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Abstract

The standard method of building compact triangulated surface approzimations to terrain
surfaces (TINs) from dense digital elevation models(DEMs) adds points to an initial sparse
triangulation or removes points from a dense initial mesh. Instead, we find structural lines
to act as the initial skeleton of the triangulation. These lines are based on local curvature
of the surface, not on the flow of water. We build TINs from DEMs with points and
structural lines. These experiments show that initializing the TIN with structural lines at
the correct scale creates a TIN with fewer points given a particular approrimation error.
Structural lines are especially effective for small numbers of points and correspondingly

rougher approximations.

1 Introduction

We begin with dense terrain data specified on a grid of points, a digital elevation model
(DEM). From the DEM we derive a triangulation of points selected from the DEM to
represent the DEM with minimal error. This triangulation is often called a Triangulated
Irregular Network (TIN)[1]. Increasingly these triangulated approximations are used in
surface visualization and interaction where the cost of displaying the surface rises with
the number of triangles in the representation. Building a triangulation based on an initial
skeleton of structural lines representing rapid slope changes reduces the number of points
needed to approximate the terrain with a particular error.

The inspiration for this work comes initially from the curve approximation procedure

of Douglas and Peucker [2] which derives a polygonal curve that approximates a curve



but recursively finding the farthest point from each segment in the current approximation
(Figure 1(a)). In unpublished work, W.R. Franklin (1975) developed a procedure to ap-
proximate a terrain height field by iteratively adding the farthest point from each face in a

recursively constructed triangulated surface (Figure 1(b)).
Figure 1 around here.

Many techniques for approximating a surface, usually a terrain height field, begin by
selecting points that are expected to be critical in the final approximation[3, 4, 5, 6, 7]. The
approximation to the surface is improved by adding points to this initial triangulation.

One particular method, [8], finds in each triangle the point that is most poorly fit by the
current triangulation and adds that point to the Delaunay triangulation[9] of the points.
Iteratively following this process produces triangulations that eventually fit the surface well,
but with many fewer points than the source dense data.

It is clear that this method is not guaranteed to fit the surface well at surface disconti-
nuities or at slope discontinuities, both of which occur frequently in terrain and especially
in range maps produced in computer vision. The literature[3] abounds with counterex-
amples. To avoid these failings, Fowler and Little[8] first identify ridges and channels by
simple local geometric operations[10]. Surface water flows away from ridge lines and toward
channel lines. These lines are then fit by a polygonal approximation[2] and included in the
triangulation by forcing the triangulation to include these lines. Modern methods allow in-
cremental construction of Delaunay triangulation “constrained” by initial line segments[11].
However, any errors in the initial points/lines force the triangulation method to introduce

further points, reducing the savings.
Figure 2 around here.

Schmitt and Chen[12] updated Fowler and Little’s method by first identifying surface and
slope discontinuities and including these lines in the resulting approximation, which uses
their own triangulation criterion. They choose lines based on the local differential structure
of the surface, which is independent of the choice of coordinate system and is not necessarily
coincident with the paths determined by the flow of water[13]. [14, 15] also insert “crest”
lines into adaptive meshes to improve stereo-driven surface approximation. The resulting
lines are not necessary ridges or channels, rather local extrema of curvature (coordinate
system independent). We refer to lines where the local curvature is positive as p-lines and

to lines of negative curvature as n-lines. These comprise the structural lines of the surface.

The p-lines for a section of the Crater Lake, Oregon, USGS 1:24000 DEM (Fig. 2(a)) are



shown in white in Fig. 3, both at medium scale (a) and fine scale (b). The scale of the
DEM is the amount of Gaussian smoothing that has been applied. There are ridges and
channels that do not coincide with structural lines; slope breaks are structural lines that do
not mark ridges or channels. The method of deriving these p-lines and our notion of scale

will be explained in Section 2.
Figure 3 around here.

The significance of surface lines is related to their role in the surface representation.
Building a triangulation based on an initial skeleton of structural lines reduces the number of
points needed to approximate the terrain with a particular error. For hilly terrain (Crater)
including structural lines reduced the size of the TIN by as much as 31%; for smoothly
varying terrain (Yakima), the reduction is as much as 48%. Using structural lines always
reduces the size of the triangulation.

