
ACME,
A Telerobotic Active Measurement Facility

Dinesh K. Pai, Jochen Lang, John Lloyd and Robert J. Woodham
Department of Computer Science
University of British Columbia

Vancouver, Canada
{pai|jlang|lloyd|woodham}@cs.ubc.ca

Abstract: We are developing a robotic measurement facility which makes
it very easy to build “reality-based” models, i.e., computational models of
existing, physical objects based on actual measurements. These include not
only models of shape, but also reflectance, contact forces, and sound. Such
realistic models are crucial in many applications, including telerobotics,
virtual reality, computer-assisted medicine, computer animation, computer
games, and training simulators.

The Active Measurement Facility (ACME) is an integrated robotic facility
designed to acquire a rich set of measurements from objects of moderate
size1, for building accurate physical models. ACME can provide precise
motions of a test object; acquire range measurements with a laser range
finder; position a 3-CCD color video camera, a trinocular stereo vision
system, and other sensors around the object; probe the test object with
a robot arm equipped with a force/torque sensor; and acquire registered
measurements from all these sensors.

ACME is a telerobotic system with fifteen degrees of freedom. Everything
in ACME, from force controlled probing to camera settings and lighting, is
under computer control. We have also developed an extensive teleprogram-
ming system for ACME. ACME is designed to be a shared resource, and
can be controlled from any remote location on the Internet.

1. Introduction
We would like to make it very easy to build “reality-based” models, i.e., ef-
fective computational models of real, physical objects based on actual mea-
surements. Applications in telerobotics, virtual reality, training simulators and
computer-assisted medicine require such realistic models. Computer anima-
tions and games could also profit from more realistic models of objects. Such
models should be sufficiently accurate for meaningful simulation and analysis
but also efficient for interaction using graphics, haptics, and auditory displays.
Recently, there has been significant progress in some areas such as modeling

1Typically less than 0.5m in diameter. Larger objects can be accommodated depending
on the measurements to be acquired.

geometric shape from measurements (e.g., using Cyberware2, and Hymarc’s
Hyscan system3).

However, the current state of automation for building models is inadequate
in important ways. There are no systems that allow integrated modeling of
physical attributes such as surface texture and friction, elastic deformation and
contact force response, surface reflectance and other radiometric properties, and
the sound field due to impact. Such models are essential for realistic simulation,
and for rich visual, haptic and auditory interaction in virtual environments.
Acquiring the data to build such models remains extremely tedious. This has
resulted in widespread reliance on simple, idealized, mathematical models of
objects which are never validated by comparison with real world objects.

There is thus a need for automated systems which can measure a large
number of properties with reasonable accuracy, and combine these measure-
ments into computational models. The Active Measurement Facility (ACME)
is an integrated robotic facility designed to acquire these measurements from
small objects. While sensor-rich robotic systems have been previously devel-
oped elsewhere (e.g., [1]), we believe this is the first integrated, automated
measurement facility for building comprehensive models of everyday objects.

The remainder of the paper is organized as follows. In Section 2 we give a
brief overview of ACME hardware facilities. The control architecture, including
its novel Internet-based user interface, is detailed in Section 3. In Section 4
we describe teleprogramming for ACME. We conclude with a summary and
outlook in Section 5.

2. System Overview

The ACME hardware can be conceptually divided into the following subsystems
(see also Figure 1):

• A 3-DOF Test Station, on which a test object is placed and can be moved
for presentation to the sensing equipment. It consists of two translational
motion stages mounted at right angles and a rotation stage mounted on
top. (All stages are made by Daedal, with linear and rotary accuracies of
±0.00025 in and ±10 arc-min.)

• A Field Measurement System (FMS) for measuring the light and sound
fields around the test object (see Figure 2). Light field measurements can
be used, for instance, to tabulate the BRDF (bi-directional reflectance dis-
tribution function) for rendering [5], or simply to get images. Sound fields
can be used to build sound synthesis models [2]. A key component of the
field measurement system is a high quality 3-CCD color video camera with
computer controlled zoom and focus (Sony DXC 950). The camera and
other sensors can be positioned with a 5-DOF gantry robot. A trinocular
stereo vision system is also included in the FMS and is described below.

