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Abstract

We describe a Bayesian estimation method for measure-
ment of both range and surface orientation using a laser
range finder. The method not only provides more accurate
estimates of range for dark surfaces that are difficult to mea-
sure, but also simultaneously provides estimates of surface
normals. This paper describes our efforts for a commercial-
ly available sensor, the laser rangefinder Acuity AccuRange
3000 LIR, a widely available device. We detail the Bayesian
techniques, sensor calibration, and the processing required.

1. Introduction

Geometric models of pre-existing surfaces are required
for many applications including robot navigation on rough
terrain, virtual environments, reverse engineering, and ar-
chitectural walk-throughs. Realistic modeling requires that
the models are based on actual measurements, i.e., the mod-
el’s parameters and their uncertainty are estimated from
measurement data and measurement uncertainty. We call
these “reality-based” models.

Figure 1. Acuity 3000 LIR

Several technologies are available for measuring range;
in this paper we consider a popular type of time-of-flight
laser rangefinder (Acuity AccuRange 3000 LIR). This type
of scanner is well suited for measuring range over large dis-
tances.

However, the raw accuracy of range measurement is rel-
atively poor, particularly for “dark” objects. Range mea-
surement is adversely affected by surface orientation. In
addition, many applications of range measurement, such as
surface reconstruction, require that surface normals are sep-
arately estimated by expensive post-processing of the range
data.

In this paper we show how these problems can be ad-
dressed simultaneously. By carefully modeling the depen-
dence of range measurements on surface orientation, we can
significantly improve range estimates. Somewhat surpris-
ingly, the sensor model shows how to extract useful infor-
mation about surface orientation as well — effectively al-
lowing a range sensor to be used as a surface orientation
sensor.

We consider the Acuity laser rangefinder as a black-box,
and improve its performance. The techniques developed
here may also be applicable to other complicated measure-
ment devices with unknown internal workings.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the measurement system used. In Section
3 we outline the estimation method in a simple setting, and
introduce Bayesian estimation [2, 5] and sensor modeling.
A detailed sensor model is developed in Section 4, and es-
timation of range and orientation in a realistic setting is de-
scribed in Section 5. The appendices provide details on pre-
processing of rangefinder data and shows some typical re-
sults.
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2. Measurement system

The range measurement system is part of the UBC Ac-
tive Measurement Facility (ACME) [8]. This facility is de-
signed to acquire multi-modal data for material and sur-
face properties of small to medium size objects (diameter
� 0:5m). The range measurement setup is is shown in
schematic in Figure 2.

The Acuity 3000 LIR is a time-of-flight laser rangefind-
er; a type of device sometimes also referred to as a LIDAR
scanner. The transmitter and receiver are located at thesame
position in the Acuity rangefinder. In the 3000 LIR an in-
frared laser diode (780nm) of 6mW is used as the trans-
mitter source. The range finder is fitted with a rotating 45
degree angled mirror producing depth measurements in a
plane (see Figure 1). The device is classified as a ANSI
class 3b laser product (non-eye-safe). Range measuremen-
t is based on the time required by the reflected laser-beam
to return to the device. The patented measurement method
[3] uses an inverter to switch the laser diode based on the
reflected beam, thereby creating an oscillation. The fre-
quency of oscillation depends on the time of travel of the
beam. The frequency of oscillation is measured by the de-
vice and mapped into a range measurement (see Appendix
A for more details).

The beam sweeps out a plane and a measurement con-
sists of the tuple: angular position and range. The angular
position of the mirror is sensed by an encoder with 2000
counts per revolution.

3. Method overview

3.1. Bayesian estimation

We develop a Bayesian parameter estimation method to
estimate thetrue distance and surface orientation given our
measurements for dark surfaces. This produces accurate re-
sults despite the very noisy measurements.

The key to using sensor models for estimation is Bayes’
theorem. For the laser rangefinder, Bayes’ theorem may be
expressed as in Equation 1. The background informationI
contains the knowledge that we dealing with a type of dark
material. The termP (�rjI) is the bi-variate prior probabili-
ty distribution for the incidence angle� and distancer given
our information. The denominator contains a normalization
termP (DjI) which is the measurement probability or pri-
or predictive probability. The sensor model or the sampling
probability isP (Dj�rI). It can be derived from the cali-
bration data, since both thetrue angle of incidence� and
the true range are known while the measurement dataD is
recorded. The derivation is detailed below.

