
Programming Contact Tasks
Using a Reality-based Virtual Environment

Integrated with Vision

John E. Lloyd, Jeffrey S. Beis, Dinesh K. Pai, David G. Lowe
Dept. of Computer Science, University of British Columbia

Vancouver, B.C., Canada
flloyd,beis,pai,loweg@@cs.ubc.ca

Abstract
We present an integrated system in which an operator uses a sim-

ulated environment to program part-mating and contact tasks. Gener-
ation of models within this virtual environment is facilitated using a
fast, occlusion-tolerant, 3D grey-scale vision system which can rec-
ognize and accurately locate objects within the work site. A major
goal of this work is to make robotic programming easy and intuitive
for untrained users working with standard desktop hardware. Simu-
lation can help accomplish this, offering the ease-of-use benefits of
“programming by demonstration”, coupled with the ability to create
a programmer-friendly virtual environment. Within a simulated envi-
ronment, it is also straightforward to track and interpret an operator’s
actions. The simulator models objects as polyhedra and implements
full 3D contact dynamics, making is easy to place and manipulate ob-
jects using input from a simple 2D mouse. When a manipulation task
is completed, local planning techniques are used to turn the virtual en-
vironment’s motion sequence history into a set of robot motion com-
mands capable of realizing the prescribed task.

1. Introduction
This paper describes an integrated system which uses virtual-
reality simulation to program robotic part-mating and contact
tasks, developed at the Computer Science Department of the
University of British Columbia (UBC). It includes a vision sys-
tem for rapidly creating models of a work site, a task simulator
that allows objects to be manipulated within the simulated envi-
ronment, and a program generator that turns the simulated ac-
tions into a sequence of robotic motion commands capable of
realizing the desired task.

In developing this system, our aim has been to make robot
programming very easy, particularly for non-specialists using
standard desktop computer hardware. Our emphasis on tasks
involving contact is deliberate, since commercial manipulator
systems still provide only minimal support for such operations.
We suspect that the complexity of programming contact-based
tasks is an important reason for this.

We believe that using a simulated virtual environment to di-
rectly demonstrate the required contact task can help overcome
many programming difficulties. Reasons for this include:

} It eliminates the need for tedious textual descriptions (such
as “place face A on top of face B”).

1 Submitted to the IEEE Transactions on Robitics and Automation,
September 1997

} A simulated environment can be augmented with virtual
fixtures and aids to assist programming. Alternatively,
the environment can be simplified, with minimal display
of the manipulator system, permitting direct manipula-
tion of objects and programming which is more “task-
centric”.

} For programming purposes, it is easier withina simulated
environment to track an operator’s actions and discern in-
tentions, since the state of everything is known and does
not have to be continuously updated by sensing.

In contrast with most virtual environments, the locations and
types of objects in our environment are acquired automatically
using vision. This makes the virtual environment a more ac-
curate representation of the real environment. Such a “reality-
based” virtual environment is crucial for meaningful robot pro-
gramming.

At present, our system’s task domain consists of a puzzle of
wooden blocks which can be assembled within a rigid frame.
This domain is simple but encompasses a wide range of pos-
sible contact interactions. Part mating involving “tight fits” is
not currently supported but is part of our ongoing research. A
very basic demonstration of the system is given in Figure 1,
which illustrates the placement of a block into a corner (readers
with Internet access can also download an AVI video of this via
http://www.cs.ubc.ca/spider/pai/telerobotics.html).
A more complex type of task which can be easily programmed
involves dragging a block around the outside of a corner while
contact is maintained (Figure 2).

1.1. System requirements and overview
A simulation-based robot programming system requires several
principal modules:

1. Model Generator: buildsand maintains the work site model
used by the simulator.

2. Task Simulator: permits manipulations within the simu-
lated environment, using dynamics that are easy and in-
tuitive for the operator and which facilitate task specifi-
cation.

3. Program Generator: uses the actions within the virtual
environment to create a set of robot motion commands
capable of realizing the prescribed task.

4. Execution monitor: verifies task execution at the robot
site. On-line information may also be used to determine
corrections to the work site model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Simple example showing the placement of a block in a corner. Blocks within the initial work site (a) are located by the vision system (b, with matching
edges outlined in white), and then used to update the work site model, graphically rendered in (c). An operator can then select an object by “clicking” on it, causing
it to be encased within a “dragger fixture” (d). Clicking and dragging on a face of this fixture creates a virtual force in the plane of the face, which in turn causes
the object to move (e). As the operator drags the object into the corner, contact is made with the corner faces, causing the block to align and settle into the corner
easily, with no finesse required (f). The goal of the task, in terms of both nominal object position and the required contact state, is known directly from state
information available to the simulator. When satisfied with the block’s position, the operator issues a confirmation command, which causes the simulated motion
sequence to be turned into robot motion commands which realize the requested operation (g)-(i), with impedance control used to realize the necessary contacts.

2

The first three of these components are well-developedwithin
the UBC system and form the main focus of this paper:

Model generation is realized using a model-based grey-scale
vision system that can rapidly and robustly recognize and locate
objects characterized by straight-line edge features. Matches
are performed using localized groups of edge features, enabling
the vision system to tolerate a moderate amount of occlusion.
Recognition of several objects can be achieved within about
five seconds, and the object pose information is generally ac-
curate to within a pixel. Recognized objects are displayed in a
separate “feedback window” from which the operator can select
them for inclusion into the work site model.

