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Abstract 
We present further results on the educational effectiveness of an intelligent 

computer tutor that helps students learn effectively from examples by coaching 
self-explanation – the process of explaining to oneself an example worked-out 
solution. An earlier analysis of the results from a formative evaluation of the 
system provided suggestive evidence that it could improve students’ learning. In 
this paper, we present additional results derived from a more comprehensive 
analysis of the experimental data.  They provide a stronger indication of the 
system’s effectiveness and suggest general guidelines for effective support of 
self-explanation during example studying. 

1 Introduction 

The research presented in this paper represents a step toward exploring innovative 
ways in which computers can enhance education and learning. While most intell igent 
tutoring systems support students during problem solving and teach domain specific 
skil ls, we have devised a computational framework that supports learning from 
examples and that coaches the general learning skil l known as self-explanation - 
generating explanations and justifications to oneself to clarify an example solution. 
Several studies show that self-explanation greatly improves learning from examples 
(for overviews of these studies see [4] and [10]) and that coaching self-explanation 
can extend these benefits ([3], [4]). Our framework, known as the SE-Coach, aims to 
provide the individualized monitoring and guidance to self-explanation that has been 
proven so beneficial when administered by human tutors. It has been implemented 
and tested within Andes [11], a tutoring system that helps students learn Newtonian 
physics through both example studying and problem solving.  
    Other tutoring systems rely on examples as instructional means, but they use them 
to support students as they solve problems, not as a specific learning phase prior to 
and complementary to problem solving. These systems present students with relevant 
examples as they are solving problems and help students understand the connection 
between the example and the problems [12], [7], [1]. However, none of these systems 



 

monitor how students study and understand the presented examples. Moreover, the 
systems themselves, rather than the students, generate explanations to  help the 
students understand the examples. The Geometry Tutor [2] explicitly encourages 
students to explain the solution steps they have used to build geometry proofs, in 
terms of geometry axioms. However, the explanations are generated during problem 
solving and consist simply of selecting an item from a li st of geometry axioms. The 
student does not have to explain the content of the axiom. Furthermore, the tutor 
makes the student explain each solution step, instead of trying to assess if some 
explanations may be more beneficial for the student than others. 
   Unlike the systems above, the SE-Coach includes an interface designed to 
encourage spontaneous, constructive self-explanation of examples. It also includes a 
help module that explicitly elicits further self-explanation tai lored to a student’ s 
needs, as assessed by the SE-Coach probabil istic student model, when the interface 
scaffolding is not sufficient to overcome the natural reticence to self-explain that 
many students show [4], [10].  
    Self-explanation is a learning process whose underlying mechanisms are stil l 
unclear and under investigation. Since the SE-Coach is built on existing hypotheses 
about the features that make self-explanation effective for learning, an accurate 
evaluation of its effectiveness may allow us to shed light on the validity of the 
hypotheses and possibly suggest new ones. In [6], we presented initial results of a 
formal evaluation that we performed to test the usabil i ty and effectiveness of the 
system. These results indicated that the SE-Coach’s interface is easy to use and 
generally effective in stimulating self-explanation. They also provided initial support 
on the SE-Coach’s educational effectiveness. In this paper, we present a more detailed 
analysis of the experimental data that reveals a significant interaction between 
experimental condition and the learning stage in which students used the system, and 
provides insights on how the SE-Coach can more effectively bring students to 
constructively learn from examples.  

2 Overview of the System 

The SE-Coach’s interface includes three different levels of scaffolding for self-
explanation, to accommodate the varied propensity to self-explain that different 
students have, so as to provide each student with the minimum intervention suff icient 
to trigger constructive self-explanation. 
   The first level of scaffolding is given by a masking interface that presents different 
parts of the example covered by grey boxes (see Figure 1). In order to read the text or 
graphics hidden under a box, the student must move the mouse pointer over it. The 
fact that not all the example parts are visible at once helps students focus attention and 
reflect on individual example parts, and allows the SE-Coach to track student’s 
attention [6].  The second level of scaffolding is provided by explicit prompts to self-
explain. These prompts go from a generic reminder to self-explain, that appears when 
a student uncovers an example part, to more specific prompts for self-explanations 
that have been shown to correlate with learning in the self-explanation studies: (a) 
justify solution steps in terms of domain principles;  (b) relate solution steps to goals  
in the underlying solution plan. 