P (�rjDI) = P (�rjI)P (Dj�rI)
P (DjI) (1)

Commonly employed least squares routines can be
viewed as Bayesian modeling for data errors with a normal
distribution.

3.2. Sensor modeling

A sensor model describes the data to be expected given
a known entity to be measured. In our situation, we would
like to describe the distance measurement process with the
rangefinder. In a calibration setup, the distance measure-
ment is compared to a known ground truth. The deviation
between thetruevaluer and the measured valueD is the er-
ror e of the sensor in the calibration setup, i.e.,D = r + e.
The error term may be further split into a systematic er-
ror em and a random errore�. Systematic errors are errors
which one has knowledge about and plans to model, while
random errors one has no suitable model, e.g., their cause is
unknown, too complicated or too minor to account for. The
systematic error we explore in this paper is the dependence
of the distance measurement on the angle of incidence be-
tween the laser beam and the surface normal. Please see
Figure 4. The dependency of the distance measurement on
material properties is also recognized. We model the sensor
after the data has been modified by the data processing steps
detailed in Appendix B.

3.3. A simple example

In order to outline the process, we will first discuss esti-
mating the distance to the plate and the angle of incidence of
the beam on the plate in a simplified configuration that we
use for calibration. A more realistic situation is addressed in
Section5. In this configuration the plate is upright and the
angle of incidence is only dependent on the angular posi-
tion of the rotation stage and the beam angle� (see Figure
2). Furthermore, the intersection of the plane of the laser
beam and plate is at the rotation axis. As a result, for given
beam angle�, rotating the plate changes only the angle of
incidence but not the point measured with the beam. We as-
sume that we do not know the true distance and the absolute
orientation of the plate.

The likelihood,P (Djr�I), based on the calibrated sen-
sor model is shown in Figure 3(a). It is a function ofr and
� given measured dataD. Notice that the likelihood has
a considerable spread in both range and orientation. This
clearly shows the poor accuracy that would be obtained by
simply using the raw data. Multiple measurements can now
be combined based on the measurement data and the known
relative rotation angle between two measurements, using
Bayes’ theorem. The measurements are always of the same
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Figure 2. Measurement Setup

point in this simple example, since we use the same beam
angle�. The likelihood of the distance and angle of inci-
dence peaks rapidly very close to thetruesolution; the peak
is the Maximum Likelihood Estimate of bothr and�.

In Section 5, we will extend this simple estimation pro-
cess to the problem of estimating the position and orienta-
tion of a finite but small planar patch not necessarily at the
rotation axis.

4. Sensor modeling

In the calibration step, data is gathered in various con-
figurations. The general setup during calibration is shown
in Figure 2. A planar metal plate is mounted upright on the
rotation stage in the workspace of the rangefinder. The plate
surface facing the beam is modified by different colored pa-
per to explore different material properties. The plate is ro-
tated in steps and data is recorded for the intersection of the
plane of the laser beam and the plate. Figure 4 shows three
examples of calibration data for different colors of paper.

Figure 4 indicates that both the material properties and
the angle of incidence influence the measured distance. The
error in the data for bright colors is small and detoriates only
with very acute angles between surface and beam. However,
dark surfaces result in much sparser data and result in large
error due to the angle of incidence.

We assume that our range data is normally distributed
for a given angle of incidence. This is a very reasonable
assumption judging from the calibration data. Keep also in
mind that a Gaussian error model is the least informative
(or most conservative) error model for a given standard de-
viation, i.e., if the Gaussian assumption is invalid, we will
err on the safe side. The standard deviation of the error is
estimated from the sample standard deviation.

Another observation from the calibration data is that
noise standard deviation grows with the angle of incidence.
To properly account for this variation, we group samples
together within narrow bands of angle of incidence. The
combined samples in each group and their�1�s error bars
are shown in Figure 5(a).

Bayes’ theorem also helps in selecting the model order.
We have no further information than the calibration data on
the dependence of the distance measurement on the angle
of incidence. Therefore, we decide to model the influence
with a polynomial of arbitrary order. We use the data to
decide which order of polynomial best describes the data.
Obviously a higher order polynomial model will always de-
scribe data more accurately than a lower order one (the set
of higher order models contains the lower order ones).

We use Occam’s Razor to decide when over-fitting oc-
curs and employ in accordance with Bayesian probability
theory the odds ratio for model comparison (see Equation
2). In the case of competing linear models with equal prior
probabilities, the odds ratio can be calculated by Equation
3 [5]. The odds ratio only depends on the difference in the
residuals�� = �1��2, the determinant ratio of the covari-
ance matricesdV2=dV1 and the difference in the number of
model parameters�n = n2 � n1 times the prior ranges for
the linear model coefficient(

Q
k �Ak;1)=(

Q
k �Ak;2).