The task simulation module lets an operator select objects
within the simulated environment and move them around, using
input from a standard 2D mouse. A mouse was chosen deliber-
ately, since it is cheap, ubiquitous, and fits with our above men-
tioned goal of making programming accessible to users with
standard desktop computer hardware. Graphical fixtures are used
to map the 2D mouse inputs into spatial motions in various di-
rections. The dynamics within the simulated environment is
first order, since this is (a) easy to compute, (b) intuitive for the
operator, (c) qualitatively similar to a system dominated by fric-
tion, and (d) stable. Contact interactions are modeled, letting
the manipulated object, or workpiece, bump into, slide along,
and align itself with other objects. These interactions, com-
bined with the first order dynamics and graphical fixtures, make
it quite easy for the operator to perform part mating and place-
ment within the virtual environment. The simulator is also ca-
pable of enforcing contact between the workpiece and desig-
nated capture objects, to enable the specification of motions in-
volving contact.

After an object has been manipulated to a desired state within
the virtual environment, the program generator is invoked to
produce a set of robotic commands to implement the specified
action. This is done by taking the complete motion sequence
used to perform the simulated task, and deforming it, using lo-
cal planning (potential field) techniques, so as to remove ex-
traneous motion segments and move it away from objects with
which contact is not required. A key feature of our deforma-
tion technique is that it can be constrained to preserve desired
contacts, as in the cornering example of Figure 2. After defor-
mation, the sequence is simplified into a piecewise-linear spa-
tial path, where each node may be associated with one or more
contacts. Each path segment is realized using a single robot mo-
tion command, for which required contacts are realized using
impedance control combined with target position biasing.

The last module, the execution monitor, is presently imple-
mented in a simple way using force monitoring to verify the oc-
currence of the required contact states. More robust monitor-
ing, and the use of contact information to update the work site
model, is the subject of ongoing investigation.

1.2. Connection to Telerobotics
Although our focus is currently on model acquisition and pro-
gramming, our system can be used to perform telerobotic ma-
nipulation, and was in fact inspired by previous work in that
area (Section 2).

All the links between the operator site and the work site (Sec-

tion 3) are implemented using TCP/IP sockets, permitting re-
mote operation over the Internet. At a conference in Montreal
in June 1996, an earlier version of the system was successfully
demonstrated in exactly this way, with the operator site located
in Montreal and the work site located in Vancouver.

1.3. Outline
The rest of this paper is arranged as follows. Related work is
discussed in Section 2, and a more detailed description of the
system components and hardware is given in Section 3. The
vision system, task simulator, and program generator are then
presented in Sections 4, 5, and 6, respectively. Experimental
observations are given in Section 7.

2. Related Work
The work described here is closely connected to the telepro-
gramming work of Funda, Sayers, and others [11, 27], where
operator interaction with a simulated environment is used to
overcome time delay problems which can arise in some teler-
obotic situations. Teleprogramming was predated by the use
of predictive graphical simulation [15, 6]. The introduction of
synthetic “fixtures” into the operator’s display to assist in task
specification has also been explored [28, 32], and virtual real-
ity simulation has been investigated as a platform on which fine
motion task skills can be learned [7, 17].

Commands sent to a remote site in teleprogramming sys-
tems tend to be at the level of “guarded moves”. The ability to
send higher level commands asking the remote manipulator to
achieve a particular contact state (recovering if necessary from
any intervening contact states which can be anticipated) is in-
vestigated in [9], using a Petri-Net-based contact state model.

With respect to the problem of model acquisition, virtually
all practical model-based telerobotic systems currently handle
this using extensive operator interaction. The traditional way to
do this is to have the operator manually indicate known object
features in a video image of the remote site, and use the 2D im-
age coordinates of these features to solve for the 3D positions
of the associated objects [22, 16].

Automatic model generation using computer vision has been
limited by the ability of systems to accurately identify and lo-
cate 3-D objects, particularly in the presence of clutter and par-
tial occlusion. Although there has been a long history of re-
search on 3-D object recognition [14, 19], it is only recently
that new approaches to model indexing have allowed such ap-
proaches to be sufficiently fast and reliable for integration with
a real-time telerobotics system. This model-based approach con-
trasts with appearance-based recognition [21], which is based
on directlymatching image appearance, and can therefore model
more general object classes but is less robust to image clutter
and illumination changes and does not perform precise object
localization.

Finally, in the last few years there have been a number of
projects making teleoperated robotic systems of various kinds
available to casual users on the World Wide Web; see, for ex-
ample, [23, 12, 30].

3. System Description
A block diagram of the UBC system is shown in Figure 3. The
system is divided into a work site, consisting of a robot, its con-

3

(a) (b) (c)

(d) (e) (f)

Figure 2. Sequence showing a more complex contact task where a block is dragged around a corner of the puzzle frame while contact with the
frame is maintained.

troller, and the vision module, and an operator site, compris-
ing the operator interface, task simulator, model editor, and pro-
gram generator.

3.1. Work site
The work site (Figure 4) contains a 6 DOF CRS A460 robot
(Puma-type geometry), controlled at the lowest level by 1 KHz
joint servos (supplied by the manufacturer), which are in turn
driven by a task controller. The task controller is implemented
using the Robot Control C Library (RCCL) [18] running in real-
time on a Sun Sparc 5. It accepts Cartesian motion commands
from the operator site, and generates the required trajectories
at 100 Hz. The trajectory generator also receives input from a
force sensor, allowing it to implement both guarded moves and
a position-based impedance control similar to that described in
[24].

