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ABSTRACT
New techniques are needed to effectively search the image
and feature space of larger and more complex domains.
One such technique uses subfeatures and spatial models to
represent a compound object, such as a face.  From these
compound models, hypothesis based search then combines
bottom-up and top-down search processes to localize the
search within the image and feature space.  Detected sub
features become evidence for facial hypotheses, which then
guide local searches for the remaining subfeatures, based
upon the expected facial configuration.  We describe this
compound technique and present a comparison of the
compound templates technique with a single template
technique in a mug shot style face domain.  Attention is
paid to performance, including both efficiency and accuracy.
The results are complex, and the strengths, weaknesses,
and various trade-offs of the two techniques are detailed.

INTRODUCTION
Faces are diverse, semi-rigid, semi-flexible, culturally
significant, and part of our individual identity.  As a
domain they are already well studied and many images
databases already exist.  For complexity the domain is
extensible along a continuum ranging from expressionless
frontal, to increasingly varied expression, to increasing
pose variance, to increasing artistic interpretation.  

The chosen domain is face detection of photographic, grey
scale, near frontal, mildly expressioned, faces.  This
domain is practical yet interesting; challenging yet
tractable.  Examples of the domain are shown in Figure 1.

Figure 1 Example Faces. CMU, Yale, Nottingham

There are many other approaches to the face detection
problem.  Some techniques rely on a single face template
or model for detection [10,5,8], others rely on facial
subfeatures [12,13,11].  A variety of detection techniques
are employed, from correlation [2], neural nets [8],
creseptrons [14],  eigentemplates [9,10,12], Baysian
models [12], and flexible models [5,13].  Some approaches

use bottom-up search [14], some use top-down search [1],
and some combine both search types [9].  Combining
bottom-up and top-down processes appears as a
promising way to guide the search efficiently.  There are
systems in other domains which appear to use this
approach successfully [6,7].

Some single face techniques [10] are advertised as
generalizable to larger domains.  Of the compound
techniques using facial subfeatures [1], or those
combining bottom-up and top-down search [6,9], the
emphasis appears mostly on detection performance.  I was
interested to see what efficiency merits a compound and
combined approach would have compared to a single
template approach.  To this end, I developed the Facets
face detection system as a platform to compare both
approaches in equivalent implementations.

In the compound template approach, a face is composed
from a spatial model and four subfeatures: left eye, right
eye, nose, and mouth.  This two-level structure supports
the combination of bottom-up and top-down search.
Each subfeature type has an associated image analysis
procedure used to detect the presence of the subfeature
within the target image.    

The search begins by invoking the image detection
procedures for some set of subfeatures (e.g., left eyes).
The choice of initial subfeatures critically affects accuracy
and efficiency, and this is discussed in more detail below.
When a subfeature is found, a face instance is created with
the detected subfeature given as evidence.  If the detected
subfeature fits within the hypothesis space of an existing
face instance, it is given to the existing instance.
Managing overlapping hypotheses is discussed in more
detail below.

A face instance represents a hypothesis about a face (or
face-space) evidenced by the image, and it contains the
subfeature instances already found (which provide
evidence for the hypothesis).  Parameters representing
rotation, scale, and hypothesis strength are calculated
based upon the evidence (subfeature instances) and default
values.  From these parameters the estimated feature space
for missing subfeatures is determined.

The top-down search phase for a face instance begins after
the newly created face instance is determined to represent
a novel hypothesis.  The image detection procedures are



called for the missing subfeatures using the estimated
feature space as the search parameter.  The search is
scheduled using a priority queue.  Searching and
scheduling optimization issues are discussed below.  

A face instance completes its search either when it has
exhausted the subfeature search space, or when it represents
a complete face instance.  The entire search completes
when the initial bottom-up search completes, and all face
instances have completed their search. 

TECHNIQUES
The foundation of the Facets face detection system is the
simple template.  A simple template is composed from a
pyramid of masked grey scale images.  Detection is
performed using normalized correlation on the source
image pyramid [3].

Figure 2 Feature templates with masks (left) and relative

size (right). Face, Eye, Nose, and Mouth.  

The target image pyramid is scaled by 75% for each level
from bottom to top. For template pyramids, the scaling
ensures that the maximum change in width or height for
the scaled template is 2 pixels smaller than the preceding
template in the pyramid.  This ensures that templates are
discretized to within a pixel of their neighbours, as
required for correlation.