2http://www.cyberware.com/
3http://www.hymarc.com/

CMS FMS

TOF
Laser

TestStation

3CCD
Camera

Triclops

Force Sensor

Figure 1. ACME Facility Overview

Field Measurement System (FMS) Force/Position Measurement (CMS)

Figure 2. ACME Subsystems

• A Contact Manipulation System (CMS), which includes a Puma 260 robot
arm with a wrist mounted 6-axis force/torque sensor (ATI Mini 40). The
CMS is intended to measure properties such as friction and stiffness, and
to make controlled impacts to generate sounds. The arm is mounted on a
long linear motion stage to increase its work space. Contact forces with
the test object are controlled using active compliance. Figure 2 shows this
subsystem acquiring contact force data from a test object’s surface.

• Range measurement systems. Currently, we have two range measurement
devices: a time-of-flight laser range finder (Acuity AccuRange 3000 LIR)
and a Color Triclops stereo vision system from Point Grey Research [10].
Other approaches to shape measurements may be incorporated in the fu-
ture. We would like to experiment with photometric stereo [14] utilizing

Java RMI
Java VM

RCCL

Solaris

MC 8 RS232

Robot Arm Gantry
R

S
23

2

D
ig

it
iz

er

SC
SI

Motion Stages
Pan-Tilt

Controller

Java VM

Linux

Camera

Control
Force Sensor

Motion Stage

CMS FMSTS

ACME Server

...

TOF-Laser

Sensors

Future

Java VM

Any OS

ACME Client

Internet

Figure 3. ACME Server: Overview of Control

the 3-CCD camera as the sensing device and appropriate light sources.

The design of ACME is directed at acquiring measurements for building
models, and not the models themselves. However, ACME will provide
nominal shape models, since these are necessary for obstacle avoidance,
sensor planning, path planning, etc. The three-dimensional location and
shape of objects on the test station are measured and registered relative
to a facility-wide world coordinate frame.

• Miscellaneous subsystems, such as light sources, and control computers.

3. Control Architecture
In this section we describe the software and hardware architecture for control-
ling the ACME facility. The overall architecture is shown in Figure 3, and is
divided into a server and a client. The robotic subsystems are controlled by
the ACME Server (Section 3.1). Users interact with ACME using the client
(Section 3.2). We discuss user level teleprogramming in Section 4.

3.1. ACME Server
The ACME server software consists of four layers. The highest layer is the
user’s Experiment which is described in the next section.

The next layer provides high level JavaTM4 objects called Devices, which
are in turn subclassed into Actuators and Sensors. Actuators are robotic

4Java is a trademark of Sun Microsystems Inc., MountainView, Ca., USA

subsystems which can be controlled as a unit: these include the Test Sta-
tion, the CMS (implemented using a Puma 260 robot arm), and the 5-DOF
gantry robot (x-y-z positioner plus 2-DOF pan-tilt head) comprising the FMS.
Sensors are sources of measurement data, such as the time-of-flight laser range
sensor, 24-bit color camera, and the CMS’s 6 axis force/torque sensor. All
Device objects keep track of their state and spatial position. Actuator objects
also have methods to solve their inverse kinematics.

An important feature of our design is that motions are first-class objects
which can be directly manipulated or stored like any other object in the lan-
guage. For instance, a motion can be handed to a simulator for verification or
to a server for execution on the actual hardware. This is in contrast with typical
robot programming languages in which motions are implicitly defined through
procedures. The smallest motion object is a Motion, which is a generalized way
to specify a specific motion of an Actuator. Motions may also include a pro-
grammable impedance for those actuators capable of realizing this. Individual
Motions may be assembled into a MotionPlan, which takes care of sequencing
motions of a given actuator and starting motions of different actuators at the
same time.

