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Abstract

This paper presents invariants under gamma correction and
similarity transformations. The invariants are local features
based on differentials which are implemented using deriva-
tives of the Gaussian. The use of the proposed invariant rep-
resentation is shown to yield improved correlation results in
a template matching scenario.

1 Introduction

Invariants are a popular concept in object recognition and
image retrieval [1, 2, 7, 10, 14, 15]. They aim to provide de-
scriptions that remain constant under certain geometric or ra-
diometric transformations of the scene, thereby reducing the
search space. They can be classified into global invariants,
typically based either on a set of key points or on moments,
and local invariants, typically based on derivatives of the im-
age function which is assumed to be continuous and differ-
entiable.

The geometric transformations of interest often include
translation, rotation, and scaling, summarily referred to as
similarity transformations. In a previous paper [12], build-
ing on work done by Schmid and Mohr [11], we have pro-
posed differential invariants for those similarity transforma-
tions, plus linear brightness change. Here, we are looking at
a non-linear brightness change known as gamma correction.

Gamma correction is a non-linear quantization of the
brightness measurements performed by many cameras dur-
ing the image formation process.1 The idea is to achieve bet-
ter perceptual results by maintaining an approximately con-
stant ratio between adjacent brightness levels, placing the
quantization levels apart by the just noticeable difference.
Incidentally, this non-linear quantization also precompen-
sates for the non-linear mapping from voltage to brightness
in electronic display devices [4, 9].

1Historically, the parameter gamma was introduced to describe the non-
linearity of photographic film. Today, its main use is to improve the output
of cathode ray tube based monitors, but the gamma correction in display
devices is of no concern to us here.

Gamma correction can be expressed by the equation

��������� �
(1)

where
�

is the input intensity,
� �

is the output intensity, and�
is a normalization factor which is determined by the value

of � . For output devices, the NTSC standard specifies � �	�
 	�	
. For input devices like cameras, the parameter value is

just inversed, resulting in a typical value of � �����	�
 	�	����
 ���
. The camera we used, the Sony 3 CCD color camera

DXC 950, exhibited ��� ��
��
.2 Fig. 1 shows the intensity

mapping of 8-bit data for different values of � .
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Figure 1: Gamma correction as a function of intensity.
(solid) � ��

; (dashed) � ����
 ���
; (dotted) � ��	�
�	�	

.
Note how, for �!  , the lower intensities are mapped onto
a larger range.

It turns out that an invariant under gamma correction can
be designed from first and second order derivatives. Addi-
tional invariance under scaling requires third order deriva-
tives. Derivatives are by nature translationally invariant.
Rotational invariance in 2-d is achieved by using rotationally
symmetric operators.

2Martin [6] reports the settings of "�#!$&% ')(�*+$,% (-$,*+$,% ./$ for the Kodak
Megaplus XRC camera



2 The Invariants

The key idea for the design of the proposed invariants is to
form suitable ratios of the derivatives of the image function
such that the parameters describing the transformation of in-
terest will cancel out. This idea has been used in [12] to
achieve invariance under linear brightness changes, and it
can be adjusted to the context of gamma correction by – at
least conceptually – considering the logarithm of the image
function. For simplicity, we begin with 1-d image functions.

2.1 Invariance under Gamma Correction

Let 0214365 be the image function, i.e. the original signal, as-
sumed to be continuous and differentiable, and 0 � 14365 �� 0214365 � the corresponding gamma corrected function. Note
that 0718395 is a special case of 0 � 14365 where � �:���; . Taking
the logarithm yields<0 � 14365 �>=+? 1 � 0718395 � 5 �@=+?A�CB � =+? 0214365 (2)

with the derivatives
<0�D� 14365 � �E0�DF14365 � 0718395 , and

<0�DGD� 14365 ��H180718395�0�DID814365KJL0�DM14365FN�5 � 0718395ON . We can now define the in-
variant PRQ N � under gamma correction to be

PRQ N � 140214365F5 =
ST�UV�W+X�YST U UV7W+X�Y

=
"HZ U+[�\-]Z [ \-]"HZ [�\-] Z U U [�\-]8^ Z U [�\-]`_Z [�\-] _

=
T W+X�Y T U W`X�YT W+X�Y T U U W`X�Yba T U W+X�Y _

(3)

The factor
�

has been eliminated by taking derivatives, and� has canceled out. Furthermore, PRQ N � turns out to be com-
pletely specified in terms of the original image function and
its derivatives, i.e. the logarithm actually doesn’t have to be
computed. The notation PRQ N � 140214365F5 indicates that the in-
variant depends on the underlying image function 0718395 and
location 3 – the invariance holds under gamma correction,
not under spatial changes of the image function.