 



 

   

 
Figure 1: A physics example (left), as it is presented in the masking interface (right) 

    The third level of scaffolding consists of menu-based tools designed to provide 
constructive but control lable ways to generate the above self-explanations, to help 
those students that would be unable to properly self-explain if left to their own 
devices [10]. If a student selects the prompt to self-explain in terms of domain 
principles (“This is true because...” ), a Rule Browser is displayed in the right half of 
the window (see Figure 2a), while if the student selects the prompt to self-explain in 
terms of the solution plan (“The purpose of this step is...” ), a Plan Browser is 
activated instead. 
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Figure 2: (a) Selections in the Rule Browser and (b) Template filling 

 
    The rule browser contains a hierarchy of physics rules, reflecting the content of the 
SE-Coach’s knowledge base. The student can browse the rule hierarchy to find a rule 
that justifies the currently uncovered part. The SE-Coach wil l use a green check or a 
red cross to provide feedback on the correctness of the student’s selection (see Figure 
2a). To explain more about the actual content of a rule, the student can click on the 
“Template” button in the rule browser. A dialog box comes up (see Figure 2b) with a 
partial definition of the rule that the student can complete by selecting appropriate 



 

fi llers from available pull down menus. The SE-Coach gives immediate feedback on 
the student’s selections.  
   The plan browser is similar to the rule browser, but i t displays a hierarchical tree 
representing the solution plan for a particular example instead of the SE-Coach’s 
physics rules. The student explains the role of the uncovered part by selecting in the 
plan hierarchy the step that most closely motivates the fact.  
   The SE-Coach includes a probabili stic student model based on a Bayesian network. 
The Bayesian network comprises a model of correct self-explanation for the current 
example, probabili ties estimating the student’s physics knowledge and nodes 
representing the student’s reading and self-explanation actions. At any time during the 
interaction, probabili ties in the Bayesian network assess how well the student 
understands the example solution and how the student’s knowledge changes as a 
result of the interaction with the system [5]. Using this assessment, the SE-Coach 
prompts the student to generate further self-explanation to fix gaps in the student’s 
example understanding.  
   Initiall y, self-explanation is voluntary.  However, i f a student tries to close the 
example when the student model indicates that there are sti ll some l ines left to self-
explain, then the SE-Coach generates a warning and colors pink the corresponding 
masking interface boxes. It also provides more directive advice as of what interface 
tool should be used to better self-explain each line. The SE-Coach’s tutorial 
interventions represent a fourth, stronger level of scaffolding for self-explanation, 
directed to help those students that do not self-explain because they tend to 
overestimate their understanding [4]. 

3 Empirical Evaluation of the SE-Coach 

To test the system’s effectiveness for learning, we performed a formal study with 56 
college students. The SE-Coach does not provide any introductory physics instruction, 
because it is meant to complement regular classroom activities. Therefore, an 
evaluation of the SE-Coach requires subjects who have the right level of domain 
knowledge for using the system. Students generally benefit more from examples when 
they are studying a new topic, whereas as the students’ knowledge improves, problem 
solving becomes more effective for learning [8]. Hence, to evaluate the SE-Coach 
adequately, subjects need to have enough knowledge to understand the topic of the 
examples, but not so much knowledge to find the examples not worthy of attention.   
The ideal evaluation setting for the SE-Coach would be in the context of an 
introductory physics course, where it is possible to control when students are ready to 
study examples on a new topic.  Unfortunately, we could not coordinate the SE-
Coach’s evaluation with a specific physics course. Instead, we conducted the study in 
our laboratory, with students who were taking introductory physics classes at four 
different colleges: the University of Pittsburgh (20 students), Carnegie Mellon 
University (14 students), Community College of Allegheny County (5 students) and 
U.S. Naval Academy (17 students).  The best we could do to get subjects at 
comparable learning stages was to run the subjects after their first class on Newton’s 
Second Law and before they took a class test on the topic.  
   The one-session study comprised: 1) solving four pre-test problems on Newton’s 
Second Law; 2) studying examples on Newton’s Second Law with the system; 3) 



 

solving post-test problems equivalent but not identical to the pre-test ones; The study 
had two conditions. In the experimental (SE) condition, 29 students studied examples 
with the complete SE-Coach. In the control  condition, 27 students studied examples 
with the masking interface and Plan Browser only1.  They had no access to the Rule 
Browser and Templates, nor feedback or coaching.  