The vision module continuously collects images from a sin-
gle monochrome camera and processes them using a model-
based visionalgorithm (Section 4) to locate objects in the scene.
The objects and their positions are continuously sent back to the
model editor at the operator site. The camera image itself is also
transmitted back to the operator site, where it is displayed in a
separate window.

3.2. Operator site
The operator site consists of an SGI Indy with a 15 Mflop CPU.
It hosts a model of the work site environment, with which the
operator interacts, using a mouse, via the task simulator (Sec-
tion 5). Model data includes polyhedral representations of the
work space objects, plus kinematic and geometric information
about the robot manipulator (dynamical information is not nec-
essary for the low-speed contact operations presently being in-

Figure 4. Remote site, showing the robot, camera, and work area.

vestigated). Other information about work site objects, such as
friction and stiffness models, may be added later if required.
Model information is updated, based on recognition data re-
ceived from the video/vision module, by the model editor (Sec-
tion 4.3). Images of recognized objects are displayed in a feed-
back window, and also overlaid on the raw video image dis-
played in the camera image window. The operator then selects

4

recognized
 objects

 vision
module

 task
controller

 model
 editor

joint servo
 controller

operator
 inputsforce

 data

video

error/
status

 task
commands

work site
 model

 work site operator site

 model viewing
 window

 program
 generator

camera image
 window

 task
 simulator

feedback window

Figure 3. System architecture.

if and when specific recognized objects are introduced into the
work site model. The model editor, together with the vision sys-
tem, constitute the model generator described in Section 1.1.
A graphical display of the work site model itself is provided
in the model viewing window, implemented using the SGI 3D
modeling package Open Inventor [33]. The display’s viewpoint
can be adjusted to suit the operator’s needs. Figure 5 shows the
typical arrangement of the different viewing windows on the
SGI system. Lastly, a program generator (Section 6) creates
the robot motion commands required to realize specific tasks
and sends them to the task controller at the work site.

4. Model Generation
The principal component of the model generator is the vision
system, which must be able to provide accurate identification
and location of objects in the work space. The state of the art in
3D vision has only recently developed to the point where these
capabilities can be achieved with reasonable speed and reliabil-
ity. This project employs the model-based recognition system
of Beis and Lowe [4, 5], which uses a novel form of rapid in-
dexing to recognize 3-D objects from any point of view in sin-
gle 2-D images.

The vision system is currently restricted to using straight edges
of the objects in the recognition process. A model must be pro-
vided for each object type which specifies surface visibilityand
the 3-D location of all prominent lines and edges. For the demon-
strations described in this paper, these models were generated
by hand. However, a separate tool has also been developed that
allows models to be automatically generated from a number of
images of an object, with human input limited to pointing out
corresponding edges in the different images [3].

4.1. Recognition and matching
The recognition process begins by finding all linear edges in
an image and identifying groups of edges that are connected to
one another or are nearby and parallel. Groups of 4 or more
line segments (see Figure 6) are used to generate a vector of
measurements giving the relative lengths or angles between the
lines. This “index” vector is invariant to 2-D translation, rota-
tion and scaling, but will vary with the projection of different
3-D rotations of the object. Other methods, which require fully
invariant feature groupings for indexing, will be more limited
in which objects their system can handle. A precomputed index
covering a sample of all 3-D object rotations is used to estimate
the probability that a particular vector was produced by a par-
ticular object. One feature of this approach is that index access
time remains very rapid even as the dimensionality of the fea-
ture vectors is increased [5]. The greater specificity encoded
in larger vectors is important for improving indexing accuracy
[8] and hence recognition speed, and to enhance discrimination
within larger model databases. Full details of this indexing ap-
proach are given in the paper by Beis and Lowe [4].

Once a tentative interpretation has been made for some im-
age features, it is possible to estimate the object location and
orientation in 3-D [20]. This is used to predict the locations of
other object edges in the image and obtain further correspon-
dences. At each stage, the solution for object location and ori-
entation in 3-D is performed with a least-squares fit minimizing
residuals in predicted versus actual image locations. So, while
the current system uses only straight edges, models might eas-
ily contain other feature types with location information, to aid
in verification and pose determination. The solution for object
pose is substantially over-determined, which means there is lit-

5

Figure 5. Typical screen layout on the operator site workstation. Clockwise from top-left: camera image window, feedback window, model
viewing window (with tall block being manipulated by a dragger box), and textual interface window.

Figure 6. Left frame shows cropped image of work space overlaid
with wire-frame models at positions determined by the recognition al-
gorithm. Right frame shows edge-detected image with examples of
correct and incorrect feature groupings used in the indexing process.

tle likelihood that an incorrect correspondence will be found to
fit more than a few image features. If a good fit is not found
for a number of image edges, then the match is rejected and a
new indexing hypothesis is used. Therefore, the final recogni-
tion has good robustness and accuracy, even though the initial
indexing is probabilistic.

4.2. Speed, accuracy, and calibration
The full recognition process currently requires about 5 seconds
running on a 15 Mflop SGI Indy. This will be much improved
in the future once a number of optimizations have been made
for speed. Much of the time is currently spent on the low-level
edge detection process, which could be greatly accelerated by
using some image processing hardware.

Image lines are determined througha least-squares fit to each
pixel along an edge, and model location is based on a least-
squares fit to these lines. Therefore, accuracy is usually precise
down to the pixel level of the image, although its mapping to
the 3-D world depends on the camera location and optics. With
a single camera, the location of the object parallel to the cam-
era image plane is more precise than location towards and away
from the camera. If this is a problem, then it would be possible
to use a similar approach to recognition with 2 or more cameras
to achieve full accuracy in all dimensions. For this project, ac-
curacy was improved using other constraints, such as the fact
that objects close to the worktable surface must in fact be rest-
ing on the surface.

