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ABSTRACT

Open learning environments can be beneficial for learning in ways not available in more tutor-controll ed
systems, because of the active role the learner plays in knowledge acquisition. However, it has been shown that not
al learners are proficient in unconstrained exploration, restricting their ability to learn effedively in these
environments. In this paper we present the Adagive Coach for Exploration (ACE), a prototype cmputational
framework that supports active exploration in an open learning environment by providing tailored support to
overcome spedfic student difficulties.

ACE provides dudents with a highly-graphical, exploratory learning environment in the domain of
mathematical functions. To generate amoreimmersive experience, ACE’ sinterfaceall ows continuous manipulation
of graphical oheds pedficaly designed to encourage exploration. The Student Modd assesses gudent knowledge
and exploratory behaviour using a Bayesian network. The Coach uses the Student Model’ s asessnent to generate
tailored hints, which are intended to guide and improve the exploratory behaviour of those students who would
otherwise experiencedifficulties in learning from an unsupervised environment.

After describing ACE's components, we present the results of a preliminary user study which gauges the
system’s effediveness The results provide evidence that ACE positively affeds dudents learning, that it does
support exploration, and that more thorough exploration leadsto better learning. We also discussour resultsin terms
of limitations deteded and posshble improvements.

KEYWORDS: OPEN LEARNING ENVIRONMENTS, LEARNING THROUGH EXPLORATION, ADAPTIVE
SUPFORT TO EXPLORATORY BEHAVIOR, BAY ESIAN NETWORKS
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1 INTRODUCTION

Open learning environments have been the subjed of extensive research in the fidd of computer-supported
learning. These ewvironments, also known as exploratory or discovery environments, place less emphasis on
explicit ingtruction and more on providing the learner with tods that support learning through unconstrained
exploration of the target instructional domain [3, 18, 19]. Advocates of open learning environments beli eve that,
through active involvement in the knowledge acquisition process the student can gain a degoer and more structured
understanding of the domain. At the other end of the spedrum, supporters of more guided ways of learning argue
for the dfediveness of tutor-controlled environments that monitor and structure the learning process through
focused activities[2, 12, 16].

Whilethereis substantial evidenceon the dfedivenessof environmentsthat rely on some degreeof tutor control
[1, 5, 6], user evaluations of pure exploratory/discovery environments have produced mixed results. In particular,
succesgul learning in these evironments sams to strongly depend on the student’ s learning style [10, 11] and on
meta-cognitive skill s contributing to effedive eploration, such as the ability to formulate hypotheses, perform
experiments, draw conclusions based on the results and monitor on€'s progressin the learning process[4]. These
results suggest that the dfediveness of open learning environments can be improved by providing additi onal
support to the learning process Two approaches have been foll owed in this diredion.

Thefirst approach isto provide suppementary cognitive tods gedfically designed to scaffold the appli cation of
the relevant meta-cognitive skills [7, 14, 18]. However, the results obtained with this approach indicate that
cognitive tods, even when very carefully designed, can sometimes interfere with the learning process This is
espedally true if their useisimposed on all | earners, even the ones that do not need the etra scaffolding because
they already possessand apply the rel evant meta-cogniti ve skill s.

The secnd approach isto provide the students with more active and expli cit instruction, tail ored to their spedfic
difficulties in the exploratory process Although this approach is quite difficult, because it relies on the apability to
monitor and understand the student’s unconstrained exploratory behaviour, it has the advantage of providing help
for those students that have problems in learning through exploration without affeding the students who explore
effedively.

In this paper, we describe ACE (Adaptive Coach for Exploration), a prototype intelli gent learning environment
that follows this oond approach by offering tail ored support to the exploration of mathematical functions. ACE
monitors the exploratory actions that students performs through its interface and tries to deted when a student is
experiencing dfficulties with the exploration process When necessary, the environment generates interventions
aimed at hel ping the student overcome these difficulti es, whil e maintaining a sense of control and freedom.