3.1. Effectiveness of the SE-Coach  

As we reported in [6], the analysis of the log data file from the study shows that the 
SE-Coach’s interface is easy to use and is quite successful at stimulating self-
explanation. The gains scores between post-test and pretest were higher for the SE 
condition, although the difference between gain scores of the two conditions was not 
statistical ly significant. Since then, we have sought to better understand the reason 
behind the above outcome by restricting the analysis to the subgroups of subjects 
coming from different colleges. We found that the SE condition of CMU (Carnegie 
Mellon) and CCAC (Community College of Allegheny County) students performed 
better than the control condition (see Figure 3). The performance difference, as 
measured by an Analysis of Covariance with post-test as dependent variable, pre-test 
as covariate and condition as main effect, was statistically significant for CMU 
students (p < 0.04) and nearly significant (p = 0.0576) for CCAC students. In contrast, 
in the Pitt (Univ. of Pittsburgh) and USNA (U.S. Naval Academy) subgroups, 
students in the control condition performed slightly better than students in the SE 
condition (see Figure 3), although the difference was not statistical ly significant 
 

                                                   
1 We let the control students access the Plan Browser because introductory physics courses usual ly do not 
address solution planning, therefore control students would have had too much of a disadvantage i f they 
had not been able to see what a solution plan is through the Plan Browser. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Gains scores for the four 
subgroups 

 
 
 
 
 
 
 
 
 
 

Figure 4: pretest scores for the four 
subgroups

 
   The commonality of behavior between CMU and CACC students is quite 
surprising, because CMU and CCAC are supposed to be, respectively, the best and the 
worst among the four colleges in the study. This ranking is confirmed by the pretest 
scores shown in Figure 4. The difference in pretest performance between CMU and 
CCAC is the only one that approaches significance (p = 0.0561), among the pretest 
performances of the four groups. 
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   To understand what may have caused this different learning behavior, we collapsed 
and analyzed the data in two subgroups with the same learning outcome, CMU-
CCAC and Pitt-USNA. Within the CMU-CCAC group, students in the SE condition 
performed significantly better than students in the control condition, after covarying 
out the pretest (p = 0.021). Pitt-USNA students in the control condition performed 
slightly better than those in the SE condition, but the difference is not statistically 
significant (p > 0.2). 

3.2.    Possible Differences in the Student Populations 

One possible explanation for the above results could be a difference in physics and 
background knowledge between the two subgroups of CMU-CCAC and Pitt-USNA 
students. However, an ANCOVA with post-test as dependent variable and subgroup 
and condition as main effects, shows that there is stil l a significant interaction (p < 
0.01) of subgroup with condition after covarying out  pretest only and both pretest and 
SAT scores. Although 10 subjects are excluded from the latter ANCOVA (we did not 
have these subjects’ SAT scores), these data stil l provide a strong indication that 
physics and background knowledge do not explain the different performance of the 
two subgroups.  
   A second explanation for the different learning behavior of the CMU-CCAC and 
Pitt-USNA subgroups could be that subjects in the two subgroups used the system 
differently. The one thing that CMU and CCAC have in common, and that 
distinguishes them from Pitt and USNA students, is that they start the semester more 
than a week later. Therefore, although all the subjects participated to the experiment 
after they had their lectures on Newton’ s laws and before they took a class test on the 
topic, Pitt and USNA subjects were ahead in the course schedule and had likely spent 
more time on Newton’ s laws than CMU and CCAC subjects when they participated to 
the study. Our data show that this did not significantly influence the pretest 

performance of the two subgroups. 
However, it may have caused the students 
in the two subgroups to have a different 
atti tude toward the example study task we 
made them perform.      
   If we analyse the learning patterns of the 
two subgroups within each condition, we 
find that in the SE condition, CMU-CCAC 
students learned more than Pitt-USNA 
students (see figure 5), although the 
difference is not statistically significant (p 
> 0.1). In the Control condition, Pitt-

USNA students learned significantly more than CMU-CCAC students (p < 0.03). 
These outcomes could be due to two reasons: 
− In the SE condition, Pitt-USNA students did not use the SE-Coach as extensively 

and effectively as the CMU-CCAC students did. 
− In the Control condition, Pitt-USNA students self-explained spontaneously more 

that the CMU-CCAC students did. 

Figure 5: gains scores of the two subgroup 
in each condition 
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   We wil l now verify these two hypotheses by comparing the log data of the two 
subgroups within the SE and the control condition. 