Feature and subfeature types are represented as a collection
of template pyramids. The feature space for a template is
composed from: the minimum and maximum area range in
base coordinates, the rotation angle range, and the
enclosing rectangle for the template center in base
coordinates.  Base coordinates are in pixels based upon the
original (i.e. largest) target image.  

Feature detection is performed by searching for a template
over a target image within a given feature space. The initial
candidate search traverses the image pyramid from top to
bottom searching for the feature at the lowest resolution.
At each level this is done by choosing templates from the
template pyramid that are within the intersection of the
given feature space and the feature space covered by the
template pyramid, but not within the feature space
previously searched.  Using masked correlation, each
template is compared against the current levelÕs image,
over the area specified in the feature space.  If the
correlation result is greater than the 0.7 threshold, the
candidate feature space is recorded.   From this localized
candidate featurespace, the refine search continues down the
pyramid looking for the highest resolution match.  If the
correlation score is over the threshold for the high

resolution match, and if the resolution is sufficient, a
feature instance is created.

The compound face uses a simple face model represented
on a 2D plane with 5 degrees of freedom: the three
rotational angles, the scaling factor, and the face center
point.  Faces contain subfeature collections for all
subfeature instances within the hypothesis space for the
face.   Subfeature instances are added to the collection
when a face is created, when overlapping faces are merged,
and when detected features from the top-down search are
returned to the requesting face instance.  Redundant
subfeatures are removed from the collection.  When non-
redundant subfeatures are added to the collection, a search
is performed over the new subfeature combinations.  The
primary subfeatures are the combination of subfeatures
which maximize the hypothesis strength.  The estimated
feature space is calculated for each subfeature type missing
from the primary subfeatures.   

A search request is scheduled if the feature space was not
previously searched.  The search priority is an estimate
that the search will complete the face, and is based upon
the hypothesis strength.  The hypothesis strength is
calculated as a weighted combination of the subfeature
correlations scores, and subfeature distances from the ideal
model in the estimated pose, to the actual subfeature
locations.

The efficiency and accuracy of a combined search depends
upon the subfeature space used for the initial bottom-up
search.  If the initial search comprises the entire subfeature
space, then the search becomes purely bottom-up.  If the
initial feature space is not sufficient to find at least one
subfeature per face, then the search cannot find all faces in
the image.  Our tests used the left eye subfeatures for the
initial search.

When subfeature instances are detected, they are evidence
for some face level hypothesis space.  It is likely that
overlapping hypotheses are created, especially if the
initial subfeature search space is complete enough to
ensure the detection of all faces.  For efficiency it is
important to merge similar face instances before they
initiate their top-down search.  If an existing face instance
sufficiently overlaps the hypothesis space of the new face,
the subfeatures of the new face are added to the existing
face instance, and the new face instance is removed.

The scheduling queue provides a way to increase the
feature space of the initial search without delaying the
top-down phases.  Searches are prioritized based upon
face hypothesis strength and the phase of the aggregate
search.

Aggregate search optimization combines the searches for
several missing subfeatures and allows for control logic to
guide and schedule searches.  For example, cancelling or
delaying the search for one subfeature if another subfeature



was not detected, or skipping the detection for remaining
subfeatures if enough subfeature instances of that type were
already found.
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Figure 3 Facets Runtime Architecture.

During the runtime, as shown in Figure 3, requests for
searches are sent (A) by the feature classes to the scheduler,
where they are prioritized by value.  Detection tasks are
sent (B) to the detection unit to search for matches in the
specified regions.  Matches exceeding the threshold are
returned (C) to the original template class.  A subfeature
instance is created and added (D) to the runtime instances.
If the original search request came from a compound face,
the instance is returned (E) to the face, otherwise a new
compound face instance is created.  Compound face
instances are placed (F) among the runtime instances; but,
to prevent searching overhead from multiple similar
hypotheses, similar faces are merged.  Compound face
instances make localized search requests (F) via the
compound face class, which communicates (E) with the
subfeatures classes and then makes the request (A) using an
aggregate search package. 