A shortcoming of P Q N � is that it is undefined where the
denominator is zero. Therefore, we modify PRQ N � to be con-
tinuous everywhere:

0 if 0E0�D �c�ed 0f0�D�D�J�0�D N �g�PEh�Q N � � TKT�UTiT U U a T U _ if j 0�0�DFj� �j 0k0�D�D�Jl0�D N jTiT U U a T U _TKT U else (4)

where, for notational convenience, we have dropped the
variable 3 . The modification entails J km P�h�Q N � mn .
Note that the modification is just a heuristic to deal with
poles. If all derivatives are zero because the image function
is constant, then differentials are certainly not the best way
to represent the function.

2.2 Invariance under Gamma Correction and
Scaling

If scaling is a transformation that has to be considered, then
another parameter o describing the change of size has to be
introduced. That is, scaling is modeled here as variable sub-
stitution [11]: the scaled version of 0214365 is pq14oK395 � pr18s95 .
So we are looking at the function<0 � 18395 �>=+? 1 � 0718395 � 5 �>=+?A�CB � =+? pq14oK395 �;<p � 18s95
where the derivatives with respect to 3 are

<p�D� 14s65 �
�9otp�DM18s95 � pr18s95 , <p�D D� 18s95 � �9oKN�1+pr18s95�p�D�DM14s652J!p�DM14s65FN�5 � pr14s65FN ,
and

<p�D�D D� 18s95 � �6o7uv1+p�D�D DM14s65 � pr18s95wJyxip�DM14s65�p�D�DM18s95 � pr18s95ON B	 p�DM14s65Mu � pr14s65Mu,5 . Now the invariant PRQ NOu � 1+pq14s65F5 is obtained
by defining a suitable ratio of the derivatives such that both� and o cancel out:

P Q NFu � 1zpr14s65F5 =
S{ UV W+|�Y S{ U U UV W+|�YS{ U�UV W+|�Y _

=
{ _ { U { U U U aq} {9{ U _ { U U`~K� { U��{ _ { U U _ a � {9{ U _ { U�U ~ { U�� (5)

Analogously to eq. (4), we can define a modified invariant

0 if cond1P h�Q NFu �H� { _ { U { U U U aq} {6{ U _ { U U ~K� { U �{ _ { U U _ a � {6{ U _ { U U ~ { U � if cond2{ _ { U U _ a � {6{ U _ { U UG~ { U��{ _ { U { U U U aq} {6{ U _ { U U ~K� { U � else (6)

where condition cond1 is p�NOp�D/p�D�D�D�JLx2pAp�D N p�D D B@	 p�DI� �>�d p�N�p�D D N J 	 pAp�D N p�D�D B p�D+� ���
, and condition cond2 isj p�N�p�D�p�D�D�D�JLx2pAp�D N p�D D B@	 p�DI��j� �j p�N�p�D�D N J 	 pip�D N p�D�D B p�D+��j .

Again, this modification entails J �m P h�Q NOu ��mn .
2.3 An Analytical Example

It is a straightforward albeit cumbersome exercise to verify
the invariants from eqs. (3) and (5) with an analytical, differ-
entiable function. As an arbitrary example, we choose

0214365 � x�3e�O� ? 1 	�� 365 B x �
The first three derivatives are 0�DM14365 � xK�O� ? 1 	�� 365 B��� 3e�/���)1 	�� 395 , 0�D�D�18395 ��)	�� �/���)1 	�� 365vJ �	�� N/3w�F� ? 1 	�� 365 ,
and 0�D�D�D418395 � Jwx ��� N��F� ? 1 	�� 395�J 	,��� u,3e�����)1 	�� 365 . Then,
according to eq. (3), P Q N � 140214365F5 � 14x�3w�F� ? 1 	�� 365 Bx � 5q18x�3e�O� ? 1 	�� 365 B ��� 3e�/���)1 	�� 365F5 � 1O14x�3e�F� ? 1 	�� 365 Bx � 5q1 )	�� �/���,1 	�� 365�J �	�� N/3w�F� ? 1 	�� 395O5�J�18xK�F� ? 1 	�� 365 B��� 3e�/���)1 	�� 395O5FN�5 .