Log data analysis of the two subgroups within the SE condition 

To test whether CMU-CCAC students used the SE-Coach better than the Pitt-USNA 
students in the SE condition, we compared time on task, statistics describing how 
subjects used the interface self-explanation tools (Rule Browser, Plan Browser and 
Templates) and how they reacted to the SE-Coach’s advice to further self-explain. 

 

 

 

 
Table 1: Statistics on interface tools usage for CMU-CCAC and Pitt-USNA students 

 
Table 2:  SE-Coach prompts statistics for CMU-CCAC and Pitt-USNA students 

 
   For each interface tool, we computed the following data summaries (see Table 1): 
Initiated: percentage of the explanations that students initiated out of all the 
explanations that could be generated with that tool for the available examples. 
Correct: percentage of the initiated explanations that were generated correctly. 
Attempts before correct: average number of attempts the students made before 
achieving a correct self-explanation. An attempt is the submission of an incorrect self-
explanation. Max # attempts: average maximum number of attempts needed to 
achieve a correct self-explanation. Attempts before abandon: average number of 
attempts before abandoning a self-explanation. We also computed how many of the 
different prompts generated during the SE-Coach tutorial interventions (prompts to 

Rule Browser CMU-CCAC (12) Pitt-USNA (17) p 
Ini tiated 63.6% 61.4% 0.8 
Correct 88% 86% 0.6 
Attempts before correct 1.1 1.3 0.35 
Max # attempts 7.8 10.2 0.45 
Attempts before abandon 4.3 3.7 0.7 

Template CMU-CCAC (12) Pitt-USNA (17) p 
Ini tiated 57.6% 53.8% 0.7 
Correct 97.2% 96.8% 0.8 
Attempts before correct 0.47 0.51 0.8 
Max # attempts 2.2 2.7 0.3 
Attempts before abandon 3 0.15 0.011 

Plan Browser CMU-CCAC (12) Pitt-USNA (17) p 
Ini tiated 36.2% 45% 0.55 
Correct 92% 81% 0.15 
Attempts before correct 1 1 0.9 
Max # attempts 3.9 3.8 0.96 
Attempts before abandon 1.4 1.1 0.77 

 CMU-CCAC (12) Pitt-USNA (17) p 
Rule prompts fol lowed 41% 37% 0.8 
Plan prompts fol lowed 50% 36% 0.36 
Read prompts followed 31% 35% 0.88 



 

self-explain using the Rule Browser, the Plan Browser or by reading more careful ly) 
the students actually fol lowed (see Table 2).  There is no statistically significant 
difference in the average time on task for the two subgroups (p > 0.1). The only 
significant difference in the way CMU-CCAC and Pitt-USNA students used the 
system in the SE condition is that CMU-CCAC students performed a significantly 
higher number of attempts before giving up on a Template explanation (see Table 1, 
Template data). This suggests that the CMU-CCAC students had a higher level of 
motivation to learn from the SE-Coach self-explanation tools, consistently with the 
fact that students in the CMU-CCAC group had started studying Newton’ s Laws later 
than Pitt-USNA students and thus they were li kely more wil ling to put substantial 
effort in learning from examples on the topic. 
   The CMU-CCAC students’ higher level of motivation can explain why they learned 
more from the SE-Coach than the Pitt-USNA students did, although in general they 
did not use the system more easily and extensively (as Table 1 and Table 2 show). 
Selecting items in the browsers and fi ll ing templates does not necessarily trigger 
constructive learning if students do not reflect on what they are doing. Indeed, if 
students are not motivated to put substantial effort in studying examples, the actions 
of browsing and Template fill ing may act as distracters from learning. Students may 
concentrate their attention on selecting items to get positive feedback on their 
interface actions, but not actually reflect on the physics behind the actions and behind 
the worked out solution. Thus, we argue that CMU-CCAC students in the SE 
condition learned more from the same self-explanation actions than Pitt-USNA 
students because, being more motivated, they reasoned more constructively on their 
self-explanation actions and on the physics underlying them. 
   This argument is supported by the correlation between post-test scores and the 
number of rules that reached high probabilit y in the student model. The correlation is 
very low (r < 0.1) for Pitt-USNA students and it is higher (r = 0.33) for the CMU-
CCAC students.  Since the probabil ities in the student model are driven upward by 
correct self-explanations conducted on the SE-Coach’s interface, the high correlation 
of the CMU-CCAC group suggests that their self-explanations drove their 
understanding upward just as they drove the model’s probabilit ies upward, whereas 
the low correlation of the Pitt-USNA group suggests that their learning was 
independent of their use of the SE-Coach’s self-explanation tools.   