The next layer of software generates real-time trajectories for each actuator
device from a MotionPlan. This layer is implemented using the Robot Control
C Library (RCCL) [7] with a JavaTM front-end. RCCL generates (at 100
Hz) the joint setpoints necessary to realize the specified position and force
commands (basing the latter on input from a 6-DOF force sensor). These joint
setpoints in turn form the input to various controllers which comprise the lowest
layer: the 6 joint servos in the PUMA controller, an 8 axis motion control card
(Precision Micro Dynamics MC-8) controlling the Test Station and x-y-z axes
of the gantry, and a stepper motor interface for the gantry’s pan-tilt head.

The grouping of physical devices into ACME subsystems has been de-
scribed in 2, and it can also be seen from Figure 3. Physically, the system is
distributed between several computers; separating low-level closed-loop control,
trajectory generation, data acquisition, and networking.

3.2. ACME Client
The user interface of the ACME facility is through an ACME client. Figure
4 sketches the functionality of the client. The client serves as control termi-
nal for the ACME facility; an important design feature is that the client can
transparently connect to either a simulator of ACME, or to the real ACME
facility.

The client consists of two major parts: the experiment window and the
viewer. The experiment window is a simple development environment for de-
signing ACME experiments. The viewer renders the state of the ACME facility
(either real or simulated) and the state changes as an experiment proceeds. The
complete ACME client is a 100% pure JavaTM program enabling its use any-
where, on any system with an internet connection and JavaTM virtual machine5

5However, the viewer utilizes the JavaTM3D API which is currently only available on a
few systems.

}

public class MyExperiment
 extends acme.Experiment {
 public void conduct(){}

Viewer
Simulation Rendering Remote Display

Experiment
Window

Session Management
Experiment Editing

ACME Client

Internet Connection to ACME Server

Sensor Simulation
Actuator Simulation
Collision Detection

Figure 4. ACME Client: Functionality

Figure 5. ACME Simulation on Client

The ACME client in stand-alone mode (connected to the simulator) is
useful for design and verification of Experiments, with the aid of a three-
dimensional graphical simulation of the motion commands. In addition to
motion, some of the sensors in ACME are simulated as well, using an object
model. The model may be available from earlier experiments with ACME, or
in fact may be any simple shape description file. Currently, the only sensors
simulated are the TOF-Laser and camera. Since ACME allows not just one-
shot measurements, but adaptive measurement and on-line model construction,

ACME Experiments can be quite complex; the simulation provides a way to
test these algorithms safely. As an example, the simulator can return laser
scan data and images from a geometric model of a test object, so that user
algorithms for shape reconstruction can be tested in great detail.

The ACME client is also an Internet terminal to the ACME robotic device.
Once a user is satisfied with the results of an experiment in simulation, the client
may be connected to the ACME server and run the experiment on the real
ACME facility as described in Section 4. While the ACME server executes the
experiment, it sends back state information and data to the ACME client. The
data may have nearly any format from “raw” sensor output to the result of any
computation specified with the user’s experiment and its helper objects. The
client’s viewer renders the state updates as received from the server, providing
visual feedback through the graphical display of ACME. Note that an ACME
client on a system without the JavaTM3d API can still upload an experiment
to the ACME server but can not use the viewer to provide visual feedback of
an experiment in progress.

4. Teleprogramming ACME
ACME is a high degree of freedom robotic system, and therefore requires a
good programming environment to use it effectively. Several teleprogramming
systems have been demonstrated in the literature [6, 12, 3] from which we have
adapted programming ideas for ACME, as well as from the Cornell Mobot
Scheme environment [11]. Experiments can be run on ACME from almost any
site on the Internet. See [9, 4, 13] for other work on telerobotics on the Internet.
We describe the programming environment of ACME below.

ACME programs are called “Experiments” and are written in the JavaTM

programming language. Our design exploits dynamic class uploading, security,
multi-threading, and networking provided by JavaTM .