We will first describe how to derive structural lines from local curvature descriptions.
Then we will show how these lines are used in the Constrained Delaunay Triangulation of
the surface, and how to adjust the position of lines found at coarser scales to the correct
position at fine scales. Finally we will present experiments using structural lines in TINs,
showing how smoothing selects the important lines, and how correcting position improves

the compactness of the triangulation.

2 Curvature Descriptions

Figure 4 around here.

In [8], ridges are found by marking the points to which water would flow[10], leaving
unmarked the ridge lines (see Fig. 4(a)). The channels are found by marking points from
which water would flow. Even this method finds many small segments of little importance.
Steger [16] finds watersheds on a smoothed surface by following the gradient direction from
saddle points.

Because of quantization and noise, it is important to filter the surface by smoothing with
a Gaussian filter whose scale is described by the parameter . We compute derivatives with
regard to an underlying continuous surface that has been sampled and quantized. Estimat-
ing derivatives is ill-posed [17], that is, it is unstable in the presence of noise; quantization
itself introduces noise. Gaussian smoothing regularizes the derivative computation, reduc-
ing the instability. Effectively this smoothing, on regularly sampled data, fits a spline to
the surface whose scale is determined by o. Derivatives computed on the smoothed sur-

face vary continuously and the gradient direction is not restricted to the raster directions.



Figure 4(b)) shows the ridge lines after the DEM has been smoothed by a Gaussian filter
with ¢ = 2.5 to reduce quantization effects. Despite the smoothing, the ridge lines are
interrupted by many gaps.

Instead of marking ridges and channels, we determine local surface properties independent
of the coordinate system. We find surface structural lines perpendicular to which surface
slope changes sharply; these include most ridges and channels, as well as slope breaks. Like
[14, 15, 18, 19], we determine the local surface curvature description.

Figure 3 shows the effect of smoothing with different scales at the coarser scale the
curves are better connected and some small curves have been eliminated. When computing
curvature the scale at which the features are computed matters; the scale refers to the
amount of simplification or smoothing of the surface when curvature is computed. Smooth-

ing eliminates small surface perturbations (Fig. 5).
Figure 5 around here.

At each point the tangent plane is computed; it is orthogonal to the surface normal 7.
The surface can be cut by a plane containing 7. Each such plane defines a direction ¢’ in
the tangent plane; the the normal curvature in the direction ¥ is the curvature of the curve
formed by the intersection of the surface and the plane. The principal directions are the
two orthogonal directions {1 and #5 where the value of the normal curvature reaches its
maximum and minimum values, k1 and ky. We choose subscripts so that k; is the curvature
of maximum absolute value and #; and t; are vectors in the local tangent plane pointing
the direction of maximum and minimum curvature.

To compute these quantities, we first locally determine the surface derivatives and from
them the first and second fundamental forms. The curvature and the principal directions
are then computed(see [20]). The principal directions on the surface define a net[21]. At a
slope break, k1 will be large and ko will be small. The surface along such slope break lines
will be approximately cylindrical. Figure 6(a) shows a surface with the local geometrical

structure.
Figure 6 around here.

To find structural lines we determine whether the maximum curvature k; at each point
is locally maximal in the principal direction £1. Figure 6(b) shows the structural lines for a
surface with sinusoidal cross section. Figure 7(a) shows the height image of a paraboloid;
its cross section is an inverted parabola. The image of |k;i| for the paraboloid appears in

(b). The rightmost image shows the points of maximal curvature in direction t;.



Figure 7 around here.
Figure 8 around here.

The image of |k;| for Crater Lake appears in Fig. 8(a); higher values appear darker. We
use non-maximum suppression to identify these points; we look in the direction of maximum
curvature, ¢1, and mark points where |k1| is greater than neighboring points along the line
of curvature in that direction, both forward and backward. The result of non-maximum

suppression is a set of points forming curves, each labeled with |k1| (Fig. 9).
Figure 9 around here.