If we now replace 0718395 with a gamma corrected version,
say 0,��� �/� 14365 � 	���� Q-�r��� �/��� x�3e�O� ? 1 	�� 395 B x � 5 �/� �/� ,
the first derivative becomes 0�D��� �/� 14365 � 	���� ��� �-�����
 ��� 14x��F� ? 1 	�� 365 B x � 5 �r��� �-� 14xK�O� ? 1 	�� 365 B���� 3w�/����1 	�� 395O5 ,



the second derivative is 0�DID��� �/� 18395 � J 	���� ��� �������
 ��� � ��
���� 18xK�F� ? 1 	�� 395 B x � 5 �2Q�� �-� 14x��F� ? 1 	�� 395 B��� 3w�/����1 	�� 365F5ON B 	���� ��� �-� � ��
 ��� 18x�3e�O� ? 1 	�� 395 Bx � 5 �r��� �-� 1 �	�� �/����1 	�� 395�J )	�� N/3e�O� ? 1 	�� 395O5 , and the third
is 0�DID D��� �/� 18395 ��	���� ��� �-�E� ��
 ��� 18xK�F� ? 1 	�� 365 B x � 5 �r��� �-� 1 �
���� ���
���� 14xK�O� ? 1 	�� 395 B x � 5 � N&14xK�O� ? 1 	�� 365 B@��� 3e�/���)1 	�� 395O5Mu B1MJEx�5 � ��
���� 14xK�O� ? 1 	�� 365 B x � 5 �7Q 14xK�O� ? 1 	�� 365 B��� 3w�/����1 	�� 365F5�1 )	�� �/����1 	�� 365 J �	�� N/3w�F� ? 1 	�� 395O5 B1MJEx ��� N6�F� ? 1 	�� 365�J 	,��� u)3e�/���,1 	�� 365F5O5 . If we plug these
derivatives into eq. (3), we obtain an expression forP Q N � 180 �/� �/� 14365F5 which is identical to the one for P Q N � 180718395O5
above. The algebraically inclined reader is encouraged to
verify the invariant P Q NFu � for the same function.
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Figure 2: An analytical example function. (left) 0718395 �x�3w�F� ? 1 	�� 365 B x � ; (right) 0 � 14365 ��� 0718395 � , � ����
 ���
.

(first row) original functions (second row) first derivatives;
(third row) second derivatives; (fourth row) third deriva-
tives; (fifth row) P�hEQ N � ; (sixth row) P�hEQ NOu � .

Fig. 2 shows the example function and its gamma cor-
rected counterpart, together with their derivatives and the
two modified invariants. As expected, the graphs of the in-
variants are the same on the right as on the left. Note that the

invariants define a many-to-one mapping. That is, the map-
ping is not information preserving, and it is not possible to
reconstruct the original image from its invariant representa-
tion.

2.4 Extension to 2-d

If P h�Q N � or P hEQ NOu � are to be computed on images, then
eqs. (3) to (6) have to be generalized to two dimensions.
This is to be done in a rotationally invariant way in order
to achieve invariance under similarity transformations. The
standard way is to use rotationally symmetric operators. For
the first derivative, we have the well known gradient magni-
tude, defined as   1432¡-¢�5 ��£ � N¤ B�� N¥�¦ ��� D (7)

where
� 1837¡-¢�5 is the 2-d image function, and

� ¤ , � ¥ are partial
derivatives along the x-axis and the y-axis. For the second
order derivative, we can use the linear Laplacian  N 1837¡-¢�5 �c� ¤)¤ B@� ¥�¥ ¦ ��� D�D (8)

Horn [5] also presents an alternative second order derivative
operator, the quadratic variation3

§E¨ 1837¡-¢�5 � £ � N¤)¤ B@	�� N¤)¥ B�� N¥�¥ (9)