DATA AND ANALYSIS
The template databases for the simple and compound
technique were collected from the CMU 1104 image set.
The training set includes 16 images with 25 faces each
from 5 people, comprising 400 faces from 40 people in 10
poses all together.  The database was created by collecting
templates step by step so that newly acquired templates
were not previously detected features.  The simple template
technique required 54 templates, totalling 2,010 KB in
size, to cover the training set with 100% accuracy.  By
comparison, the compound template technique required 22
left eye templates (the initial detection templates), 44 right
eyes, 25 noses, and 74 mouths, for a total of 165
templates, totalling 2,604 KB in size. 

As more templates are added to the database, the domain
coverage of the database increases.  Tests were performed to
determine the change in detection coverage and times as
the database increases in size.  The compound approach
appears to fair better in both.  Covering 60%, 70%, 80%,

and 90% of the training domain requires a 9%, 14%,
18%, and 36% completeness of the compound subfeatures
database, respectively, compared to a 19%, 26%, 33%,
and 52% completeness of the simple template database.
Both approaches are similar after 95% domain coverage.
At 100% coverage, average detection times are 1.3 times
slower for compound templates, but as new templates are
added to the database the growth of detection times is
linear for simple templates, while the growth is sublinear
for compound templates.

Figure 4 Detection examples for simple templates
(left half) and compound templates (right half).

The performance of both techniques was evaluated on the
Nottingham and Yale image sets using the template
database acquired previously from the training set.  On
the Nottingham database the compound technique
detected 93% of faces, compared to 70% for simple
templates.  For the Yale database the compound
technique detected 35% of the faces, compared to 16% for
simple templates.  Compound templates also performed
better in detection accuracy up to an order of magnitude.

Figure 5 False positive example with simple templates
(left) and compound templates (right).

To test false positive performance, both techniques were
tried on three non-face images using the complete
template databases.  Compound templates made a total of
31 false positives, compared to 129 false positives for
simple templates.  Because the simple template approach
is more likely to find smaller ÔfacesÕ than the compound
approach, an adjustment was made to ignore faces below
a thresholded size.  With this adjustment the simple
templates found 44 false positives.



Performance of both techniques was compared over images
with varying scale and facial density.  The test image was
a 40 face subset from the training set.  For the scaling
tests, 9 scaled images were produced, ranging from 50% to
200% the size of the original image.  For the facial density
tests, 5 images were created by covering some of the faces
with a textured swatch, producing images with 40 , 30,
20, 10, and 2 faces visible.  Detection performance for
compound templates decreased more abruptly away from
the 100% image than for simple templates.  The density
tests demonstrated that compound templates are dependant
upon feature density, since compound template detection
times decreased linearly with reduced density, while
simple template detection times remained constant.   

Comparative tests were performed to determine the
effectiveness of combining the bottom-up and top-down
search, and of the aggregate search optimization.  The
search times for compound templates were about 30%
slower than simple templates.  Search times for all 165
subfeature templates were 4.5 times longer than the simple
technique, and 3.5 times longer than the normal compound
templates.  Using aggregate search optimization sped up
the compound technique by more than twice the time
required for a complete top-down search.

CONCLUSIONS
Effective usage of available knowledge, both in the domain
and about the image, appears a plausible way to make the
detection process more efficient.  Combining bottom-up
and top-down search using subfeatures and models is one
way to use partial image knowledge (features detected
during bottom-up search) and domain knowledge (the
modeled spatial relations localizing the top-down search).
The face domain was chosen as a tractable, extensible, and
interesting domain for study and  the proposed technique
was implemented in the Facets system.

Comparison tests were performed against an equivalent
implementation of the simple template technique.  The
results appear to show that the compound template
approach has merits worth further exploration.  Except for
the scale tests, compound templates performed better for
both detection rates and accuracy.  This may follow from
the slightly higher resolutions used for the subfeature
templates compared to face templates.  As for the slower
growth of the detection time as database size increases for
compound templates, this may partially result from the
merging of duplicate hypotheses.  There is clearly a benefit
from combining bottom-up and top-down search over
bottom-up search alone, and an even further benefit from
using aggregate optimizations that the top-down search
affords.  Overall, a 250% improvement in detection time.
When compared to the top-down simple template
technique, the compound approach lags slightly behind for
feature dense images.  Compound templates appear well
suited though to images which are subfeature sparse,
producing equivalent to slightly better detection times. 
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