A p-line is a line connecting points of locally maximal positive curvature. An n-line
is such a line with negative curvature. To find these lines, we track lines and connect
the points, employing hysteresis with thresholding, using the magnitude of the maximum
curvature[22]. The parameters low, high, minlength are based on the distribution of curva-
ture magnitude. Once the points of maximal curvature are linked into curves, points below
low are eliminated. Points above high are kept; points between between low and high are
kept if they are connected to a point above high by points above low. Connected sets of
points are pruned if shorter that minlength points. Tracking, followed by pruning short
lines, produces the p-lines and n-lines shown in Fig. 3; several scales are superimposed in
Fig. 11(a). Eliminating short lines aids in selecting the scale of surface feature that can be
represented by the structural lines.

Compare the p-lines in Fig. 14(a) in black at scale 0 = 4.0 to the p-lines (white) in
Fig. 3(a) at scale 0 = 2.5 and to the p-lines (white) in Fig. 3(b) at scale 0 = 1.0. As o
increases the number of p-lines decreases. As experiments in Section 4 show, smoothing
eliminates creases unimportant to the final triangulation. Here we deal with three scales:

coarse o = 4.0, medium ¢ = 2.5, and fine ¢ = 1.0.
Figure 11 around here.

Most of the structural lines coincide with ridges and channels, i.e., where t3, the principal
direction along the structural line, is parallel to the gradient (dz, dy). In Fig. 9(a), approx-
imately 16.8% of the p-lines at medium scale (2.5) are slope breaks that do not satisfy this

condition.



3 Triangulation

In the original work in this area[8], two innovations were proposed: incremental “greedy”
triangulation of a TIN by inserting points based upon the error in each triangle, and preser-
vation of structural lines found by marking p-lines and n-lines and then generalizing these
3D lines. Incremental improvement is widely used now, together with many variations in
criteria for adding points. We include in each triangle the point (the “worst” point) with
most error in the current approximation.

Many different strategies can be used for determining the order of insertion. [8] proceeded
by inserting the worst point in a triangle if it exceeded a desired error tolerance, continuing
until all points in the DEM were fit within this tolerance by the triangulation.

[3] introduced the idea of “batching” updates. In each triangle, they find the point worst
fit by some criterion, usually the vertical error; these points are the candidate points. Then
they only insert those candidate points whose error exceeds some fraction a of the current
maximum error. In our algorithm, we sort all candidate points and only insert the top
a percent of these points at each pass. « is set at 1 in our experiments. Let n be the
number of points in the DEM, N the desired number of points in the triangulation, and
I the number of points in the initial skeleton. We define § as the ratio of points in the
triangulation after one pass of greedy insertion to the number in the previous triangulation.
There is one candidate point per triangle, whose number is bounded above by twice the
number of points in the current triangulation. Thus § will be approximately 1 4+ 2«; for us

this is 1.02. The number of iterations K is then determined by

N=(@)"1,
and therefore
o loa(N/I)
log 8

For example, our Crater Lake TIN begins with a skeleton of I = 496 points, finishing with
N = 5000 points; K is then estimated as 116.8. In practice there are K = 119 iterations.
N is usually set at some fraction on n, so the number of iterations is proportional to logn.

At each iteration all points in new triangles must be examined. After iteration i there
are INV; points and approximately SN, new triangles to test. There are, on average, n/N;
DEM points per triangle at iteration i. The expected number of DEM points that must be
examined is then fBn, at every iteration, which is O(n).

Inserting a point in a CDT is O(logn). Each of K steps then costs O(nlogn), and
therefore the total cost is O(nlog®n). In practice the triangles to be examined (bounded

by number of points inserted) could be stored in a list, and candidate points stored in a



priority queue. This would would not change the complexity, since O(n) DEM points must
be examined, but would bring significant practical speedup.

The second innovation of [8] is not often used since finding structural lines is complex.
Fowler and Little forced the structural lines into the triangulation after inserting points.
Since that time, Constrained Delaunay Triangulation (CDT) has become well understood so
structural lines will be inserted initially as part of the triangulation. We have the adapted
the incremental CDT software of Dani Lischinski (http://www.cs.huji.ac.il/ danix/)

to insert points based on the error between the current triangulation and the DEM.

3.1 Snakes: Deforming Coarse Scale Lines

Lines found at the medium scale (o = 2.5) may have been displaced by the smoothing
process. Smoothing an asymmetrical hill, where slope on one side is significantly steeper
than the other, will displace the maximum (where the p-line lies) toward the the less steep
side (Fig. 10). When structural lines found after smoothing form the skeleton of the surface,
the triangulation process must include “corrective” points near the p-line to model the actual

location of the crest, increasing unnecessarily the size of the triangulation.
Figure 10 around here.