Oi;j =
P (MijI) P (DjMiI)

P (Mj jI) P (DjMjI)
(2)

= exp
��

2

r
dV2
dV1

(2�)
�n

2

Q
k�Ak;1Q
k�Ak;2

(3)

Setting all prior parameter ranges to1 leads to a ratio
of 6:39 � 108:1, 8.86:1, and 0.238:1 for the linear vs. the
constant model, the quadratic vs. linear model and the cubic
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vs. quadratic model, respectively. Therefore, we decided to
employ the quadratic model given in Equation 4, with the
coefficients estimated from the calibration data.

em[cm] = 18:85 �2 � 0:7102 �� 0:6050 (4)

The systematic errorem is modeled with Equation 4,
however, it remains to model the probabilistic error term
e�. The probabilistic error term is modeled with a normal
distribution. As noted previously, the probabilistic error is
also dependent on the angle of incidence. This is obvious
from the plot of the residual of the quadratic model fit vs.
the angle of incidence in Figure 6(a). We employ a strate-
gy very similar to that used for the systematic error model.
First, the variance of the residual is calculated for narrow
ranges of incidence angles. The standard derivation of this
variance is expected to decrease with the square root of the
number of samples used for the estimation. The resulting
variance estimation and their�1�s is shown in Figure 6(b).

The model comparison yields odds ratios of 5.85:1 and
0.520:1 for the linear over the constant and the quadratic
vs. linear model, respectively. Therefore, the linear model
in Equation 5 is chosen. The overall model in Equation 6
follows.

�[cm] = 1:353 �+ 0:06082 (5)

P (Djr�I) =
1p
2��

exp
�(D � (em + r))2

2�2
(6)

This completes the sensor modeling task. We will now ex-
plore the use of the model to arrive at better estimates of
distance (and angle of incidence) given measurements tak-
en with the sensor.

5. Planar patch estimation

The sensor returns a one-dimensional distance measure-
ment. However, the sensor model developed in Section 4 is
two-dimensional (see Equation 6).

One possibility is to simply choose to marginalize over
the additional dimension — the angle of incidence�. This
requires solving the integralP (rjDI) =

R
d� P (r�jDI).

The resulting distance estimates recognizing the angular de-
pendency should be an improvement on a simple averaging
of measurements. Averaging distance measurements can
only reduce the probabilistic error to zero in the limit but
would not be capable of reducing the systematic error due
to the dependency on the angle of incidence.

Rather than treating the dependency of the distance mea-
surement on the angle of incidence as a nuisance, we exploit
this dependency to estimate both the distance and the angle
of incidence.

In order to extend the estimation process to a sur-
face of arbitrary orientation and position anywhere in the

rangefinder’s workspace, a surface model is required. This
requirement stems from two facts: on the one hand we
would like to fully utilize the bi-variate sensor model to
learn about the distancer to a surface and the angle of in-
cidence� at the same time; and on the other hand, we need
a method to combine measurements if the change in angle
of incidence between measurements is unknown (unlike the
situation in Section 3.3). For simplicity, we choose a pla-
nar patch as a surface model rather than a more elaborate or
more extended model.

A planar patch in the workspace of the laser can be pa-
rameterized as in Equation 7. This parameterization ex-
cludes planes parallel to they � z plane andx � y plane;
these however cannot be imaged by the rangefinder in the
first place. Given a planar patch and the knowledge of the
position and the orientation of the rangefinder, the angle of
incidence between the beam~b and the surface normal~n is
calculated as in Equation 8. The range is found with Equa-
tion 9 (see coordinate frame assignment in Figure 2). The
patch is rigidly attached to the rotation stage since it is as-
sumed to be on an object placed on the stage. The rotation
stage can rotate the object by a rotation angle� and the stage
itself can be moved along the x-axis bytx and y-axis byty
through two additional translation stages. The equation of
the rotated patch in the original coordinate system is given
by Equation 10.