Since the QV is not a linear operator and more expensive to
compute, we use the Laplacian for our implementation. For
the third order derivative, we can define, in close analogy
with the quadratic variation, a cubic variation as©v¨ 1837¡-¢�5 ��£ � N¤)¤�¤ B x � N¤�¤�¥ B x � N¤�¥/¥ Bª� N¥/¥/¥H¦ ��� D�D�D

(10)

The invariants from eqs. (3) to (6) remain valid in 2-d if
we replace 0�D with

� D , 0�D�D with
� DID , and 0�D�D D with

� D�D D . This can
be verified by going through the same argument as for the 1-d
functions. Recall that the critical observation in eq. (3) was
that � cancels out, which is the case when all derivatives re-
turn a factor � . But such is also the case with the rotationally
symmetric operators mentioned above. For example, if we
apply the gradient magnitude operator to

<� 1432¡�¢�5 , i.e. to the
logarithm of a gamma corrected image function, we obtain

 �� £ <� N¤ B <� N¥ �;« 1¬� � ¤��5 N B 1¬� � ¥��5 N � � £ � N¤ B�� N¥�
returning a factor � , and analogously for

  N , QV, and CV. A
similar argument holds for eq. (5) where we have to show, in
addition, that the first derivative returns a factor o , the sec-
ond derivative returns a factor oiN , and the third derivative
returns a factor o2u , which is the case for our 2-d operators.

3Actually, unlike Horn, we have taken the square root.



2.5 Differential Operators

While the derivatives of continuous, differentiable func-
tions are uniquely defined, there are many ways to imple-
ment derivatives for sampled functions. We follow Schmid
and Mohr [11], ter Haar Romeny [13], and many other re-
searchers in employing the derivatives of the Gaussian func-
tion as filters to compute the derivatives of a sampled image
function via convolution. This way, derivation is combined
with smoothing. The 2-d zero mean Gaussian is defined as � 	���® N�¯ �v°�±-²�³M±±8´ ± (11)

The partial derivatives up to third order are
 ¤ � JE3 ��® N  , ¥ � JE¢ ��® N  ,

 ¤�¤ � 1839N�J ® N/5 ��® �  ,
 ¤�¥ � 39¢ ��® �  , ¥/¥ � 18¢�NµJ ® N/5 ��® �  ,

 ¤�¤�¤ � 14x ® N)3:J�3�u)5 ��®q¶  , ¤�¤)¥ � 1 ® N�¢�Jy36N�¢�5 ��®q¶  ,
 ¤)¥�¥ � 1 ® N�3µJ�39¢�N)5 ��®q¶  , ¥/¥/¥ � 14x ® N ¢�J�¢ u 5 ��® ¶  . They are shown in fig. 3. We

used the parameter setting
®��·�
 �

and kernel size ¸�¹�¸ .
With these kernels, eq. (3), for example, is implemented asº�» _ Vf¼ ½K¾ ¿4½ÁÀÃÂ \�Ä _7Å ¿4½AÀÃÂeÆ Ä _½�¿4½AÀÇÂ \-\ Å ½AÀÃÂ Æ-Æ Ä�È ¿M¿4½ÉÀÇÂ \ Ä _ Å ¿4½AÀÃÂ Æ Ä _ Ä
at each pixel 1432¡�¢�5 , where Ê denotes convolution.

Figure 3: Partial derivatives of the 2-d Gaussian. (first row) ¤ ,  ¥ ,  ¤)¤ ; (second row)
 ¤�¥ ,  ¥/¥ ,  ¤�¤�¤ ; (third row) ¤�¤)¥ ,  ¤�¥/¥ ,  ¥�¥/¥ .

3 Experimental Data and Results

We evaluate the invariant P hEQ N � from eq. (4) in two different
ways. First, we measure how much the invariant computed
on an image without gamma correction is different from the
invariant computed on the same image but with gamma cor-
rection. Theoretical, this difference should be zero, but in
practice, it is not. Second, we compare template matching
accuracy on intensity images, again without and with gamma
correction, to the accuracy achievable if instead the invariant
representation is used. We also examine whether the results
can be improved by prefiltering.