To move the lines from the smoothed surface to the location of the fine-level line, we use
the “snake” method[23, 24, 25]. The essential idea of snakes is to deform the initial line
until it reaches a new position close to the line at the fine scale. The snake method deforms
the line to minimize the sum of “internal energy”, the energy of stretching the line, and
“external energy”, the energy from the attractive force applied by some external source,
in this case a field derived from the lines at the finer scale. The proximity field for the
fine scale p-lines in Crater Lake appears in Fig. 8(b). We use the actual curvature field
computed at the finer scale (Fig. 8(a)) instead of proximity; the external energy at a point
is —|k1].

Deforming the lines is an iterative process; at each step, each point checks neighboring
points and finds the location that minimizes its local energy. Local solutions are combined
using dynamic programming; we have used the implementation described in [24]. Each
iteration reduces the energy of the curve being deformed and requires O(n) computation.
In our experiments the number of iterations per curve was approximately 5. Figure 12
shows the medium scale lines (black) and the snaked result (white) superimposed on the

local maximum curvature field.

Figure 12 around here.



Several options and issues arise:

e retraction
In a snake the external force field attracts the curves and the stretching of links
between points generates energy as the curve deforms to fit external forces. In an
open curve, (Figure 13) the curve will retract toward local maxima; the retraction
does not retract the lines further. The curve can reduce energy by moving the end
point along the line even if there is an adjacent point; there is no energy increase on
compression. An endpoint at position 0 will move to position 1 only if the reduction
in energy from external forces dE/ = (E1 — Ey) — K is negative; dFE < 0 means the
point will move. E; is the external energy at position 7. K is a coefficient balancing
external and internal forces; —K represent the reduction in stretching energy from
moving one unit. It is set at approximately the average value of gradient of external
force, which is scaled to 255. K is usually set at 10. If the end of the line lies near a
relative maximum of attractive force, the endpoint will move toward the maximum,
along the line, thus shrinking the line. Reducing K to 0 is not a solution, since the

snaked line then wiggles to adjust to small local variations in the curvature field.

e using absolute value of maximum curvature or proximity
The maximum curvature field moves coarser scale lines along the gradient of maximum
curvature. The proximity field (Fig. 8(b)) does not vary in strength along the line,
only away from it. The proximity field does not contain any shape information, only
the spatial location of the fine scale line. In fact, retraction might increase, since

points may move along the fine scale line.

Retraction of lines in Fig. 11(b) reduced the total number of curve points by 28%. The
snake process only considers lines of a certain minimum length; this imposes a scaled con-
straint based on spatial extent in the input data. Retraction appears to be a benefit since
it removes the tails of lines extending into areas that are not significant at fine scale. These

effects are discussed in the next section.

Figure 13 around here.

4 Experiments

To determine whether including structural lines can improve triangulation, we compare
triangulations produced by pure “greedy” triangulation, with no lines (called no lines), with

“greedy” constrained Delaunay triangulation (CDT) with a variety of structural lines.



The various structural lines are:

curvature-based structural lines at fine scale (fine, o = 1.0)
curvature-based structural lines at medium scale (medium, o = 2.5)
curvature-based structural lines at coarse scale (coarse, o = 4.0)
medium scale structural lines corrected to a fine scale (snaked)

coarse scale structural lines corrected to a fine scale (csnaked)

The curvature-based structural p-lines are shown in Fig. 11(a), in white, for the fine scale

(used in fine). The medium scale p-lines (medium) are shown in black in both parts of the

figure; in Fig. 11(b), they appear, in white, corrected to fine scale using the snake method

of Sec. 3.1. These are used in snaked.

Figure 14 around here.

The full process of deriving structural lines is:

1.
2.

smooth the DEM with a Gaussian filter (parameter o)
derive curvature-based lines by computing the absolute value of the maximum curva-

ture (Fig. 8(a)), then find locally maximal points (Fig. 9)

. link the locally maximal points into curves, using thresholding with hysteresis (pa-

rameters low, high, minlength) (Fig. 11(a)). high is set to select a certain percentage
of points in the DEM. low is set to 1.
snake the curves to fine scale, (parameters K and minlength) (Fig. 11(b))

5. simplify the curves in 3D using the Douglas-Peucker method (parameter gen) (Fig. 14)

The time and space complexity of steps one through four are O(n), where n is the number

of pixels in the image. These processes reduce the number of points in the snaked lines to

approximately 5% of n. Step five, curve simplification, is O(n?). Despite this, all five steps

take approximately the same amount of time.

