not 
necessarily mean that the student self-explained it. In particular, it 
does not mean that the student self-explained the inferences 
describing how the item derives from a domain principle (step 
correctness) and what goal it achieves in the solution plan (step 
utility). However, the longer the student viewed an example item, 
the higher the probability that he self-explained it. This 
relationship between viewing time and self-explanation is 
encoded in the student model by linking a read node that 
represents viewing an example item with the rule-application 
nodes that represent self-explanation for correctness and utility for 
that item (see, for instance, link 3 and 4 in Figure 5). The CPT for 
these rule-application nodes is modified to take reading time into 
account, as shown in Table 2 (For simplicity, this table shows a 

rule with only one precondition.) A student cannot self-explain a 
derivation correctly if he does not have the necessary knowledge 
(i.e., the rule and its preconditions), no matter for how long the 
student attended to the derivation (these cases are grouped under 
the otherwise entry in Table 2).  
Table 2: CPT for rule-application node after a student viewed 

the related proposition node 

READ Knows 
RULE 

Knows 
Goal/Fact 

LOW OK LONG 

  T T p1 = η p2= η p3> max {p2, 0.9} 

otherwise 0 0 0 

If the student has all the necessary knowledge, the probability that 
proper self-explanation occurred increases with viewing time. If 
viewing time is LOW (i.e., insufficient for reading) or OK (i.e. 
sufficient for reading only), self-explanation for this line could 
only have occurred if a student reasoned forward from previous 
lines. The probability that this happened (represented by 
probabilities p1 and p2 in Table 2) is the probability η in the long 
term student model, modeling the student’s tendency to derive 
solution lines autonomously, before reading them in the example. 
Thus, 

P(RA =T|Rule =T, Goal=T, Read∈{LOW,OK}) = η 
as shown in Table 2. If viewing time is LONG, the probability 
that self-explanation occurred (p3 in Table 2) is set to be at least 
0.9. 

3.2.1 SE Nodes  
Nodes representing the student’s self-explanation actions (SE 
nodes) are dynamically added to the Bayesian network to model 
the occurrence of Rule Template filling and selection of goals in 
the Plan Browser. Since Rule Template filling provides evidence 
of the student’s understanding of the corresponding rule, the SE 
node for a Template filling action is linked to the corresponding 
rule node in the Bayesian network. Similarly, the SE nodes 
encoding goal selection in the Plan Browser are linked to the rule 
nodes establishing the corresponding goals in the SE model with 
(see link 2 in Figure 5).  
Since SE actions such as menu selections and template filling 
involve building self-explanations by composing given material, 
they do not provide as strong evidence of rule understanding as 
self-explanations generated verbally would. Even if a student has 
little knowledge of a rule, he may still be able to generate a self-
explanation involving that rule by using the SE-Coach tools, 
because of the scaffolding that these tools provide. However, 
whether the student learns from the self-explanation action 
depends upon how much constructive reasoning she performs 
during the process. Given the lack of established results on how 
people learn from menu selections and template filling, in the SE-
Coach student model we prefer to be conservative. We assume 
that each correct SE action increases the probability that a student 
learns the corresponding rule, but if the student starts with low 
rule knowledge we want evidence from more than one correct SE 
action before assessing that the rule is mastered.  



To achieve this behavior without having to change the CPT of a 
rule node every time a new SE action involving that rule occurs, 
we direct the link from rule nodes to SE nodes (see Figure 5a). 
The entry P(SE=T| Rule=F) in a SE node’s CPT represents the 
probability that a student can complete a correct SE action 
without knowing the corresponding rule. This probability can be 
adjusted to vary the amount of evidence that a correct SE action 
provides toward rule learning. For instance, the higher the number 
of wrong attempts a student makes before generating a correct SE 
action, the higher we set P(SE node=T| Rule=F) when we add the 
corresponding SE node, because it becomes more likely that the 
student achieved the correct action through random selection in 
the interface tools, rather than through reasoning. 

4. USING THE STUDENT MODEL TO   
    GENERATE TAILORED SCAFFOLDING 
At any time during the student’s interaction with the SE-Coach, 
the probabilities in the Bayesian network assess how the student’s 
domain knowledge and example understanding change through 
the student’s interface actions. In particular, the probabilities 
associated with rule-application nodes represent the probability 
that the student self-explained the corresponding derivations. 
Rule-application nodes with probability below a given threshold 
become the target of the SE-Coach interventions.  
Figure 5 shows the probabilities in the student model after a 
student viewed the line “We want to find the tension force on 
Jake” long enough for reading it, viewed the line “We choose Jake 
as the body” quite longer and self-explained the latter with the 
Plan Browser. The high probability of the node G-try-Newton-
2law, not mentioned in the example solution, and of its parent 
rule-application node, show how the Bayesian network can model 
forward reasoning and filling solution gaps. The high probabilities 
of the nodes R-try-Newton-2law and G-force-on-Jake propagate 
downward because of the large η assigned to the rule R-try-
Newton-2law (as we described in the previous section), which 
translates into a small noise (1-η) for the Noisy-AND CPT of the 
rule-application node RA-try-Newton-2law. 
In Figure 5, there is only one rule-application node that still has a 
low probability, the non-shaded node RA-body-by-force. From 
this node’s descendant, F-Jake-is-the-body, the SE-Coach infers 
that the missing explanation relates to the first line in the example 
solution. From the fact that the only input node with low 
probability for RA-body-by-force is the rule R-body-by-force, the 
SE Coach detects that the missing explanation relates to this rule. 
Hence, it adds the first solution line among the lines to highlight 
in the masking interface and modifies its self-explain button to 