Because of the difficulty of monitoring a student’s behaviour in an open learning environment, only a few other
environments have pursued similar approaches. In [17] the authors present a student mode to assessand support
the processof hypothesis testing. This model relies on the student being active enough to generate hypotheses and
so does not assst the student in searching the space of posgble hypotheses. Similarly, Smithtown [11], a discovery
learning environment for the domain of microeanomics, helps students to structure their experiments by guiding
them through a fixed sequence of steps, but does not address the neels of the less active students who have
problemsiniti ating experiments and making predictions. Belvedere [8], an environment that provides graphical tods
to huild scientific arguments, also helps gudents improve their arguments based on predefined syntactic and
consistency relations among argument components. However, Belvedere does not actually parse the students
arguments nor does it monitor the data coll ection processthat the students engage in prior to argument formation.

In ACE, we try to focus more on dliciting the students exploratory behaviour, by explicitly guiding the more
passve learners to effedively use ACE’ s interfacetods to explore the target domain of mathematical functions. In
the rest of the paper, we first describe these tods. Next, we introducethe probabili stic student model that ACE uses
to asess sudents exploratory behaviour and ACE's coaching component. Finally, we report the results of a
preliminary study to evaluate ACE'’ s effedivenessin promoting learning by supporting exploration.

2 DESCRIPTION OF THE SYSTEM

The ACE system consists of three @mponents: a Graphical User Interface (GUI), a Student Modd, and a
Coach. The GUI presents interactive activities geared at stimulating exploration of mathematical functions. The
Student Model interprets interactions with the student in order to determine the dfediveness of the student’s
exploratory behaviour and level of knowledge. The Coach monitors the student’s traversal of the arriculum,
providing tail ored situation-dependent suggestions and hints aimed at improving the student’s exploration of the
avail able material.
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21 THEGUI

The GUI isdesigned to
present material in a
manner that alows the
student to explore functions
in as many ways as
possble. Most of ACE's
information is displayed in
its main window (see
Figure 1, left-top pand).
The uppxr area of the
window is a graphical
display that can draw and
animate text, pictures, and
computable shapes guch as
function curves. Thisisthe
main area in which the
student interacts with the
system. Below this is a
Fealback pand (Figure 1,
| eft-battom panel), in which
hints from the Coach are
printed. The right side of
the window is in effed an

HTML browser containing hyperlinks to the system’s help pages, which include bath interface instructions and

domain-related help.
211 THREeUNITTYPES

In its current incarnation, ACE presents the student with threedifferent units — the Machine, the Switchbaoerd,
and the Plot unit, which are loosdly based on the material presentation found in the pre-calculus sdion of [13].
Each unit contains a set of exercises; each exercise presents the student with a different function to explore. The
units and exercises are initially shown in sequential order, providing increasing complexity of interaction as the
student moves through the airriculum. The student can move to the next exercise by clicking on the “Next exercise’
button. Also, the student can choose to move to any exercise by using the Leson Browser tod (explained below) at

any time.
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The Machine unit (Figure 1) shows the student how a numeric input to a function is processed into an output.
The student drags an input to the “maching’, which generates the output. The student is presented with a variety of
inputs to explore. The student cli cks through the ‘steps’ involved in the clculation, and can view the intermediate
result at each step. Animation is used as an added stimulus—in order to draw the student’ s attention to it, the output
generated by the Machine appearsin a pink circle after moving acrossthe screen.

The Switchboard wnit (Figure 2) requires more active thinking from the student, in that the student is given the
opportunity to explore the mapping of arange of inputs onto arange of outputs. Asthe unit’s name might imply, the
functionality is very much like a switchboard — each of theinputshasa‘dragball’ next toit that the student can drag
to any ‘socket’ next to an output number. Asit isdragged, aline mntinuously connedsit to theinput. If the student
succedls in conneding the input to the wrred output, the dragball and the wnned line turn green, otherwise they
turn red. The student may remnned an input to a different output at any time.