Log data analysis of the two subgroups within the control condition 

The hypothesis that the learning of Pitt-USNA students in the control condition is due 
to spontaneous self-explanation is not easy to verify, because in this condition 
students could not express their self-explanation through the SE-Coach. The only log 
data fi le that could indirectly indicate self-explanation in the control condition are: (1) 
average number of multiple accesses to example l ines; (2) standard deviation of the 
above measure; (3) average time spent on each example l ine; (4) standard deviation of 
the above; (5) time on task; (6) number of accesses to the Plan Browser; (7) number 
of selections in the Plan Browser. 
   We ran a regression analysis of post-test on the above variables for the Pitt-USNA 
control group and we found a marginally significant correlation of post-test scores 
with average and standard deviation of line accesses (p = 0.083 and p = 0.057 
respectively).  We found no significant correlations in the same regression analysis 



 

for the CMU-CCAC control group. These results support the hypothesis that Pitt-
USNA control students were selectively reviewing example lines because they were 
self-explaining specific example parts, while the CMU-CCAC control students’ 
reviewing actions were not accompanied by effective self-explanation. The hypothesis 
that Pitt-USNA students self-explained more in the control condition is consistent 
with the fact that Pitt-USNA students had started studying Newton’ s Laws earlier and 
had probably gained more knowledge on the topic.  This knowledge was not strong 
enough to make Pitt-USNA students perform better in problem solving tasks (their 
pretest performance was comparable to the CMU-CCAC students’ one). However, i t 
was sufficient to enable Pitt-USNA control subjects to generate effective self-
explanations under the minimal scaffolding provided by the masking interface. We 
argue that i t is indeed the minimality of the scaffolding that allowed Pitt-CMU control 
students to bring to bear their knowledge at best. Because of their more advanced 
learning stage, spontaneous self-explanation triggered by the masking interface likely 
came quite effortlessly to Pitt-USNA control students and therefore was not 
suffocated by the lower level of motivation that prevented Pitt-USNA students in the 
SE condition to learn effectively from the SE-Coach self-explanation tools. 

4 Conclusions and Future Work 

In this paper, we discussed the results of a formal study to evaluate an intell igent 
computer tutor that coaches the meta-cognitive skill known as self-explanation – 
generating explanations to oneself to clarify an example worked out solution. The 
tutor provides different levels of tailored scaffolding for self-explanation, to provide 
each student with the minimum intervention suff icient to trigger self-explanation 
while maintaining the spontaneous, constructive nature of this learning strategy.   
   Formal studies are fundamental to assess why and how a computer tutor does or 
does not support learning. Understanding how students use and learn from the SE-
Coach is especially important, because the SE-Coach focuses on a learning process 
that no other tutoring system has tackled so far and whose underlying mechanisms are 
sti ll unclear and under investigation. In particular, different studies have shown that 
both simple prompting [4] and more elaborate scaffolding [3] enhance self-
explanation and learning, but no study has yet addressed the explicit comparison of 
these different kinds of intervention. The study that we performed provides initial 
insights on this issue. In this paper, we have presented data analysis results indicating 
that the stage of learning in which the students use the system influences how much 
they benefit from versions of the system that provide different amounts of scaffolding 
for self-explanation. The data suggest the fol lowing conclusions on the SE-Coach 
effectiveness and, in general, on the effectiveness of support for self-explanation 
during example studying. 
• Rich scaffolding for self-explanation, li ke the one provided by the complete SE-

Coach in the experimental condition, can improve students’ performance at an early 
learning stage.  At this stage, students are sti ll unfamil iar with the subject matter. 
Hence, they benefit more from structured help in using domain knowledge to 
generate effective self-explanations and are more motivated to put substantial effort 
in exploiting this help. 



 

• As students become more proficient in the subject matter, even minimal prompting, 
like the one provided by the masking interface in the control condition, can help 
improve their self-explanations. At this stage, more elaborate scaffolding can 
actually be less effective, i f it requires students to put too much effort in studying 
examples, because they may lack the motivation to do so. 

   Of course, more data is necessary to confirm these conclusions. We plan to gather 
the data by running a study in the context of classroom instruction, where it is easier 
to control at what stage of learning the students use the system. If the study confirms 
the results presented in this paper, i t may be beneficial to add to the SE-Coach the 
capabilit y to automatically tailor the available levels of scaffolding depending upon 
the student’s famili arity with the examples topic.   
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