[26] describes how to determine the region surrounding a p-line (or n-line) and then

compute a surface measure that can be integrated over the region or along the line, including,

for example, area, surface area, or slope. Figure 15 shows the connected regions of positive

maximum curvature surrounding p-lines in the central region of the Crater Lake DEM. A

scalar measure of the line or region provides a metric criterion for preferring some structural

lines over others. Structural lines for small surface creases contribute little to the overall

surface structure and need not be included in the initial skeleton.

Figure 15 around here.



Experiments in producing TINs were run on the Crater Lake DEM, running the batched
greedy triangulation (subject to constraints provided by structural lines) and inserting only
the top a = 1 percent of the candidate points. The DEM contains 154224 points, ranging
in height from 1533 to 2478, a height difference of 945. The triangulation stopped when
5000 points, or 3% of the original points, had been included.

Figure 16 around here.
Figure 17 around here.

To understand the effect of using structural lines in the triangulation, we plot the number

of points required as a function of the root-mean-square error (RMSE) in Fig. 16. The

RMSE is computed as 2%1 ‘i at all DEM points i. e; is the difference between the DEM
height at ¢ and the TIN approximation. Fewer points proportionally are required when the
approximation error is large (Fig. 17). The mean-absolute error (MAE) is computed at
points ¢ in the DEM as % The MAE is less sensitive to large errors than the RMSE
and gives a better picture of the behavior of the approximation.

In all cases the results using csnaked, the lines from a coarse scale corrected to a fine
scale by snakes, were superior. The results can be presented in a tabular form. For RMSE,
MAE and MAX (maximum vertical error over the entire TIN), it is clear that the csnaked
TIN uses fewer points than the TIN produced with points alone. Table 2 shows the average
ratio of the number of points in the triangulation produced using each type of structural
line to the number of points in a triangulation with no lines, for various RMSE, MAE and
MAX values. The ranges are, first, a broad set of values, then the error range for fine
approximations, and then for rough approximations. The number of points in the TIN
varies from from 0.43% of the DEM for rough approximations to 3.1% for fine.

Figure 18 shows the triangulations produced by the two methods; the constrained lines
are shown in black and other edges in white. Triangulation (a), without lines, uses 700
points to achieve a fit whose RMSE is 12.5, while the triangulation using structural lines
(b) has the same RMSE with only 556 points, 21% fewer points. The points are more evenly
spread through the DEM in (b), and it may seem that the improved triangulation results
from the better set of initial points. However, the edges are important: including only the
points in csnaked yields an 8-12% reduction instead of 16-23%.

In summary, all structural lines are better than not including lines; csnaked is best, using,
over a broad range, 16% points fewer for RMSE, 21% fewer for MAE, and 34% for MAX.
For rougher approximations (few points and less accuracy), csnaked used 23% fewer for

RMSE, and 31% fewer for MAE. The results using lines for maximum error (MAX) are
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better for fine approximations, where lines reduces the number of points needed by as much
as 44%.

Table 1 around here.

Further experiments tested the benefits of structural lines on terrain regions with large
essentially flat areas, drawn from a section of the USGS 1:24000 DEM for Yakima, Wash-
ington, shown in Fig. 2(b). The Yakima DEM contains 65536 points, ranging in height from
245 to 853, a height difference of 608. As before, we graph the number of points required as
a function of RMSE in Fig. 19. Again, fewer points proportionally are required when the

approximation error is large (Fig. 20).
Figure 19 around here.
Figure 20 around here.

The results in the Yakima DEM are even better than the results for the Crater Lake DEM
(Table 1). snaked is best, using 23% points fewer for RMSE and 44% fewer for MAE over a
broad range. The point range is similar to the Crater samples. For rougher approximations
(few points and less accuracy), it used 23% fewer for RMSE and 48% fewer for MAE. In
this DEM, using structural lines does not reduce the MAX error. For a similar DEM near

Tucson, structural lines reduced the MAX error by 19% for fine approximations.
Table 2 around here.