0 = a x+ b y + c z + d with b = 1 (7)

� = arccos

��b cos�+ c sin�p
a2 + b2 + c2

�
(8)

r =
b dA + d

b cos�� c sin�
(9)

a0 = a cos � � b sin �

b0 = a sin � � b cos �

c0 = c

d0 = �aty sin � + atx cos �

�bty cos � + btx sin � + d (10)

The next step in the process of the planar patch estima-
tion is the application of Bayes’ theorem to this case. Equa-
tion 11 sketches the derivation based on the independence
of the measurements and the relationP (abcdjr�) being de-
terministic. The priorP (r�jI) is set to be uniform over the
range of distances and angles of incidence we expect to see.
The sensor modelP (Dijr�I) has been derived in Section
4. Equations 7 - 10 provide an indexing function into ther
- � space of the measurement data.

P (abcdjD0 : : :DkI) =

Z
r

Z
�

P (abcdr�jD0 : : :DkI);
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=

Z
r

Z
�

P (abcdjr�D0 : : : DkI)P (r�jD0 : : : DkI);

= P (r(a; b; c; d)�(a; b; c)jD0 : : : DkI);

sincer and� are deterministic functions ofa; b; c; d. There-
fore,

P (abcdjD0 : : : DkI) /
P (r�jI)P (D0jr�I)P (D1jr�I) : : : P (Dkjr�I): (11)

In order to clarify the procedure, we will repeat the sim-
ple demonstration case of Section 3.3 but with the above
developed machinery. It is sufficient to seta = 0 a pri-
ori corresponding to upright planes and to notice that this
results in a 1:1 mapping between ther - � space and the
spacec - d at a = 0 of the planar patch. The most likely
patch corresponds then to the peak in the likelihood inr - �
space. The result of our discrete evaluation yieldsc = 0:295
andd = �1:0 for a patch on the calibration plate at� = 0
from the same measurements as in Section 3.3.

6. Results

We will now report two applications of our planar patch
estimation method. One application involves black metal
plates at varying position and orientation, for which the re-
sults are listed in Table 1. The other application are planar
patches along the cylindrical wall of a dark painted beverage
can. The results for the can are easily judged by inspection
and shown in Figure 7.

In this first application the plates are mounted away from
the rotation-axis at different angles. The translation and ro-
tation stages are employed to ensure that the measured point
is always within a small patch. The minimum size of the

patch is determined from the error in an initial distance es-
timate, as well as by the location of the patch relative to the
rotation axis. The distance to the plate is erroneous at first,
since it is initially estimated from only one orientation. The
three-dimensional space of patches is difficult to visualize,
therefore, we only list the most likely patch found by our
estimation process in Table 1. Observe the well estimated
normal of the planar patch.

The application of our model to the dark painted bever-
age can requires modeling the sensor for the material of the
can. We follow the same procedure as outlined in Section
4. The calibration data was gathered by viewing a vertical
line on the cylindrical can from various angles (assuming
the can along the vertical scanline is straight). The param-
eters for this model (Equation 6) are the systematic error in
Equation 12 and the probabilistic error in Equation 13.

em[cm] = 10:53 �2 + 1:387 �+ 1:588 (12)

�[cm] = 1:159 �+ 0:1452 (13)

We estimate a planar patch along the cylindrical wall of
the can. This plane is an estimate of the tangent plane to
the can since we only use data along the same scanline. The
approximation is based on three depth images of the can
which are at0:08727rad(5 deg) relative to each other. The
images were taken by translating the can in steps parallel
to the scanning plane of the rangefinder. The depth images
were mapped into a common coordinate frame and the re-
sulting point cloud is shown in Figure 7(a). The point cloud
shows a very distinct parabolic rather than circular shape of
the can when viewed from the top.

Application of the planar patch estimation procedure of
Section 5 provides the parameters of the planar patch (still
represented by the implicit model0 = ax+y+cz+d). The
position and the normal of the central point of the patch a-



Actual Estimated Samples
Normal Distance[cm] Normal Distance[cm] No. �-steps[rad] �-range[rad]2

4 0:0
1:0

�0:105

3
5 � 50

2
4 �0:0093

1:0
�0:1023

3
5 49.50 132

�0:2618;�0:1745;
�0:08727; 0; 0:08727;

0:1745; 0:2618
�0:03142 : : :0:03142

2
4 0:0

1:0
0:131

3
5 � 50

2
4 �0:0092

1:0
0:1100

3
5 51.64 132 �0:2618, 0, 0:2618 �0:05969 : : :0:05969

2
4 0:0

1:0
0:2618

3
5 � 50

2
4 �0:0284

1:0
0:2180

3
5 52.04 87

�0:1745;�0:08727;
0; 0:08727; 0:1745

�0:03142 : : :0:03142

Table 1. Summary of Results
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long the scanline is shown in Figure 7(b). The position and
normal are computed from the most likely patch for each
scan line respectively (the likelihood is three-dimensional
in the parametersa, c andd of the implicit model). For
comparison thetrue shape of the can as well as the result
of naiveaveraging is shown. The application of our sen-
sor model to planar patch estimation leads to a drastic im-
provement overnaiveaveraging and is fairly close to the
real shape of the can.