The goal of the Plot unit (Figure 3) is to help the student explore the properties of graphs and equations, and
relationships between the two. The interface @ntains bath an equation bax (found in the lower left corner of Figure
3), which shows the airrent function equation, and the crresponding graph of that function, displayed in an x-y
plane. The student can manipulate the graph of the function in one of two ways:. either by dragging it around the
plane, or, where applicable, by typing diredly into the egquation box. Updating the graph automaticall y updates the
function equation, and viceversa.

GigpErdl 212 TooLs

Mammeum;_u Although the abowve units and corresponding exercises are initially presented in a
predefined sequence, we want students to be able to fredy explore the airriculum.

B Therefore, the GUI todbar holds buttons to allow the student to move forward and

Ex2 backward through the airriculum, as well as a Leson Browser (Figure 4). The Leson
Browser shows all exercises, and all ows the student to go to any exercise by clicking on it.
Thetodbar also contains an Exploration Assstant, atod to help the students organize their

Ex.3

R exploration processthat will be described in more detail in alater sedion.
Switchboard Unit
= 2.2 THE STUDENT M ODEL
—r The Student Model monitors the student’s interaction with the system in order to
) _ determine the extent to which the student is effedively exploring the environment and
Figure 4. gaining an understanding of the domain. This information is used to support the Coach’s

TheLeson Browser  qvigon of tail ored feedback.

In the ACE system, the Student Modd must assess the student’s behaviour as accurately as posshle with
relatively sparse information. The model can view low-level information, such as the inputs and outputs entered by
the student, but it does not have any expli cit indicators of the student’ s underlying reasoning. Whil e thisrestricts the
level of assessment, it does allow for a more natural interaction with the system where the student is all owed to
fredy explore the ewvironment without imposition. Given the limited information avail able to the moddl, asessng
the student’ s behaviour involves a great deal of uncertainty. The use of Bayesian networks[9] is particularly suitable
in this context sincethey all ow the diff erent sources of uncertainty in the modeling task to be dearly formali zed and
processed, based on probabilit y theory.

The Student Moddl is built using a Bayesian network that consists of two types of hodes: one aimed at assessng
the dfedivenessof the student’s exploratory behaviour (exploratory nodes) and the other representing the student’s
understanding of the @mncepts in the domain. Exploratory nodes in the network represent exploratory behaviour at
different levels of granularity (seeFigure 5): the dfedivenessof the student’s overall exploration, the exploration of
individual units, the eploration of individual exercises, and the eploration of concepts, such as dopes and
intercepts. Concepts are modeled in the network in a hierarchical fashion. For example, the general concept of sope
exploration consists of the more spedfic concepts, the exploration of positive slopes, negative dopes and the zero
sope.

In order to assessthe dfedivenessof the student’ s exploratory behaviour, the Student Model looks for evidence
that the student is exploring the sali ent concepts present within an exercise, referred to asrelevant exploration cases.
The relevant exploration cases for a particular exercise are dependent on bath the airrent unit and current function
being explored. For example, in the Machine and Switchboard wnits, the student should explore al of the different
categories of inputs available, such as snall positive inputs, large positive inputs, small negative inputs, large
negative inputs and zero. We bdlieve the exploration of these ategoriesisimportant because the student should see
how the function behaves given a wide range of inputs. In the Plot unit, the student should explore how modifying
each of the different properties of the function (e.g. sope) changes the shape of the graph and vice-versa.



The Student Model uses evidence that each relevant exploration case has been sufficiently explored in two
ways. Thefirst isto produce an assesanent of how well the student has explored a particular exercise, by feeding the
nodes representing the individual exploration cases into the node representing the exploration of that exercise. The
system also uses the relevant exploration cases to produce a more general assessment, by feading the exploration
case node into nodes representing concepts that appear in multiple exercises. Asthe system does not know ahead of
timethe exact number and nature of exercisesthat the student will visit (sincethe student can jump around using the
Lesson Browser), each exercise node and its associated case nodes are added to the network dynamically at run-time
when the student begins a new exercise.