Two issues arose in the discussion of snaking: retraction and attractive forces. We
suggested that line retraction during snaking was beneficial. The snake process can be
controled so that lines do not retract along their length. The results are mixed: for fine ap-
proximations the preserved (without retraction) lines are slight improvements. For rougher
approximations, they are significantly worse.

We also considered using the proximity field (Fig. 8(b)) instead of maximum curvature
field (Fig. 8(a)) for snaking; for the Crater the results using proximity are 3.6% reduction
versus 12.6% for similar parameters using the maximum curvature field.

Each DEM has its own proper scale: csnaked at o = 4.0 is best for Crater Lake, while
snaked at 2.5 is best for Yakima. Crater Lake has average gradient magnitude 5.00 and
maximum 148.66 while Yakima has average gradient magnitude 3.79 and maximum 71.11.

Smoothing selects the spatial scale of the structural lines and should vary with the DEM.

11



5 Discussion

How have we advanced beyond the work of Fowler and Little[8]? We have a sounder basis
for local surface description; our method is more immune to quantization introduced in the
DEM, and is not coordinate system dependent. It permits description of all surface breaks,
not just those that coincide with ridges and channels.

The inclusion of lines in the construction of TINs reduces the number of points required
to achieve a particular accuracy of approximation, measured either by RMSE or MAE. Al-
ternatively, at a particular size of the TIN, the accuracy achieved is greater when structural
lines are included.

Finding curvatures requires estimating derivatives. Smoothing or regularization reduces
the effects of noise in computing derivatives but this impedes localization. The snake
method lets us extract significant lines at coarser scales and correct them to improve their
localization for use in the TIN. Methods such as anisotropic diffusion[27] that would combine
smoothing and localization may aid determination of structural lines.

Edge focusing[28] suggests finding edges at fine scale from coarser scales by tracking the
edges, searching at the next finer scale for edges. They are shown to move, under reasonable
assumptions, only a small amount. Our snaking has been from coarser scales directly to fine
scale (o = 1.0). As an alternative we could proceed by gradually snaking using intermediate
values of 0. Retraction during snaking makes this complex, requiring further insight into
both the movement of structural lines as the surface is smoothed and the behavior of snakes.

If p-lines at coarser scales happen to lie near n-lines at fine scale deforming all curves
at the same time might move the p-line incorrectly towards the n-line. The maximum
curvature field can be separated into positive and negative terms and p-lines and n-lines
treated separately. We have left further work into this area until later.

For hilly terrain such as Crater Lake structural lines reduced the size of the TIN by as
much as 31%; for smoothly varying terrain such as the Yakima region, the reduction is as
much as 48%. Other similar regions such as a DEM of Mt. Baker, Washington, achieved
similar results to Crater Lake; its MAE for a coarse approximation was 30% smaller than
without lines. A DEM near Tucson behaved like Yakima, having a MAE reduction of 44%.
Using structural lines always improves the triangulation.

There are many alternative methods for choosing the best point for insertion and for
adjusting the resulting triangulation (see, e.g., [29, 4, 30, 31]) but we have not explored
these here. Some may perform much better when structural lines are used. The usual
criterion for quality of approximation is the root-mean-square of the error, but this does

not capture the importance of the structural lines such as ridge lines, streams, and slope
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breaks. In many visualization tasks, however, retaining features such as horizon lines is

more important than aggregate errors. In drainage queries[32] and other such applications,

preserving the structural lines is critical.
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Figure 1: (a) Curve simplification: the Douglas-Peucker method adds the farthest point
from each segment on the current polygonal curve. Successive approximations are show
by progressively finer dashed lines. (b) Terrain surface represented by contours: as before,

successive approximations are shown with progressively finer dashed lines.
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(a)

Figure 2: DEMs for (a) Crater Lake (b) Yakima. Both show gray value proportional to

elevation.
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Figure 3: (a) p-lines (white) and n-lines (black) at medium scale (o = 2.5) overlaid on the
Crater Lake DEM; (b) p-lines and n-lines (0 = 1.0). o is the scale parameter of a Gaussian

filter that smooths the DEM before computing structural lines.
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Figure 4: The ridge lines found in the Crater Lake DEM by the marking method of Peucker
and Douglas (a). In (b) the DEM has been smoothed by a Gaussian filter (¢ = 2.5).
Compare with Fig. 3(a).
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Figure 5: A slice along column 180 through Crater Lake (336 columns wide). White shows
the original DEM; black the surface smoothed by Gaussian (o = 4.0).
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(a)