suggest self-explanation with the Rule Browser (see Figure 4a). 
Similarly, when the SE-Coach detects that the low probability of a 
rule-application node is due to low probability of the closest 
planning rule ancestor, it modifies the interface to suggests self-
explanation through the Plan Browser (see Figure 4b). When low 
probability of a rule-application node is caused only by too short 
reading time, the “self-explain” button for the related solution line 
is turned into a hint suggesting to read more carefully. 
The student is not obligated to follow the interface suggestions. 
When the student decides to close an example, the student model 
Bayesian network is discarded, but the new rule nodes’ 
probabilities are used to update the long term student model. 
These probabilities will become the new priors in the student 
model for the next example study task and will influence the 
system’s interventions accordingly. Let’s suppose, for instance, 
that the student generates both the Plan Browser and Rule 
Browser explanations for the segment of example in Figure 5 and 
then  opens a new example, shown in Figure 6a. The first line of 
this example’s solution (“We choose the wagon as the body”) is 
similar to the one for the previous example, as similar is the 
corresponding segment of Bayesian network (shown in Figure 
6b). However, the priors of the rule nodes involved in this part of 
the model reflect the student’s previous interaction with the 
system. If the student views the first example line for long 
enough, the student model will predict that the student has 
performed all the inferences required to self-explain this line, 
because there is high probability that she has the knowledge 
necessary to do so. Thus, the SE-Coach will never ask this student 
to explicitly self-explain the selection of the wagon as the body by 
using the interface tools. The only prompting that the interface 
may generate on this example line would be caused by viewing 
time too short for self-explanation. In this case, the Read node 
modeling attention to the body-selection line would be set, for 
instance, to OK, preventing the high probability of the rule nodes 
R-goal-choose-body and R-body-by-force to propagate to the 
corresponding rule-application nodes (see Figure 6b) and 
resulting in the generation of a read-carefully prompt for the 
body-selection line (see Figure 6a). If the student then reviews the 
line for sufficient time, the student model will be dynamically 
updated and the line will be turned back to an “explained” state 
(light gray) when the student moves away from it. 
In summary, the SE-Coach interface prompts students to explicitly 
generate self-explanations using its tools only when the student 
model assesses that this can improve the student’s understanding. 
In particular, the interface helps those students who do not self-
explain because they do not monitor their understanding, by 
drawing the students’ attention to example parts that may be 
problematic for them and by providing specific scaffolding on 
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what knowledge these explanations should tap. Asking students to 
always make their explanations explicit through the interface tools 
would of course enable more accurate assessment of their 
understanding, but would also burden the students who are natural 
self-explainers with unnecessary work, possibly compromising the 
effectivevess of their self-explanations and their motivation to use 
the system. 

5. EVALUATION OF THE INTERFACE  
    ADAPTIVE INTERVENTIONS 
To evaluate the effectiveness of the SE-Coach, we conducted a 
study in which 29 subjects studied Newton’s 2nd Law examples 
with the complete SE-Coach (experimental condition), while 27 
subjects studied the same examples with the masking interface 
only and no coaching (control condition). All subjects took a 
pretest and a posttest consisting of Newton’s 2nd Law problems. 
At the time of the experiment, all subjects were taking 
introductory physics in different colleges and had started studying 
Newton’s laws in class. In this section, we present a more detailed 
analysis of preliminary data on the usability of the SE-Coach 
interface that we obtained from this study and reported in [6]. The 
analysis focuses on the appropriateness of the interface adaptive 
interventions by showing how they influenced the performance of 
students in the experimental group (the only ones that had these 
interventions). More general data on the difference between the 
performance of the experimental and the control group can be 
found in [3]. 

5.1 Student Model Set Up 
During the evaluation, we only used examples with limited gaps 
in the presented solution. That is, the example solution mentioned 
all the steps derived from physics rules (fact nodes in the student 
model), and omitted only the most immediate goal that each step 
fulfills. Thus, this study does not give us information on how well 
the student model presented here handles the additional level of 
uncertainty introduced by the higher degree of implicit reasoning 
involved in studying examples with larger solution gaps. Also, 
constraints on the study duration prevented us from initializing 
the student model with data on the students’ initial knowledge and 
studying style. Hence, we assigned to most rules a prior of 0.5, 
and we assumed that students are very unlikely to reason forward 
(η = 0.02) because other studies [14] show that this is how most 
students usually behave. The threshold for considering rule nodes 
as known was set to 0.9 and the conditional probabilities for SE 
nodes were set in such a way that a correct self-explanation action 
achieved at the first attempt would make the corresponding rule 
node reach the threshold if the rule probability was 0.5 or higher. 
Given the lack of formal theories on how people learn from menu 
selection and template filling actions, this choice is not informed 
but rather dictated by the rationale that when we do not have good 
estimates of what initial knowledge students have (as the priors of 
0.5 indicate), we prefer to be less conservative in assessing 
student learning from correct SE actions, to compensate for 
possible inaccuracies in the model set up. 