Figure 5 shows an example
portion of the network for the plot
unit, which shows that the student has
visited two exercises, as indicated by
the “Exercise 1 Exploration” and
“Exercise 2 Exploration” nodes. In the
first exercise, the sudent was
presented with a constant function,
which has as relevant exploration
cases positive intercepts (labeled
“Exercise 1 Case 1" in Figure 5) and
negative intercepts (labeled “Exercise
1 Case2"). In the second exercise, the
student was presented with a linear
function, which has as reevant
exploration cases positive intercepts,
negative intercepts, positive sopes,
negative dopes and the zero dope
(labeled “Exercise 2 Case 1" through
] ] ] “Exercise 2 Case 5" respedively in

FHaure5 Aedarplepartion d the Bayesan Netwark far thepld unit. Figure 5). These @ses are used to

update the nodes representing the

exploration of the related general concepts (“Posintercept Exploration”, “Negintercept Exploration”, “PosSlope

Exploration”, “ZeroSope Exploration” and “NegSlope Exploration” in Figure 5) and the student’s exploration of
each individual exercise.

The other type of nodes found in the network represent the student’s knowledge of function related concepts.
Whilethereis some procedural knowledge imbedded in the domain (such as techniques of algebraic manipulation),
the Student Model focuses on dedarative knowledge such as understanding of intercepts, slopes, and constant
functions. The etent of the student’s explorationsisin part used to judge how well the student seansto understand
the material. The exercises in the Switchboard all ow the students to demonstrate their knowledge diredly, although
these are the only exercises with any notion of corredness

2.3 THE COACH

In order to remain consistent with the phil osophy of exploratory learning environments, it is crucial that the
Coach supports gudent exploration as unohtrusively as possble. An additional goal is to ensure that even passve
learners who are not exploratory by nature will benefit from interaction with the system. Thus, the Coach is
designed to support the exploration processby providing dfferent levels of guidance according to the needs of the
individual learner.

Thefirst level of guidance onsists of a generic suggestion to continue exploring when a student tries to leave
an exercise before having adequately explored it. Currently, the Coach does not interrupt a student’ s exploration of
an exercise. Oncethe students sgnal that they are done exploring, by pressng the “Next exercise’ button, the Coach
examines the students’ behaviour in order to dedde whether the exploration is stisfactory. In order to do so, the
Coach queries the Student Modd for two pieces of information: the probability that the student has adequately
explored the airrent exercise and the probabiliti es for relevant exploration concepts. The Coach remains glent if
either the arrent exercise eploration is stisfactory (i.e. the related probebility is above a pre-determined
threshold), or all of the associated exploration concept probabiliti es are satisfactory. The idea is that if the student
has explored the arrent exercise poorly, but has previously explored the related concepts well, then the Coach




remains slent. If the student does not med either of these two criteria, then amessageis shown, suggesting that the
student explore more. This message does not contain any concrete information asto what the student should explore,
but includes a suggestion to ask for a hint. We omitted any spedfics from this message because we wanted the
students to be as sf-direded as posshle in the exploration process and so, to take initiative in obtaining hints.
Since we want to maintain a high level of learner contral, the student may always choose to disregard the Coach’s
sugeestion and leave the eercise at any point. If a student does dedde to stay, a suggestion is made to goen the
Exploration Assstant (currently, only in the Machine and Switchboard units). The Exploration Asdstant isatod to
help students regulate their exploration process by categorizing and dsplaying their current exploratory actions.
Figure 6 shows the tod open for an exercise in the Machine unit. Thetod has organized the variousinputs that the
student has explored into rel evant categoriesrepresented in the Student Model (such as Small -Positi ve-Range inputs,
Zero inputs, €c).