Figure 6: (a)Local surface geometry: the principal directions are orthogonal and {1 is the
direction of maximum curvature. (b) Surface structural lines where curvature is locally

maximal in direction ¢;.
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(a) (b) (c)

Figure 7: (a) Height image of the paraboloid; (b) Absolute value of maximum curvature |k;|

for the paraboloid; (¢) Locally maximal points in maximum curvature for the paraboloid
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Figure 8: (a) The absolute value of maximum curvature (o = 1.0): darker is larger. (b) The
proximity field for the fine scale (o = 1.0) p-lines: brightness is proportional to distance

from the line.
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AN

Figure 9: (a) Local maximal curvature along the structural lines, at a medium scale. (b)

Fine scale. These are the points found using non-maximum suppression.
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Figure 10: Smoothing an asymmetrical hill displaces the maximum, where the p-line lies,

toward the shallower slope.
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1.0) in white and p-lines at o = 4.0 in black; (b)

Figure 11: (a) p-lines at fine scale (o

p-lines at 0 = 4.0 in black with the corrected (snaked) result in white.
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Figure 12: Snaking: |k1| appears in gray; brighter means higher values. Black shows the
medium scale lines and white shows the snaked line. The black curve is pulled to brighter

regions with higher attractive force.
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Figure 13: Retracting during snaking to a local maximum. The underlying maximum
curvature field is shown in gray values, while the original curve is black and the result of

snaking is white.
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Figure 14: (a) Snaked (o = 4.0) p-lines in black and simplified lines, gen = 20, minlength =
10, result in white; (b) Snaked lines, both p- and n-, for Yakima in black and simplified

lines, gen = 15, result in white.
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Figure 15: Regions of positive maximum curvature surrounding p-lines (o = 2.5), for the
central region of Crater Lake. The gray value of each region is the number of the p-line it

surrounds. p-lines are shown in black.
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Figure 16: Number of points versus root-mean-square (RMSE) for Crater Lake.
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Figure 17: Number of points versus root-mean-square error (RMSE) for Crater Lake, rough

approximations.
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Figure 18: (a) The triangulation (700 points) for no lines; (b) The triangulation (556 points)

for csnaked in both the constrained lines are shown in black and other edges in white.
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Figure 19: Number of points

versus root-mean-square error (RMSE), for Yakima.
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Figure 20: Number of points versus root-mean-square error (RMSE), rough approximations,

for Yakima.
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RMSE MAE

range 1.0-8.0 1.0-4.5 4.5-8.0 | 1.0-4.0 1.0-2.5 2.5-4.0
fine 0.866 0.834 0.896 | 0.675 0.700  0.654
medium | 0.872  0.837  0.906 | 0.648 0.672  0.628
coarse 0.819 0.823 0.815 | 0.611  0.661  0.561
snaked 0.776  0.786  0.767 | 0.563  0.608  0.519
csnaked | 0.788  0.798  0.778 | 0.584  0.627  0.542

Table 1: Average ratio of number of points for various structural lines, for RMSE, MAE

and MAX, for several ranges in Yakima
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RMSE MAE MAX
range 2.811.8 2873 7.3-11.8|2.1-8.1 21-5.1 5.1-81 | 1828 1823 23-28
fine 0.979 0.959 0.998 0.959 0.954 0.964 | 0.744 0.682 0.807
medium | 0.963 0.946 0.980 0.920 0.938 0.902 | 0.738 0.690 0.786
coarse 0.863 0.921 0.804 0.801 0.894 0.705 | 0.691 0.656 0.725
snaked 0.869 0.920 0.818 0.829 0.908 0.749 | 0.682 0.692 0.672
csnaked | 0.840 0.906 0.773 0.793 0.896 0.692 | 0.656 0.561 0.750

Table 2: Average ratio of number of points for various structural lines, for RMSE, MAE

and MAX, for several ranges in Crater Lake.

37