3.1 Absolute and Relative Errors

A straightforward error measure is the absolute error,Ë�Ì7Í 18ÎF¡bÏ&5 � j P Ì2Í 14ÎO¡bÏ&5�JlPk� Ì7Í 18ÎF¡bÏ&5�j (12)

where ”0GC” refers to the image without gamma correction,
and GC stands for either ”SGC” if the gamma correction is
done synthetically via eq. (1), or for ”CGC” if the gamma
correction is done via the camera hardware. Like the invari-
ant itself, the absolute error is computed at each pixel lo-
cation 14ÎO¡MÏ�5 of the image, except for the image boundaries
where the derivatives and therefore the invariants cannot be
computed reliably.

Figure 4: Example image WoBA: (a) no gamma correction,
“0GC”; (b) gamma correction by camera, “CGC”; (c) syn-
thetic gamma correction, “SGC”.

Fig. 4 shows an example image. The SGC image has
been computed from the 0GC image, with � �Ð��
��

. Note
that the gamma correction is done after the quantization of
the 0GC image, since we don’t have access to the 0GC im-
age before quantization.

Fig. 5 shows the invariant representations of the image
data from fig. 4 and the corresponding absolute errors. SinceJ km P�h�Q N � mn , we have

�Rm Ë�Ì7Í my	
. The dark points

in fig. 5, (c) and (e), indicate areas of large errors. We ob-
serve two error sources:Ñ The invariant cannot be computed robustly in homoge-

neous regions. This is hardly surprising, given that it is
based on differentials which are by definition only sen-
sitive to spatial changes of the signal.
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Figure 5: Absolute errors for invariant P hEQ N � , no pre-
filtering. (a) image WoBA, 0GC; (b) P � Ì7Í ; (c)

Ë Í2Ì7Í
;

(d) P Í2Ì7Í ; (e)
Ë�Ò Ì2Í

; (f) P Ò Ì7Í .

Ñ There are outliers even in the SGC invariant represen-
tation, at points of very high contrast edges. They are a
byproduct of the inherent smoothing when the deriva-
tives are computed with differentials of the Gaussian.
Note that the latter put a ceiling on the maximum gra-
dient magnitude that is computable on 8-bit images.

In addition to computing the absolute error, we can also
compute the relative error, in percent, asÓ Í7Ì2Í 14ÎO¡bÏ&5 �;)��� Ë�Í2Ì7Í 14ÎO¡MÏ�5 � Pk� Ì7Í 14ÎO¡MÏ�5

(13)

Then we can define the set ÔEÕAÖ of reliable points, relative to
some error threshold × , as

ÔEÕ Ö �ÙØ 14ÎO¡bÏ&57j Ó 14ÎO¡bÏ&5 m ×/Ú (14)

and ÕAÔEÕ Ö , the percentage of reliable points, as

ÕAÔEÕAÖ �;)��� j ÔEÕKÖ)j �AÛ (15)

(a) (b) (c)

(d) (e) (f)

Figure 6: Reliable points ÔEÕ Ö for invariant P h�Q N � , in black,
image WoBA, without and with prefiltering. (a)

®�Ü�Ý�Þ
=0, × =

5.0; (b)
®�Ü�Ý-Þ

=0, × =10.0; (c)
®�Ü�Ý-Þ

=0, × =20.0; (d)
®�Ü�Ý�Þ

=1.0,× = 5.0; (e)
® Ü�Ý�Þ

=1.0, × =10.0; (f)
® Ü�Ý-Þ

=1.0, × =20.0.

where
Û

is the number of valid, i.e. non-boundary, pixels in
the image. Fig. 6 shows, in the first row, the reliable points
for three different values of the threshold × . The second row
shows the sets of reliable points for the same thresholds if we
gently prefilter the 0GC and CGC images. The correspond-
ing data for the ten test images from fig. 11 is summarized in
table 1.

image 5.0 10.0 20.0 5.0 10.0 20.0
Build 13.3 24.9 43.8 16.0 29.5 49.3
WoBA 15.6 29.0 48.2 19.0 35.7 58.9
WoBB 16.5 28.7 47.1 21.4 37.7 58.1
WoBC 18.5 33.6 53.5 24.0 41.4 65.3
WoBD 13.0 23.9 41.9 16.7 32.6 55.6
Cycl 15.4 28.3 45.9 22.6 38.8 57.6
Sand 14.5 27.2 44.7 22.0 38.5 57.6
ToolA 5.6 10.7 20.1 7.4 14.7 27.1
ToolB 6.1 12.0 22.7 8.3 15.7 28.6
ToolC 5.6 11.1 20.8 7.9 15.1 28.3
median 13.9 26.1 44.3 17.9 34.2 56.6
mean 12.4 22.9 38.9 16.5 30.0 48.6

Table 1: Percentages of reliable points for P�h�Q N � , CGC im-
ages, for × =5.0, 10.0, 20.0. The three numerical columns
on the left show ÕÉÔEÕAÖ without prefiltering, the three right
columns with Gaussian prefiltering,

® Ü�Ý�Þ
=1.0.