Vol have Tried These inputs | As gudents explore, they can ask for a hint. The Coach generates
one dynamically by traversing the oncept hierarchies that are stored in

SEIHERED Ll the Student Modd in a batom-to-top, left-to-right manner. The
traversal includes only those hierarchies which contain concepts

S EREe - lI iI relevant to the arrent exercise, and stops when an unexplored concept
is found. Each applicable @mncept has a dired mapping to a hint objed,

z2r0 Ll which contains a template for a progresson of suggestions on how to
explore that concept; these suggestions gart off very general, and

large-range + ﬂ beaome more spedfic. Thus, once the unexplored concept is found, the
corresponding hint ohjed is used to generate the hint. The Student

large-range - oy e Model continues to assessthe student’ s actionsin between hint requests,
—I —I and so this traversal is performed every time a hint is requested. This

method all ows the Coach’s suggestions to remain consistent with the

current status of the student’ s exploration.

We will ill ustrate the hint procedure by going back to the example
in the previous ®dion. Let's suppose our student is working with a
linear function, has already explored bath positi ve and negative intercepts extensively, and has just requested a hint.
In order to generate the hint, the Coach first traversesthe exploration-related concept hierarchiesthat arerelevant to
the arrrent exercise. In this exercise, the traversal begins with the hierarchy containing nodes related to intercept
exploration (see ‘Intercept Exploration” nodes in Figure 5). Since the positive-intercept, negative-intercept and
general intercept exploration node probabiliti es are satisfactory, the Coach moves on to examine the slope-concept
hierarchy, starting with the “PosSlope Exploration” in Figure 5. This concept has a probability below the
satisfactory threshold, and so the traversal stops here. The hint objed tied to this nodeis used to generate the hint. A
hint counter is used to determine the level of hint shown to the student - sincethisis thefirst hint request for this
concept, alevel 1 hint is srown. Our student requests two more hintsin successon. Oncethefinal level of hint has
been shown (in this case level 3), the hint counter is reset. The hint window containing al threelevels of hints
related to slope exploration is sown in Figure 7.

Figure 6: Exploration Asdstant
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Figure 7: The Hint Window

3 EmMPIRICAL EVALUATION OF ACE
3.1 EXPERIMENTAL DESIGN

The target population for ACE is high schod students who are beginning to learn about functions. Thus, to
evaluate if and how the arrent version of ACE influences sudents learning, we were planning to run a study with
grade 11 students from alocal schod. Unfortunately, due to unforeseen last-minute scheduling dfficulties with the



schod, we were unable to carry out the study with these subjeds and had to resort to first year undergraduate
studentsin our university. We only accepted subjeds who were not currently taking any math courses, nor had done
so within the past year. Nonetheless several of our subjeds $rowed very good function knowledge. Because only 14
subjeds sgned upfor the study and because several subjeds $owed a cdling effed in the pre-test, a two-groups
design was unlikely to give any reliable information on ACE. Thus, we dedded to use all of the 14 subjedsin one
experimental group, to gain an initial understanding of how and if system usage affeds learning.

The one-sesson study was carried out in our computer science research lab. Each student used ACE for 30
minutes. To gauge students' learning, we gave them an equivalent paper-and-pencil pre-test and post-test. Thetests
consisted of 39 questions equally divided into categories of function output reagnition and generation, graph
property recogniti on, equation property reaognition, and eguation—graph correspondence In addition, the students
wrote a 9-item questionnaire to assesstheir subjedive experiencewith ACE.

Each sesson was observed by one of the team members, who recrded data on observer sheds. ACE itsdlf also
produced log files of the students interaction. From these files, we extracted a number of interaction events,
including: 1) number of exercises passed (an exercise was passed if ACE |et the student leave it because the Student
Model indicated sufficient exploration); 2) total number of exploration hintsthat students requested; 3) average level
of hint accessed by each subjed; 4) total exploratory actions performed. In the next sedion, we report results from
the analysis of the log fil es, questionnaire and observer sheds.