A standard pin-hole camera model is assumed. Intrinsic pa-
rameters (focal-lengthand radial distortion)were calibrated off-
line using the algorithm in [31]. The camera position relative to
the work space was calibrated manually by having the operator
identify, in the camera image, work site features of known po-
sition.

4.3. Model editing
Information on recognized objects and their locations is con-
tinuously sent from the vision system to the model editor in the
operator station. A primary function of this module is to en-
sure that object information is logically consistent, compensat-
ing for the fact that the vision system recognizes objects inde-
pendently of each other. For instance, objects located near the
table are assumed to be resting on the table (since they can nei-
ther penetrate the table top nor hover above it), and their loca-
tion is adjusted accordingly. Location adjustment occurs along
the camera axis, since for our presently monocular system this
is the primary direction in which errors occur. Other consis-
tency adjustments, such as ensuring that objects do not inter-
penetrate with each other, should be implemented here although

6

Figure 7. Dragger box and gripper rendering surrounding a block to
be manipulated. Dragging the mouse cursor along one of the planes of
the box causes a displacement parallel to the plane, which is converted
into a “virtual force” acting on the workpiece’s center.

we have not yet done so. After the recognized objects’ locations
have been adjusted, they are displayed in the feedback window
and a wireframe overlay is also generated in the camera image
window (Figure 3).

Updating of the world model itself is done under the control
of the operator, and is generally done between task specifica-
tions and then only when necessary. By examining the recogni-
tion data displayed within the feedback and camera image win-
dows, the operator can make a final judgement as to the data’s
reliability. Specific objects can then be selected for inclusion
within the work site model by clicking on them within the feed-
back window. Similarly, work site model objects can be se-
lected for deletion by clicking on them within the model view-
ing window.

5. Task Simulation
The purpose of the task simulator is to enable the operator to
manipulate an object (or workpiece) within the virtual environ-
ment so as to easily specify a task. One commonly occurring
task is to simply move the workpiece to a destination position
requiring contact with one or more objects (since the workpiece
must rest on something, all destination states will entail at least
one contact). The cornering task of Figure 1 typifies this. A
more complex task might involve maintaining contact during
motion, such as shown in Figure 2.

To facilitate these types of actions, the task simulator allows
a manipulated object, or workpiece, to be moved about the vir-
tual environment using first order dynamics combined with a
contact model. This permits the workpiece to bump into, slide
along, and align itself with other objects. This, in turn, makes
it very easy for the operator to place the workpiece into some
desired contact state with respect to the rest of the environment.
First order dynamics is used for the reasons mentioned in Sec-
tion 1.1. To specify motions involvingcontact, the operator can
also request that the workpiece maintains contact with certain
selected capture objects. Once the workpiece makes contact
with a capture object, its motion is constrained so as to maintain
that contact (using barrier functions, as described at the end of
Section 5.2). After the operator completes a task, she signals

this to the system, which then invokes the program generator
(Section 6) to create a sequence of robotic commands capable
of realizing it at the work site.

The simulated environment is visible to the operator, from
any angle, through the model viewing window. Using the mouse,
the operator selects a workpiece to be moved by clicking on
it. A simulated gripper then appears, showing how the work-
piece will be grasped, along with a graphical “dragger fixture”
(presently, a box) that maps 2D mouse inputs into 3D spatial
motions and permits the workpiece to be moved about (see Fig-
ure 7 and Figure 1). Rendering only the gripper preserves the
“task-centric” focus of the operator’s actions; more proximal
parts of the robot could be rendered if necessary.

Displacements between the dragger box and the workpiece
are used to create a virtual force fa acting on the workpiece
(Figure 8). When the workpiece is brought into contact with
other objects, normal forces also arise in reaction to the applied
force (Figure 9). The normal forces plus the applied force cre-
ate a net total force on the workpiece, from which the workpiece
velocity is computed in accordance with the first-order dynamic
model (Section 5.1). While devices such as dragger boxes are
commonly used to generate spatial motions in graphical sys-
tems (our dragger box itself is an Inventor object), their use to
generate virtual forces for integration into a dynamic environ-
ment is more novel.

fa

Figure 8. Displacements of the dragger box relative to the object cre-
ate a virtual force fa on the object.

fa

f0

f1

Figure 9. Contact of the workpiece with other objects gives rise to
normal reaction forces (f0 and f1).

5.1. Contact dynamics
The simulator keeps track of the distances between objects us-
ing I-COLLIDE [10]. Objects closer than �c are assumed to be
in contact, in which case information provided by I-COLLIDE

7

is used to determine a suitable finite set of contact pointspi and
normalsni modeling all the contacts2. Reaction forces fi acting
along the contact normals, in response to the applied force fa
(Figure 9), are determined using Baraff’s algorithm [1]. The net
force f and moment m acting on the workpiece are then given
by

f =
X
i

fi + fa; m =
X
i

pi � fi:

First order dynamics is then used to determine the workpiece’s
spatial velocity (vT!T)T , according to

v = dtf and ! = drm (1)

where dt and dr are suitable constants.
The task simulator computes and applies the workpiece’s ve-

locity in this way once per time step (currently every 50 msec)
and uses this information to update the workpiece’s position, as
described in the next section.