A simple example using the ACME1.0 API is shown below. A user-defined
class (called HelloRealWorld here) moves the test object to a desired configu-
ration, sets camera parameters, and takes a series of images of the test object
from different angles around the object by rotating the test station. The image
data is then stored on the client’s local disk. An experiment is required to
implement a conduct method which is called by the ACME server to conduct
the user’s experiment.

import acme.*;

public class HelloRealWorld

extends ExperimentBase

implements java.io.Serializable {

private DeviceCom devCom = null;

private Camera cam = null;

private TestStation ts = null;

//... other methods

public void init() throws Exception {

this.devCom = acme.getDeviceCom();

this.ts = (TestStation) devCom.getDevice(TEST_STATION);

this.cam = (Camera) devCom.getDevice(CAMERA);

// set Camera state to desired settings

CameraState camState = (CameraState) cam.getState();

camState.zoom = 100; cam.setControl(camState);

devCom.printMessage("Experiment initialized.");

return;

}

public void conduct() {

init();

double[] jvals = new double[3];

try {

for (int deg = 0; deg < 360; deg += 45) {

jvals[0] = 0; jvals[1] = 0;

jvals[2] = deg / 180.0 * Math.PI;

MotionPlan plan = new MotionPlan();

Motion mot = plan.add(new Move (this.ts, jvals));

plan.execute();

while (mot.status() != Motion.COMPLETED) {

Thread.sleep (1000);

}

ACMEImage image = this.cam.getImage();

acme.saveData("image" + deg + ".ppm",

ACMEImage.toBytePPM(image.getPixels(true), 640, 480));

}

}

catch (Exception e) {

devCom.printStatus("Error in conduct()");

return;

}

return;

}

}

The basic functionality for conducting experiments is defined by the inter-
face Experiment, with some of the implementation provided by the abstract
class ExperimentBase. In particular, it provides a reference to a special acme
object. Various subsystems of ACME can be accessed through this reference;
for instance the Test Station device is accessed invoking
acme.getDeviceCom().getDevice(TEST_STATION);

and an image can then be acquired by cam.getImage() and saved on the
client’s local disk using
acme.saveData("image" + deg + ".ppm",
ACMEImage.toBytePPM(image.getPixels(true), 640, 480));

The client’s Experiment class can be compiled on any computer. The ex-

periment is conducted by uploading the class into a JavaTM Virtual Machine
(JVM) running on the ACME server. The ACME server provides native im-
plementations of methods which can access and control the ACME hardware
(see Figure 3).

Some features of our design are worth mentioning, since they make it easy
to develop correct experiments and run them easily from a remote location.

First, while it would be possible, and conceptually simple, to use Remote
Method Invocation (RMI) to directly teleoperate ACME from a remote site,
the high latency and low bandwidth of the Internet makes this approach prob-
lematic, particularly for experiments involving contact with the test object.
To address this problem, in previous work we have developed a system for
model-based telerobotic control, and demonstrated its feasibility with a similar
robot system [6, 8]. In ACME, we also use a teleprogramming approach, and
send small robot programs (ACME Experiments) instead of low-level motion
and sensing commands. This allows feedback loops to be closed at the remote
ACME server and enables adaptive measurement techniques such as view-point
planning.

Second, the ability to load classes at run time makes it possible to simulate
the experiment by loading exactly the same compiled bytecode into a JVM on
the user’s computer. In this case, a different implementation of ACME classes
and their methods are loaded into the JVM, and provide a graphical simulation
of ACME (see Figure 5). Therefore, errors in the experiment can be caught
early, and the simulated experiment can be immediately run on the real ACME
facility, with no recompilation.

Third, dynamic class loading is well suited for this type of teleprogram-
ming. The Experiment object is instantiated on the client, serialized, and sent
to the ACME server, where it is re-instantiated. This has two benefits: (a) It
allows interactive experimentation. The user can modify an Experiment class
(for instance based on measurements returned from ACME), and reload it into
a running ACME server. (b) It allows us to develop a library of idiomatic
experiment objects which can be customized on the client (for instance based
on user manipulation of the graphical simulation of ACME).