3.2 RESULTS

Effea of ACE on learning. First of all, we wanted to verify if the interaction with ACE triggered any learning at
al. It did, as we found a statistically significant difference (p = 0.013) between the pre-test average (78.4%) and
post-test average (92.3%), despite the fact that 8 out of our 14 subjeds had very high pre-test score. Second, we
wanted to understand how system usage influences learning. Thus, for each of the event counts extracted from the
log files, we ran a regresson analysis with that event count and pre-test scores as independent variables, and post-
test scores as dependent variable!. Pre-test score was always a significant positi ve predictor of post-test scores.

We found the foll owing positi ve predictors of post-test scores (after controlli ng for pre-test) :

1. Total number of exploration hints accessed [p = 0.0406 R°=84.6%.
2. Thenumber of exercises passd [p = 0.0093 R*= 87.9%].

These results provide an initial indication that ACE’s support of the exploratory processdoes improve learning.
Thefirst result confirms that some students do need help when interacting with an open learning environment. The
seaond result also suggests that the Student Modd accurately predicts when students are ready to move to a new
exercise, because ACE lets gudents leave an exercise without warning only when the Student Model asess that
they have adequately explored it. The abowe results could, of course, also be cused by additional factors (such as
student’s general academic ability or conscientiousnesg that influence the related event counts and post-test
performance Thefact that there is no correation between event countsin 1 and 2 above provides support that thisis
not the @ase, but only aformal study can show this more reliably.

Thetotal number of exploratory actions that students performed was not a significant predictor of learning. This
might be due to a tendency to “over-explore’ that we noticed in several students. When these students receved a
hint from the system to stay and explore more, they stayed. If the avail able exploratory cases were obvious (as with
the Machine and Switchbaard units), they tended to try every avail able ase, even those related to concepts that they
had already explored. Redundant explorations likely did not contribute to improving the student’ s understanding,
which explains the lack of correlation between number of exploratory actions and learning. Over-exploration is
consistent with one of the problems gudents have in open learning environments: the inability to monitor on€'s
progressduring the exploration process[15].

The system’s Exploration Asdstant is gedfically designed to help students monitor their exploration by
showing which relevant exploration cases have already been tried; athough the system makes gedfic suggestions
to use thistod when providing hints, not asingle subjed did so, posshly because it was rel egated to the tod bar and
labeled with an ambiguousicon. This siggests either re-designing the interface so that the Exploration Asdstant is
more accessble or making ACE explicitly suggest its usage when over-exploration ocaurs.

Anocther relevant result that we ohbtained from the log files showed that the number of times a stay event was
generated was a positive predictor of the number of exploratory actions performed [p = 0.0378, R?= 31.2%]. At
firgt, this may seem like an obvious result: a suggestion is made to explore an exercise further, it is followed, and
thus more exploratory events are generated. However, it is possble that a subjed may choose to stay, insped the
interfacewithout performing any actions, and then move on to the next exercise (thisin fact did happen a number of

! Dueto aur small sample size, we were orly able to include at the most two independent variablesin cur model.



times with one subjed). The fact that stay events were typically followed by exploratory actions indicates that
ACE'sinterventions are successul at encouraging exploration.

Subjeds Perception of ACE. In general, students' answers to the questionnaire indicate that they enjoyed using
the system and found it useful. The degreeto which subjeds found the hints helpful (measured on ascale from 2 to -
2) was a positi ve predictor of their post test scores [p = 0.0339 R* = 85.0%], after controlli ng for the pre-test. This
indicates that the subjeds questionnaire answers were not simply dictated by desire to please (a common
confounding variable in subjedive questionnaires) but reli ably refleded what they really thought.

We also found that the average level of hints requested were predictors of the degreeto which subjedsfound the
hints hel pful [p= 0.0267, R*= 34.7%)]. Thisindicates that although in many casesthefirst, generic level of hint was
sufficient to trigger more exploration (74% of total hints requested were at thefirst level), more detail ed hintswere
useful to the people who neeaded them.