5.2. Enforcing Contact Constraints with Barrier Potentials
The spatial velocity vS � (vT!T)T described in the previous
section is used to determine the change in workpiece position
during each simulation step. Nominally, if no collision results,
this is given by vS�t, where�t is the size of the simulator time
step. On the other hand, if this does result in a collision, then
the displacement is scaled back along the direction of vS (as de-
scribed below) to a point where there is no collision.

When the workpiece is extremely close to other objects, sec-
ond order constraints or numerical errors can render any finite
collision-free motion impossible, even when a valid vS exists.
This has the effect of making the workpiece appear to “stick”,
unreasonably, at certain configurations. In addition to this prob-
lem, the closest-feature and distance information returned by I-
COLLIDE becomes unreliable when objects are very close to-
gether, and fails when they interpenetrate. Good simulator per-
formance thus requires trying to keep the workpiece a minimum
distance �b away from other objects, where �b is less than the
distance �c below which objects are assumed to be in contact.
This requirement is enforced using a potential barrier, which we
now describe.

Let di be the distance between the workpiece and another
object i, and let � � di=�b. Then define the potential Ui(di)
(see, e.g., [29]) by

Ui(di) =

(
K[� � 1� ln(�)] if 0 < � < 1;

0 if � � 1.
(2)

where K is a suitable constant. This will act to repel the work-
piece from the object i. In order to also induce motion of the
workpiece along the direction of vS , we define an attractive po-
tentialUv that decreases uniformlyalongvS in proportionto the
work done by f andm. If motion in the direction of vS is param-
eterized by s, such that s 2 [0; 1] corresponds to one simulator
time step �t, then

Uv(s) = �

�
kvk2

dt
+
k!k2

dr

�
�t s:

2Face-face or edge-face contacts can be reasonably simulated using a finite
set of point contacts; see [13].

Summing Uv and the Ui for all appropriate objects yields a
net potential U (s) that varies along the direction of vS . Dur-
ing each time step, the workpiece is moved so as to minimize
U (s) (Figure 10). If there are no obstacles nearby, all Ui = 0
and this minimum will occur at s = 1, corresponding to the
nominal displacement vS�t. For purposes of performing the
minimization, Ui(di) is taken to be +1 for di < 0. Because
Ui(s) is not smooth (see below), the minimization is done using
a golden section search.

contact
 zone

0

d

�b

Ui

U

�c

Uv

Figure 10. Net potential U (thick solid line) formed by summing Ui

(dotted line) and Uv (thin diagonal line), plotted here as functions of
the distance d from obstacle i. During each simulation step, U is min-
imized over the segment of d that corresponds to s 2 [0; 1].

To help maintain each di � �b, the translational velocity v
in equation (1) is modified to include, for any object i for which
di < �b, a repulsive component computed from the gradient of
Ui(di) with respect to the workpiece’s translational position.

The reader may wonder why we do not treat the entire prob-
lem as a potential minimization and calculate both the v and !
of equation (1) from the gradient ofU with respect to the work-
piece’s overall spatial position. The problem is that this gra-
dient is neither simple to calculate, nor smooth. Even though
Ui(di) is smooth, di itself is not smooth in the configuration
space of a polyhedral object, and so Ui is not smooth with re-
spect to the configuration space either. Hence in many cases a
formal gradient doesn’t exist. While non-smooth optimization
techniques exist that don’t require an explicit gradient, the very
thin size of the barrier means that convergence could be quite
slow without a good estimate of initial direction. Indeed, the
Baraff calculation (Section 5.1) can be thought of as simply a
good way of estimating this direction.

The potential method described here can also be used to im-
plement those motions for which the workpiece is constrained
to maintaina particular contact. This is done by simply modify-
ing Ui(di) so that in addition to approaching infinity at di = 0,
it also approaches infinity as di exceeds some outer boundary
value �o, for �o > �c.

8

6. Program Generation
When the operator has finished manipulating a workpiece, this
is indicated to the system using a keystroke. The program gen-
erator then sets about creating a set of robot motion commands
to realize the specified operation.

The program generator is given the sequence of every mo-
tion made by the workpiece during every time step in the virtual
environment; this is called the workpiece path. Since the mo-
tion made by the simulator during each time step is linear, the
workpiece path is actually a piecewise-linear curve of spatial
positions, with each node possibly associated with one or more
contacts.

A very brute-force way to accomplish the specified task would
be to reproduce the workpiece path verbatim. This would closely
replicate the operator’s actions in a manner similar to what is
done in teleprogramming environments [11, 27]. However, in
the context of our system, there are problems with this:

1. The workpiece path may contain many unwanted or un-
necessary motions, such as those induced by the operator
“feeling” her way around.

2. Because simulated motions are constrained to directions
permitted by the dragger fixtures, the workpiece path may
have superfluous kinks and bends.

3. The path may contain unwanted contacts, caused by the
operator dragging the workpiece across or along obsta-
cles, or specifically using obstacles as virtual fixtures for
part placement and alignment.

Nevertheless, the workpiece path does have one very desir-
able property, in that it is collision free (within the resolution
limits imposed by the simulator’s time step). Therefore, what
we do is use the workpiece path as an initial feasible solution,
and modify it so as to remove unwanted motions and unneces-
sary contacts.

6.1. Deforming the Path
The idea is to treat the path as a deformable spatial curve which
can be bent, stretched, or shrunk in order to move it away from
objects or compress its length. Such a deformation can be ac-
complished using potential field methods. In particular, we ap-
ply to each of the path’s nodes

1. a constant tension force attracting it to each of its two
nearest neighbors.

2. a spring-like repulsive force that pushes it away from un-
wanted obstacles.