5. Conclusions
We are developing a telerobotic measurement facility, ACME, with goal of
making it extremely easy to build more accurate and complete physical models
of everyday objects. When completed, ACME will be able to acquire a large
number of carefully registered measurements of a given object including shape,
reflectance, sound, and contact forces. ACME is also a high degree of freedom
robotic system with a complex array of sensors; we have developed an extensive
teleprogramming architecture for programming this system from any location
on the Internet.

Acknowledgments

Several people have contributed significantly to the development of ACME at
the University of British Columbia; without their efforts the system could not

have been built. They are, in alphabetical order: R. Barman, C. Chiu, J. Fong,
A. Fournier, L. Ke, S. Kingdon, and A. K. Mackworth. Financial support was
provided in part by grants from NSERC and IRIS NCE. Lang and Lloyd were
supported in part by NSERC fellowships. We would also like to thank Point
Grey Research for their support and assistance with the Triclops system.

References
[1] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl, “Sensor-Based Space

Robotics – ROTEX and Its Telerobotic Features”. IEEE Transactions on
Robotics and Automation, October 1993, pp. 649–663 (Vol. RA-9, No. 5).

[2] K. van den Doel and D. K. Pai, “The Sounds of Physical Shapes,” Presence, The
MIT Press, 1998, pp. 382-395, (Vol. 7, No. 4).

[3] J. Funda, T. S. Lindsay, and R. P. Paul, “Teleprogramming: Toward delay-
invariant remote manipulation”. Presence, Winter 1992, pp. 29–44 (Vol. 1, No.
1).

[4] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter and J. Wiegley,
“Desktop Teleoperation via the World Wide Web”. Proceedings 1995 IEEE In-
ternational Conference on Robotics and Automation, Nagoya, Japan, May, 1995,
pp. 654–659.

[5] Paul Lalonde and Alain Fournier, “Generating Reflected Directions from BRDF
Data”. Computer Graphics Forum, Special issue on Eurographics ’97, August
1997, pp. 293–300, (Vol. 16, No. 3).

[6] J. E. Lloyd, J. S. Beis, D. K. Pai, and D. G. Lowe, “Model-based Telerobotics
with Vision”. Proceedings 1997 IEEE International Conference on Robotics and
Automation Albuquerque, NM, April 1997, pp. 1297–1304.

[7] John E. Lloyd and Vincent Hayward, “Multi-RCCL User’s Guide”. McGill CIM,
April, 1992.

[8] J. E. Lloyd, and D. K. Pai, “Extracting Robotic Part-mating Programs from Op-
erator Interaction with a Simulated Environment.” In the proceedings of the Fifth
International Symposium on Experimental Robotics, (Barcelona), June 1997.

[9] E. Paulos and J. Canny, “Delivering Real Reality to the World Wide Web via
Telerobotics”. Proceedings 1996 IEEE International Conference on Robotics and
Automation, Minneapolis, Minnesota, April 1996, pp. 1694–1699.

[10] Triclops On-line Manual, http://www.ptgrey.com/, Point Grey Research, Van-
couver, Canada.

[11] J. Rees and B. Donald. Program mobile robots in scheme. In Proceedings 1992
IEEE International Conference on Robotics and Automation, Nice, France, 1992,
pp. 2681–2688.

[12] C. R. Sayers, “Operator Control of Telerobotic Systems for Real World Inter-
vention”. Ph. D. thesis, Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104 USA, 1995.

[13] K. Taylor and J. Trevelyan, “Australia’s Telerobot On The Web”. 26th
International Symposium On Industrial Robots, Singapore, October 1995.
http://telerobot.mech.uwa.edu.au/.

[14] R. J. Woodham, “Gradient and Curvature from the Photometric-Stereo Method,
Including Local Confidence Estimation”. Journal of the Optical Society of Amer-
ica A, November 1994, pp. 3050-3068, (Vol. 11, No. 11).