Further qualitative observations from the observer sheds. Exploratory behaviour may be analyzed bath within a
particular exercise and acrossthe entire airriculum. All subjedstraversed the aurriculum sequentially —in fact, only
one tried “jumping around”, and only towards the end of the sesson. The fact that a “Next exercise” button was
considerably more accesshle than the Leson Browser doubtlesdy encouraged this behaviour. We suggest a
redesign of the interface - in particular, making the Lesoon Browser more visible or available would likdy
encourage a lesslinear approach to the aurriculum.

Although we did find a positive relationship between learning and the number of hints used, hints were not
requested as often as sibjeds eamed to be neading them. A number of subjeds indicated that they had forgotten
about the hints-this suggeststhat theinterface should emphasize that hints are avail able. On the other hand, we also
believe that some students smply have atendency not to ask for help. These students either flounder, in which case
the system should react to long pauses and ‘wandering’, or move on, without learning the required concepts. In these
cases the system should intervene more aggressvely, until it becomes apparent that the student has taken charge of
their own learning. Thiswill haveto be investigated in further studies.

Finally, by observing the students’ interaction with the system, we reali zed that even individuals that know the
material and explore adequately need reassurance at times that they arein fact “doing theright thing”. Thistype of
support is not related to knowledge provision, either domain- or exploration-spedfic, but rather is a form of
emotional support for the students. Currently, the system indicates when the student has explored enough by telling
her “goad job’ only when the student asks to move to the next exercise, but not asthe student isexploring. In future
versions, we will explore ways of identifying students who require this type of support, and means of providing it.

4 CONCLUSIONSAND FUTURE WORK

We have presented a prototype intéeligent exploratory learning environment, ACE (Adaptive Coach for
Exploration), whose goal isto provide tail ored adaptive support to student exploration. ACE aimsto addressone of
themain limitations of open learning environments: that students who do not already possessthe @pability tolearn
through autonomous and unconstrained exploration generally do not learn as effedively from these environments.

The approach we todk to owercome this limitation involves three steps. providing students with highly
graphical tods designed to encourage the exploration of domain concepts (related to mathematical functionsin the
current application); monitoring the student’s exploration, to alow a probabili stic Student Model to assess the
effedivenessof the student’s exploratory process using the Student Model’ s assessment to dired the interventions
of an exploration Coach. The Coach provides bath unsolicited encouragements to explore more and hints on
demand, tailored to improving the dfedivenessof students exploratory behaviour, with particular emphasis on
guiding students who do not take the initi ative to explore.

We described a preliminary study to evaluate ACE's effed on learning. The study shows that ACE does
trigger learning, as e in a significant increase in test scores following usage. Regresson analyses of posttest
scores on different interaction events and pretest score suggest that, as subjeds explored the system more and asked
for more hints, their learning increased. Subjeds who requested hintsin greater depth found them useful. The study
also uncovered various ways to make ACE’ s interface and tail ored support more dfedive, which wewill i nvestigate
in future versions of the system.

Because the study we mnducted dd not have a control group, the results we report do not tell us how relevant
ACE'’s tail ored support is to triggering students exploration and learning — perhaps the same results could be
obtained with the ACE interfacealone. To addressthisisale, we are planning to conduct a more formal study with
grade-11 students who represent our initial target population.

Future work on ACE includes designing additional activities to encourage students’ exploration. We will also
focus on improving the ACE’s gudent modeling in two ways. First, we would like to use eye-tracking technology



to add data on user attention to the esidence used to assess exploratory behaviour. The second enhancement
involves enriching the modd’s representation of exploratory behaviour by including additional user’s features that
influence this behavior, such as motivation and relevant meta-cognitive skill s (e.g., self-explanation). This will
enable the modd to diagnose the cuses of poar exploration and to support tutorial interventions that spedfically
target these @uses.
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