Path endpoints are kept fixed, as are the endpoints of any
required contact motions. The tension force (item 1) is calcu-
lated with respect to both position and orientation. A constant,
rather than variable, tension is used to keep the path from be-
coming overly stiff when stretched. The repulsive force (item
2) is calculated with respect to translation only, due to difficul-
ties in computing a repulsive gradient with respect to orienta-
tion (as mentioned in Section 5.2). To keep nodes from pro-
cessing along the path, we eliminate any repulsive force com-
ponent which is tangential to the path. These “forces” are used

to move each node along the path in succession, with the whole
procedure being repeated until the path stablizes. An schematic
illustration of the process is shown in Figure 11.

When a node is moved, it is important to ensure that it re-
mains collision free and preserves any required contacts with
capture objects. This is achieved by moving each node using
the contact simulation software of Sections 5.1 and 5.2, with
the combined tension and repulsive forces assuming the role of
the applied force fa.

Our path deformation approach closely follows the work of
Quinlan [25], who originated it to simplifyand smooth collision-
free paths produced by a motion planner. Our work differs from
Quinlan’s in several respects: we include contact states, the paths
in question are formed from rigid bodies in SE(3) rather than
points in configuration space, and contact simulation software
is used to effect collision free node displacement (also allow-
ing us to maintain desired contacts during the deformation). By
contrast, collisions are prevented in [25] by surrounding path
points with free space “bubbles”. This would be difficult to do
here because of we are dealing with rigid body motions and be-
cause the proximity of obstacles in contact would require com-
puting bubbles at extremely fine resolutions.

6.2. Robot Motion Commands
After the workpiece path has been deformed as described in
Section 6.1, it is simplified using a scheme similar to that em-
ployed for polygonal path approximation [26]. The result is a
piecewise-linear spatial path with possible contact states asso-
ciated with each of the knot points. This can be readily trans-
formed into a sequence of spatially linear robot motions, with
each target point possibly associated with one or more contacts.
The initialcommand of the sequence involves a “guarded grasp”
with which the manipulator grasps the workpiece. Force sensor
data is used to help execute and verify this command.

At present, a contact is represented only in terms of its asso-
ciated normal vector. For motion targets which involve contact,
the robot’s speed is lowered, and its impedance is controlled to
emulate a spring-damper system with low stiffness. We have
found a simple impedance that is uniform along all axes to be
sufficient, although this may change when we extend the system
to handle operations involving tight fits. Contact is ensured by
adding to the target positions a translational bias �p to produce
a small offset d in the opposite direction of the contact normals.
Letting the set of normal vectors form the columns of a matrix
N, our ability to do this requires that we can solve

dI = �NT �p;

preferably for k�pk not too large. This presently prohibitscon-
tact situations involving tight fits. The size of d is determined
by the accuracy of the work site model and is currently around
5 mm (in an environment where objects have a typical dimen-
sion of 30 to 60 mm). Motions involvingcontact are verified by
making sure that translational forces along the contact normal
directions exceed a prescribed threshold.

The problem of contact transition instability is dealt with by
clipping the output velocity of the impedance controller to a
magnitude not exceeding the current robot speed (on the princi-
ple that this should be large enough to remove observed forces

9

A B

C

frfc1

fc2

A B

Figure 11. Simple diagram showing the path deformation process. The original path (left) starts with the operator’s grabbing the workpiece at
A, wandering off to the left, then using the middle obstacle to align the workpiece before dragging it over to the right (causing it to go partly out
of alignment as it clears the top of the obstacle) and finally sliding it into the corner at B. Only the final contact state at B is desired, whereas other
contacts and extraneous motions are not. Path deformation is achieved by applying to each path node (as illustrated by the one at C) forces to
repel it from unwanted contacts (fr) and inter-node attractive forces to help straighten it out (fc1; fc2), with the final result shown on the right. The
deformation process tends to be good at ensuring robust approaches to contact states; for instance, in the final path shown here, it is important that
the corner destination B is approached from the right as well as from above, in order to avoid the possibility of getting snagged on the obstacle
lip immediately above the corner.

within one control cycle).

7. Demonstrations and Observations
In Figure 12, the behavior of the task simulation and program
generation part of the system is illustrated for two tasks: corner-
ing a block, and dragging a block around the outside of a corner
while maintaining contact. Actual execution of the later task is
shown in the Figure 2.

7.1. Vision system performance
The vision algorithm is fairly robust to variations in light com-
position and intensity (although this is mainly a function of the
edge detection scheme used rather that higher-level algorithm).
A moderate amount of occlusion is also tolerable, provided that
at least one good edge sequence of an object is visible. For this
reason, objects are sometimes not seen when they presenting a
minimal number of faces to the camera “straight on”, a prob-
lem that should be greatly reduced by implementing the algo-
rithm in stereo. Indexing does occasionally fail due to occlu-
sion and/or noise, if no appropriate feature groupings are de-
tected for a particular object. In offline experiments, better ro-
bustness in this area has been be achieved by indexing with sev-
eral types of grouping in parallel. Modules using smaller, more
local groupings can then succeed in the difficult cases of major
occlusions, at a penalty of slightly increased processing time,
with the larger groupings providingbetter efficiency in the typi-
cal cases. During the Vancouver-Montreal demonstration, false
object detection sometimes occurred due to the simplicityof the
verification criterion (requiring 50% of visible feature lengths
to be matched). More sophisticated criteria should indeed be
used, although this is rarely a problem when the objects have
greater complexity. At present, the problem has been alleviated
by culling objects whose locations indicate they cannot realis-
tically lie within the work site.