Derivatives are known to be sensitive to noise. Noise can
be reduced by smoothing the original data before the invari-
ants are computed. On the other hand, derivatives should be
computed as locally as possible. With these conflicting goals



to be considered, we experiment with gentle prefiltering, us-
ing a Gaussian filter of size

®�Ü)Ý-Þ
=1.0. The size of the Gaus-

sian to compute the invariant P h�Q N � is set to
®9ß-ÞMÝ

=1.0. Note
that

®�Ü)Ý-Þ
and

®9ß-ÞbÝ
can not be combined into just one Gaus-

sian because of the non-linearity of the invariant.
With respect to the set of reliable points, we observe that

after prefiltering, roughly half the points, on average, have
a relative error of less than 20%. Gentle prefiltering consis-
tently reduces both absolute and relative errors, but strong
prefiltering does not.

3.2 Template Matching

Template matching is a frequently employed technique in
computer vision. Here, we will examine how gamma cor-
rection affects the spatial accuracy of template matching, and
whether that accuracy can be improved by using the invari-
ant P�h�Q N � . An overview of the testbed scenario is given

Θγ Θγ

template

template

search

(correlation)

search

(correlation)

0GC intensity CGC intensity

0GC invariant CGC invariant

Figure 7: The template location problem: A query template
is cut out from the 0GC intensity image and correlated with
the corresponding CGC intensity image. We test if the cor-
relation maximum occurs at exactly the same location as in
the 0GC intensity image. The same process is repeated with
the invariant representations of the 0GC and CGC images.

in fig. 7. A small template of size
� ¹@à , representing the

search pattern, is taken from a 0GC intensity image, i.e. with-
out gamma correction. This query template is then correlated
with the corresponding CGC intensity image, i.e. the same
scene but with gamma correction switched on. If the correla-
tion maximum occurs at exactly the location where the 0GC
query template has been cut out, we call this a correct max-
imum correlation position, or CMCP.

The correlation function á�1837¡-¢�5 employed here is based
on a normalized mean squared difference â,1432¡-¢�5 [3]:á �>ãåä&æ 1 � ¡  JLâ/5
â � ç�è8é ê 1F1 � 143 B ÎO¡-¢ B Ï&52J � 5KJª1ìëC14ÎO¡MÏ�5KJ ëE5O5FN£ ç�è8é ê 1 � 143 B ÎO¡�¢ B Ï�5KJ � 5 N ç>è8é ê 1ìëC14ÎO¡MÏ�5KJ ëE5 N

where
�

is an image, ë is a template positioned at 1837¡-¢�5 ,� 1432¡�¢�5 is the mean of the subimage of
�

at 1837¡-¢�5 of the same
size as ë , ë is the mean of the template, and

��m á mn . The
template location problem then is to perform this correlation
for the whole image and to determine whether the position
of the correlation maximum occurs precisely at 1432¡�¢�5 .
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Figure 8: Matched templates, image WoBA: (left) intensity
data; (right) invariant representation. Black box=query tem-
plate, white box=matched template.
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Figure 9: Correlation matrices, image WoBA. (left) intensity
data; (right) invariant representation.

Fig. 8 demonstrates the template location problem, on
the left for an intensity image, and on the right for its in-
variant representation. The black box marks the position of
the original template at (40,15), and the white box marks
the position of the matched template, which is incorrectly
located at (50,64) in the intensity image. On the right, the
matched template (white) has overwritten the original tem-
plate (black) at the same, correctly identified position. Fig. 9
visualizes the correlation function over the whole image.
The white areas are regions of high correlation.