5.2 Results 
We computed from log data how often students followed the 
interface adaptive prompts to further self-explain. The results are 
summarized in Table 3. For each type of prompt, the table reports: 
(i) the maximum number of prompts that could appear in the 

interface for the three examples in the study. These are the 
prompts the interface would generate if there was no student 
model. (ii) The average number of prompts adaptively generated 
by relying on the student model. (iii) The average percentage of 
these prompts the students followed. After reporting these results 
in [6], we computed the correlation between the percentages of 
followed prompts and students’ post-test scores, controlling for 
pretest scores. All three measures significantly (or nearly 
significantly) correlate with post-test performance (p = 0.056 for 
Rule Browser/Template prompts; p = 0.024 for Plan Browser 
prompts; p = 0.016 for “Read more carefully” prompts). These 
data provide an initial indication that the adaptive prompts based 
on the student model effectively elicited self-explanations that 
improve students’ learning, although further data should be 
gathered to control for other variables that might have caused the 
correlation, such as general academic ability or conscientiousness.  

Table 3: SE-Coach prompts that students followed 

Prompt Type Max.  Generated Followed 

Use RuleBrowser/Templ. 43 22.6 38.6% 

Use PlanBrowser 34 22.4 42.0% 

Read mode carefully 43 7 34.0% 

 
A second result that we obtained from further analysis of the 
results presented in [6], indicates how accurately the student 
model assesses knowledge changes from SE actions. We found an 
interaction between the accuracy of this assessment and when 
subjects had started studying Newton’s Laws in their classes. We 
computed the correlation between posttest scores and the number 
of rules that reached high probability in the student model. The 
correlation is very low (r = −0.03) for subjects from classes that 
had started the example topic more than a week before the study 
(early-start subjects) and it is higher (= 0.33) for subjects from 
classes that had started just a few days before (late-start subjects). 
This indicates that the evidence that correct SE actions provide 
toward rule knowledge in the student model reflects more 
accurately how late-start subjects learned from these actions. 
Since our data showed no significant differences in the two 
groups’ initial knowledge or in how they used the interface tools, 
we hypothesize that the difference in the correlation exists 
because the SE-Coach examples were more challenging for late-
start subjects and therefore they put more effort than the early-
start ones in reasoning and learning from the same SE actions. 
These results suggest that the students’ learning stage should be 
taken into account when modeling learning from SE actions. For 
instance, in the CPT for SE nodes, the probability P(SE=T| 
Rule=F) (e.g. the probability of generating a correct SE action 
without knowing the corresponding rule), should be set to an 
higher value if a student has been working on the example topic 
for some time (like our early-start subjects), to account for the 
possibility that a lower level of motivation may result in less 
learning from SE actions. 

6. CONCLUSIONS AND FUTURE WORK 
Providing interactive, tailored support to the understanding of 
instructional material will become increasingly important as more 
instruction will be delivered through computers and distant 
learning on the Web. We have described a computational 



framework that provides tailored support to the understanding of 
instructional material presenting example solutions. The 
framework relies on a probabilistic student model that takes into 
account the different sources of uncertainty embedded in 
assessing understanding from latency data on attention, and from 
explanations generated through menu selections and template 
filling. Although there has been extensive research on monitoring 
user’s attention, the work described in this paper is one of the first 
attempts to actively use latency data to adapt the interaction to the 
user’s behavior. To our knowledge, it is also the first attempt to 
assess learning from students’ explanations.  

We have discussed initial results on the effectiveness of the 
adaptive support to example studying that the SE-Coach interface 
provides by using the student model’s assessments. The results 
indicate that, despite the lack of accurate initial parameters in the 
student model, this support improved student’s learning. The 
results also suggest how to improve the accuracy of the student 
model by taking into account the students’ learning stage.  

Although the probabilistic student model currently captures 
attention through a masking interface and explanations through 
menu based tools, its structure and assessment are independent 
from the input modality. For example, as research on eye tracking 
and natural language progresses, the model can be modified to 
monitor latency data and explanations through these modalities. 
This can be done by changing the conditional probabilities in the 
model, to reflect the more accurate evidence that eye-tracking and 
verbal explanations may provide on user’s attention and 
understanding. Since eye tracking and natural language provide 
less scaffolding for reading and self-explanation, we plan to 
explore what types of learners benefit more from an interface that 
relies on them and what learners benefit more from the current, 
more constrained interface. This will allow us to explore how to 
dynamically adapt the interaction mode to the users’ learning 
style. We also plan to work on the automatic generation of 
examples that tailor the number of solution gaps to the student’s 
current knowledge, to provide adaptive support to the transition 
from example studying to problem solving.  
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