7.2. Task simulation
The task simulator runs easily in real-time (20 Hz) on a 15 MFlop
SGI Indy. Objects closer than �c = 0:5 mm are assumed to be

in contact, and for the barrier function we have �b = :1 mm
(compared to a work area diameter� 350mm and a typical ob-
ject dimension of � 45 mm). The golden section search (Sec-
tion 5.2) is performed to an accuracy of about 1:0�5, requiring
about 25 I-COLLIDE calls per time step, or 500 per second. I-
COLLIDE’s collision and distance computations can sometimes
fail in non-generic situations (e.g., when two object faces are
very close to parallel), although such problems are common in
fast geometric modeling systems whose computations are done
using floating point arithmetic. We observed that the use of bar-
rier functions to keep objects a minimum distance apart greatly
enhances the overall performance and smoothness of the con-
tact simulation over the raw Baraff method [2]. However, when
barrier functionsare used to also enforce workpiece contact with
a capture object (which is usually done with �o = 2 mm), stick-
ing will occasionally occur in some configurations, such as go-
ing around a corner.

The discrete-time nature of the simulation means that in cer-
tain pathological situations the simulator can “tunnel” through
an object withoutdetecting a collision (similar observations were
made in [2]). With a maximum speed of 400 mm/sec, a sample
rate of 20 Hz, and 4 tests per sample, we currently need to be
wary of objects thinner that 5 mm.

7.3. Program generation
The path deformation algorithm (Section 6.1) tends to produce
paths which have a “good” intuitive feel to them. It is partic-
ularly good at placing node points so as to ensure reliable and
“snag free” approaches and departures from contact situations
(Figure 11), something which is by contrast rather difficult for
a user to specify manually. The only caveat is that path nodes
must be placed fairly close together (less than the thickness of
any lip) for this to work. Algorithm convergence is not a prob-
lem, except that the constant tension force can cause minor in-
stabilities to arise when nodes are very close together. This was
corrected by using a tension proportional to distance for nodes
closer than a certain minimum distance. However, the problem
of maintaining proper node spacing is a tricky one and could

10

(a) (b) (c)

(d) (e) (f)

Figure 12. Top: Cornering. The operator has placed the workpiece in a corner of the frame (a); its original location is shown by a grey “shadow
block” at the right. The outside of the frame was used to help align the workpiece, as can be seen from the initial workpiece path (b), where
the tightly spaced nodes are shown as half-sized white blocks. After modification (c), the nodes have been pushed away from the table and
have kept their distance from the tall block, and the initial and final positions are approached at angles that prevent collision with the frame.
Bottom: Here, the operator has moved the workpiece around the outside of the frame (d), while requesting that contact with the frame and table
be maintained while going around the corner. The resulting initial workpiece path is shown in (e). After the path is modified (f), frame/table
contact is maintained near the corner, while nodes are pushed away from the table elsewhere. The execution of this motion is shown in Figure
2.

use additional work. With regard to computation time, the de-
formations associated with the examples of Figure 12 tookaround
five seconds to compute on a 12 Mflop SGI Indy, but this was
without any effort having been made to optimize performance.

8. Conclusion
We have demonstrated an integrated system which links together
vision, contact simulation, localized planning, and manipula-
tor control into an easy-to-use interactive environment for pro-
gramming contact tasks.

A fast, occlusion-tolerant grey-scale vision system is used to
obtain model information, providing an ongoing link between
the simulation and reality. Object recognition proceeds rapidly
(on the order of several seconds) and locations are computed
to approximately pixel accuracy. The vision system is reliable
enough to be used in a context where the operator simply selects
recognized objects to be loaded into the work site model. As
long as the viewed objects have a good subset of edges visible to
the camera, the need to supplant the vision system by manually
indicating features is rare.

We have also demonstrated the utility of using simulation
as a robotic programming tool, specifically for part mating and
contact tasks. An interesting result is that a full 3D contact sim-
ulation combined with first order dynamics allows the operator
to use the environment itself as a “virtual fixture” to easily align

and place parts. This, combined with entities such as dragger
fixtures, makes it simple to accomplish a wide range of place-
ment tasks using inputs from a simple 2D mouse.

The problem of turning a feasible but possibly complex set
of simulated motion steps into a simpler set of robot commands
is handled using local planning: artificial forces straighten the
path out, when possible, move it away from unwanted contacts,
and help ensure good approach and departure from desired con-
tact states. The resulting path is simplified into one containing
a moderate number of via points (possibly including contact),
connected by straight-line spatial robot motions. Interestingly,
the specification of spatial via points, particularly those in free
space, is a very tedious task for an operator to perform man-
ually. Therefore, the automation of this process using a local
planner is particularly important.

Important future work includes extending this system to han-
dle part mating which involves “tight fits”, as well as generating
robot motion sequences which are provably robust to environ-
mental errors. More general use can also be made of the vision
system, particularly for task verification, and we also wish to
explore the automatic synthesis and insertion of virtual fixtures
during task simulation, based on the estimates of the operator’s
intentions.

11

References
[1] D. Baraff. Fast contact force computation for nonpentrating rigid

bodies. In SIGGRAPH 94 Conference Proceedings, pages 23–
34, July 1994.

[2] D. Baraff. Interactive simulation of solid rigid bodies. IEEE
Computer Graphics and Applications, 15(3):63–75, May 1995.

[3] Jeffrey S. Beis. Building models with planar faces using a
structure-from-motion algorithm plus a small amount of post-
processing. Technical Report TR-96-14, Computer Science De-
partment, University of British Columbia, 201-2366 Main Mall,
Vancouver, Canada V6T 1Z4, June 1996.