7. Conclusion

We have shown that the application of Bayesian proba-
bility theory to measurements with a typical laser rangefind-
er improves the accuracy of range measurements, and it is
even possible to exploit the systematic measurement errors
to extract orientation information. Probability theory pro-
vides the tools to deal with low intensity measurements due
to material properties of the imaged surface and the very
subtle systematic dependence of the noise on the surface
orientation. The process employs a planar surface model
which has to be a suitable model for all measurements of
the same patch. This patch can be very small. The method
could also be extended to a variety of surface models. We
aim to incorporate the described techniques in the UBC Ac-
tive Measurement Facility (ACME) [8], our multi-modal
active object modeling facility.

In future work, we plan to develop faster methods for
finding the MAP (maximum a posteriori) estimate for a sur-
face patch, and to design an active sensing algorithm which
exploits our estimation method. Our current method relies
on prior sensor calibration for material; in the future we
hope to better understand the nature of this dependence on
material type.
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A. Acuity 3000 LIR operation

In the design of time-of-flight laser rangefinders sever-
al inherent difficulties need to be addressed [7, 9] (most of
these problems are similar to modulated continuous-wave
rangefinders [6, 4]). The times to be measured are extreme-
ly short (travel time at the speed of light); therefore, the
electronic circuits measuring the time suffer from thermal
drift. The Acuity addresses this problem somewhat by mea-
suring frequency based on several periods instead of the di-
rect travel time of the beam. It also simultaneously mea-
sures the temperature with the time-of-flight. The reflection
of the beam at an object depends on the object’s surface,
i.e., on the angle of incidence between the beam and the
surface, as well as the reflectance properties of the surface.
The intensity of the reflected beam at the receiver somewhat
characterizes the reflectance properties of the surface. The
intensity is also measured simultaneously with range by the
Acuity (like most similar devices - often classified as imag-
ing laser rangefinders). The Acuity employs a calibration
look-up table to map a measurement triplet of frequency,
intensity and temperature into a range reading.

B. Data processing

The image processing steps added to the Acuity black-
box aim to address some major errors observed in the da-
ta: outliers (often due to mixed pixels [1]: reflection of
the finite size laser beam from multiple surfaces at differ-
ent depth in one measurement), missed absolute orienta-
tion pulse, thermal drift (which is still present after Acuity’s
look-up calibration) and white noise.

Figure 8(a) shows a typical result of a scan indoors. No-
tice the mixed pixels in form of single measurement points
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between continuous segments in the scan. Also notice the
influence of surface material increasing the width of some
segments with respect to others. The scan is in units of
range in cm over device angular ticks. The range distance
contains an offset value for the beam length due to the dis-
tance between transmitter and rotating mirror, and between
rotating mirror and receiver.

The detection of gross outliers is simple given two as-
sumptions: (i) all scanned reflecting surfaces are continuous
for at least two consecutive range readings and (ii) the re-
ceiver only sees a reflection for surfaces for which the inci-
dence angle of the beam is greater than a breakdown angle.

We modeled the result of the thermal drift as a constant
range offset. The offset due to thermal drift and the dis-
tance between mirror transceiver can be corrected based on
a static mounting plate in the laser plane of view (see Figure
8(b)).

A median filter is applied to repeated scans. The medi-
an filter is followed by averaging of measurements within

a given band of the median (see Figure 8(b) for the mount-
ing plate before filtering and Figure 8(c) for the scan after
filtering and offset correction). Assuming the noise of the
measurements has a zero mean, this filter makes it reason-
able that the noise of the average can be modeled with a
Gaussian distribution (Central Limit Theorem).

Missing of the absolute orientation can be corrected by
registering several scans together. The registration finds the
orientation of a scan with unknown absolute orientation rel-
ative to a scan with known absolute orientation. However, it
was found that repeating scans until an absolute orientation
is successfully read is often faster. Therefore, the current
implementation attempts to find the absolute orientation of
a scan in three steps: it keeps scanning until success or for
a maximum fixed (8) number of times, failing this it tries to
register the section corresponding to the mounting plate of
the laser, and finally, if this fails it registers the whole scan
by correlation (see Figure 8(d)).