The example from figs. 8 and 9 deals with only one arbi-
trarily selected template. In order to systematically analyze
the template location problem, we repeat the correlation pro-
cess for all possible template locations. Then we can define
the correlation accuracy CA as the percentage of correctly
located templates,©víEî¬ïqð�î h �;)��� j ©eñò© Õ î¬ïrð�î hHj �AÛ (16)

where ó Û ¹Kó�ô is the size of the template,
©eñÃ© Õ î¬ïrð�î h is the

set of correct maximum correlation positions, and
Û

, again, is
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Figure 10: Binary correlation accuracy matrices, white
pixels= õCö�õC÷ ¶ ð�ø , image WoBA. (a) intensity image,®�Ü�Ý-Þ

=0; (b) intensity image,
®�Ü�Ý�Þ

=1.0; (c) invariant repre-
sentation,

®�Ü�Ý-Þ
=0; (d) invariant representation,

®�Ü�Ý-Þ
=1.0.

the number of valid pixels. We compute the correlation ac-
curacy both for unfiltered images and for gently prefiltered
images, with

®�Ü�Ý�Þk���
��
. Fig. 10 shows the binary correla-

tion accuracy matrices for our example image. The CMCP
set is shown in white, its complement and the boundaries in
black. We observe a higher correlation accuracy for the in-
variant representation, which is improved by the prefiltering.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: Test images: (a) Build; (b) WoBA; (c) WoBB;
(d) WoBC; (e) WoBD; (f) Cycl; (g) Sand; (h) ToolA;
(i) ToolB; (j) ToolC.

image Int/0 Int/1.0 Inv/0 Inv/1.0
Build 85.0 78.0 85.8 89.5
WoBA 55.5 45.0 75.7 80.4
WoBB 39.3 31.0 52.7 57.6
WoBC 67.2 58.3 68.9 78.7
WoBD 31.6 29.2 48.0 67.4
Cycl 60.5 45.4 98.6 99.4
Sand 50.5 40.9 85.2 94.4
ToolA 41.7 35.3 60.2 68.0
ToolB 29.5 23.4 45.7 54.1
ToolC 42.1 27.8 42.5 48.4
median 46.3 38.1 64.6 73.4
mean 50.3 41.4 66.3 73.8

Table 2: Correlation accuracies CA, template size
� ¹Hà , left

columns for intensity data, right columns for the invariant
representation, without and with prefiltering.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 12: Correlation accuracies, (top) template size
� ¹Cà ;

(bottom) template size
�� ¹ �� . The entries at x=1 refer to

Build, at x=2 to WoBA, etc. (circles, lower line) intensity
images; (stars, center line) invariant representation,

® Ü�Ý�Þ
=0;

(diamonds, upper line) invariant representation,
® Ü�Ý�Þ

=1.0.
The markers on the left hand side indicate the means, the
markers on the right hand side the medians.



We have computed the correlation accuracy for all the
images given in fig. 11. The results are shown in table 2 and
visualized in fig. 12. We observe the following:Ñ The correlation accuracy CA is higher on the invariant

representation than on the intensity images.Ñ The correlation accuracy is higher on the invariant rep-
resentation with gentle prefiltering,

® Ü�Ý-Þ ���
��
, than

without prefiltering. We also observed a decrease in
correlation accuracy if we increase the prefiltering well
beyond

® Ü�Ý�Þ �ù�
 �
. By contrast, prefiltering seems to

be always detrimental to the intensity images CA.Ñ The correlation accuracy shows a wide variation,
roughly in the range 30%


�
�

90% for the unfiltered

intensity images and 50%

)
�


100% for prefiltered
invariant representations. Similarly, the gain in corre-
lation accuracy ranges from close to zero up to 45%.
For our test images, it turns out that the invariant
representation is always superior, but that doesn’t
necessarily have to be the case.Ñ The medians and means of the CAs over all test images
confirm the gain in correlation accuracy for the invari-
ant representation.Ñ The larger the template size, the higher the correlation
accuracy, independent of the representation. A larger
template size means more structure, and more discrim-
inatory power.

4 Conclusion

We have proposed novel invariants that combine invariance
under gamma correction with invariance under geometric
transformations. In a general sense, the invariants can be
seen as trading off derivatives for a power law parameter,
which makes them interesting for applications beyond im-
age processing. The error analysis of our implementation
on real images has shown that, for sampled data, the invari-
ants cannot be computed robustly everywhere. Neverthe-
less, the template matching application scenario has demon-
strated that a performance gain is achievable by using the
proposed invariant.
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