[4] Jeffrey S. Beis and David G. Lowe. Learning indexing functions
for 3-d model-based object recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 275–280, Seattle, June 1994.

[5] Jeffrey S. Beis and David G. Lowe. Shape indexing using ap-
proximate nearest-neighbour search in high-dimensional spaces.
In Conference on Computer Vision and Pattern Recognition,
pages 1000–1006, Puerto Rico, June 1997.

[6] A. K. Bejczy, W. S. Kim, and S. C. Venema. The phantom robot:
Predictive displays for teleoperation with time delay. In Proceed-
ings of the IEEE International Conference on Robotics and Au-
tomation, pages 546–551, Cincinnati, Ohio, May 1990.

[7] H. Bruyninckx, J. De Schutter, P. Van de Poel, and W. Witvrouw.
A cad-basedcontact force simulator as a learning tool for compli-
ant motions. In International Symposium on Intelligent Control,
pages 287–292, 1992.

[8] A. Califano and R. Mohan. Multidimensional indexing for rec-
ognizing visual shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(4):373–392, 1994.

[9] Y. J. Cho, T. Kotoku, and K. Tanie. Discrete-event-based plan-
ning and control of telerobotic part-mating process with commu-
nication delay and geometric uncertainty. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 2, pages 1–6, Pittsburgh, Pennsylvania,
August 1995.

[10] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: An
interactive and exact collision detection system for large-scaled
environments. In Proceedings of ACM Int. 3D Graphics Confer-
ence, pages 189–196, 1995.

[11] J. Funda, T. S. Lindsay, and R. P. Paul. Teleprogramming: To-
ward delay-invariant remote manipulation. Presence, 1(1):29–
44, Winter 1992.

[12] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter,
and J. Wiegley. Desktop teleoperation via the world wide web. In
Proceedings of the IEEE International Conference on Robotics
and Automation, pages 654–659, Nagoya, May 1995.

[13] S. Goyal, E. N. Pinson, and F. W. Sinden. Simulation of Dy-
namics of Interacting Rigid Bodies Including Friction I: General
Problems and Contact Model, pages 162–174. Springer-Verlag,
London, 1994.

[14] E. Grimson and T. Lozano-Pérez. Localizing overlapping parts
by searching the interpretation tree. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, pages 469–482, 1987.

[15] G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl. Sensor-
based space robotics – rotex and its telerobotic features. IEEE
Transactions on Robotics and Automation, RA-9(5):649–663,
October 1993.

[16] W. S. Kim and L. W. Stark. Cooperative control of visual dis-
plays for telemanipulation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 1327–
1332, Scottsdale, Arizona, May 1989.

[17] R. Koeppe and G. Hirzinger. Learning Compliant Motions by
Task-Demonstrations in Virtual Environments, pages 299–307.
Number 223. Springer, London, 1995.

[18] John E. Lloyd and Vincent Hayward. Multi-rccl user’s guide.
Technical report, Centre for Intelligent Machines, McGill Uni-
versity, 3480 University Street, Montreal, Canada, H3A 2A7,
April 1992.

[19] David .G. Lowe. Three-dimensionalobject recognition from sin-
gle two-dimensional images. Artificial Intelligence, 31(3):355–
395, March 1987.

[20] David G. Lowe. Fitting parameterized three-dimensional models
to images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(5):441–450, May 1991.

[21] H. Murase and S. K. Nayar. Visual learning and recognition of
3-d objects from appearance. International Journal of Computer
Vision, 14(1):5–24, 1995.

[22] E. Oyama, N. Tsunemoto, S. Tachi, and Y. Inoue. Experimen-
tal study on remote manipulation using virtual reality. Presence,
2(2):112–124, Spring 1993.

[23] E. Paulos and J. Canny. Delivering real reality to the world
wide web via telerobotics. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 1694–
1699, Minneapolis, April 1996.

[24] Michel Pelletier and Michel Doyon. On the implementation
and performance of impedance control on position controlled
robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, volume 2, pages 1228–1233, San
Diego, California, May8-13 1994.

[25] Sean Quinlan. Real-time Modification of Collision-Free Paths.
PhD thesis, Department of Computer Science, Stanford Univer-
sity, Stanford, California 94305, December 1994.

[26] Urs Ramer. An iterative procedure for the polygonal approxima-
tion of plane curves. Computer Graphics and Image Processing,
1:244–256, 1972.

[27] C. R. Sayers. Operator Control of Telerobotic Systems for Real
World Intervention. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, 1995.

[28] C. R. Sayers and R. P. Paul. An operaan operator interface for
teleprogramming employing synthetic fixtures. Technical report,
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, Pennsylvania 19104, June 1994.

[29] R. J. Spiteri, U. M. Ascher, and D. K. Pai. Numerical solution of
differential systems with algebraic inequalities arising in robot
programming. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 2373–2380,Nagoya,
May 1995.

[30] Ken Taylor and James Trevelyan. Australia’s telerobot on the
web. In 26th International Symposium On Industrial Robots,
Singapore, October 1995.

[31] R. Tsai. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. IEEE Transactions on Robotics and Au-
tomation, RA-3(4):323–344, August 1987.

[32] National Research Council (U.S.A.). Virtual Reality. Scientific
and Technological Challenges. National Academy Press, Wash-
ington, D.C., 1995.

[33] J. Wernecke. The Inventor Mentor. Addison-Wesley, Reading,
Massachusetts, 1994.

12

