Programming Contact Tasks
Using a Reality-based Virtual Environment
Integrated with Vision

John E. Lloyd, Jeffrey S. Beis, Dinesh K. Pai, David G. Lowe
Dept. of Computer Science, University of British Columbia
Vancouver, B.C., Canada
{lloyd,beis,pai,|owe} @@cs.ubc.ca

Abstract

We present an integrated system in which an operator usesa sim-
ulated environment to program part-mating and contact tasks. Gener-
ation of models within this virtual environment is facilitated using a
fast, occlusion-tolerant, 3D grey-scale vision system which can rec-
ognize and accurately locate objects within the work site. A major
goal of this work is to make robotic programming easy and intuitive
for untrained users working with standard desktop hardware. Simu-
lation can help accomplish this, offering the ease-of-use benefits of
“programming by demonstration”, coupled with the ability to create
aprogrammer-friendly virtual environment. Within a simulated envi-
ronment, it is also straightforward to track and interpret an operator’s
actions. The simulator models objects as polyhedra and implements
full 3D contact dynamics, making is easy to place and manipulate ob-
jects using input from a simple 2D mouse. When a manipulation task
iscompleted, local planning techniquesare usedto turn the virtual en-
vironment’s motion seguence history into a set of robot motion com-
mands capable of realizing the prescribed task.

1. Introduction

This paper describes an integrated system which uses virtual-
reality simulation to program robotic part-mating and contact
tasks, developed at the Computer Science Department of the
University of British Columbia(UBC). Itincludesavision sys-
tem for rapidly creating models of awork site, a task simulator
that all ows objectsto be mani pul ated withinthe simul ated envi-
ronment, and a program generator that turns the simulated ac-
tionsinto a sequence of robotic motion commands capable of
realizing the desired task.

In devel oping this system, our aim has been to make robot
programming very easy, particularly for non-specialists using
standard desktop computer hardware. Our emphasis on tasks
involving contact is deliberate, since commercial manipulator
systems still provideonly minimal support for such operations.
We suspect that the complexity of programming contact-based
tasksis an important reason for this.

We believe that using asimulated virtual environment to di-
rectly demonstrate the required contact task can help overcome
many programming difficulties. Reasons for thisinclude:

¢ Iteliminatestheneed for tedioustextual descriptions(such
as “place face A on top of face B").

I Submitted to the IEEE Transactions on Robitics and Automation,
September 1997

¢ A simulated environment can be augmented with virtual
fixtures and aids to assist programming. Alternatively,
the environment can be simplified, with minimal display
of the manipulator system, permitting direct manipula
tion of objects and programming which is more “task-
centric”.

¢> For programming purposes, itiseasier withinasimulated
environment totrack an operator’sactionsand discernin-
tentions, since the state of everythingis known and does
not have to be continuously updated by sensing.

In contrast with most virtual environments, thelocationsand
types of objectsin our environment are acquired automatically
using vision. This makes the virtual environment a more ac-
curate representation of the real environment. Such a “redlity-
based” virtual environment iscrucial for meaningful robot pro-
gramming.

At present, our system’stask domain consists of a puzzle of
wooden blocks which can be assembled within a rigid frame.
This domain is simple but encompasses a wide range of pos-
sible contact interactions. Part mating involving “tight fits” is
not currently supported but is part of our ongoing research. A
very basic demonstration of the system is given in Figure 1,
whichillustratesthe placement of ablock into acorner (readers
with Internet access can a so download an AV video of thisvia
http://wuw.cs.ubc.ca/spider/pai/telerobotics.html).
A more complex type of task which can be easily programmed
involves dragging a block around the outside of a corner while
contact is maintained (Figure 2).

1.1. System requirements and overview

A simulation-based robot programming system requiresseveral
principal modules:

1. Mode Generator: buildsand maintainsthework site model
used by the simulator.

2. Task Smulator: permits manipulationswithin the simu-
lated environment, using dynamics that are easy and in-
tuitive for the operator and which facilitate task specifi-
cation.

3. Program Generator: uses the actions within the virtual
environment to create a set of robot motion commands
capable of realizing the prescribed task.

4. Execution monitor: verifies task execution at the robot
site. On-lineinformation may also be used to determine
corrections to the work site modd!.

Rolii Fioly | B0 1000 () Zoum =] 5| Dol

(@ (b) (©

Zoum === 30| Dalty| ol Koy | B0 0 o) Zoum === 30| Dalty| ol Koy | B0 0 o) Zoum === 30| Dalty|

(9) (h)

Fi gure 1. Simple exampleshowing the placement of ablock in acorner. Blockswithin theinitial work site (a) arelocated by the vision system (b, with matching
edgesoutlined in white), and then used to update the work site model, graphically renderedin (c). An operator can then select an object by “clicking” onit, causing
it to be encased within a“ dragger fixture” (d). Clicking and dragging on aface of thisfixture createsa virtual forcein the plane of the face, which in turn causes
the object to move (e). Asthe operator dragsthe object into the corner, contact is made with the corner faces, causing the block to align and settle into the corner
easily, with no finesse required (f). The goal of the task, in terms of both nominal object position and the required contact state, is known directly from state
information available to the simulator. When satisfied with the block’s position, the operator issues a confirmation command, which causesthe simulated motion
sequenceto be turned into robot motion commandswhich realize the requested operation (g)-(i), with impedance control used to realize the necessary contacts.

Thefirst three of these componentsare well-devel opedwithin
the UBC system and form the main focus of this paper:

Model generationisrealized using amodel-based grey-scale
vision system that can rapidly and robustly recognizeand locate
objects characterized by straight-line edge features. Matches
areperformed using localized groupsof edgefeatures, enabling
the vision system to tolerate a moderate amount of occlusion.
Recognition of several objects can be achieved within about
five seconds, and the object pose information is generaly ac-
curate to within a pixel. Recognized objects are displayedin a
separate “ feedback window” fromwhichthe operator can sel ect
them for inclusion into the work site mode.

The task simulation module lets an operator select objects
withinthe simul ated environment and movethem around, using
input fromastandard 2D mouse. A mouse was chosen deliber-
ately, sinceit ischeap, ubiquitous, and fits with our above men-
tioned goal of making programming accessible to users with
standard desktop computer hardware. Graphical fixturesare used
to map the 2D mouse inputsinto spatial motionsin various di-
rections. The dynamics within the smulated environment is
first order, sincethisis(a) easy to compute, (b) intuitivefor the
operator, (¢) qualitatively similar to asystem dominated by fric-
tion, and (d) stable. Contact interactions are modeled, |etting
the manipulated object, or workpiece, bump into, side aong,
and dlign itself with other objects. These interactions, com-
bined withthefirst order dynamicsand graphical fixtures, make
it quite easy for the operator to perform part mating and place-
ment within the virtua environment. The simulator isaso ca-
pable of enforcing contact between the workpiece and desig-
nated capture objects, to enabl e the specification of motionsin-
volving contact.

After an object hasbeen manipulated to adesired statewithin
the virtua environment, the program generator is invoked to
produce a set of robotic commands to implement the specified
action. Thisis done by taking the complete motion sequence
used to perform the simulated task, and deforming it, using lo-
cal planning (potential field) techniques, so as to remove ex-
traneous motion segments and move it away from objectswith
which contact is not required. A key feature of our deforma-
tion techniqueis that it can be constrained to preserve desired
contacts, asin the cornering example of Figure 2. After defor-
mation, the sequence is simplified into a piecewise-linear spa-
tial path, where each node may be associated with one or more
contacts. Each path segment isrealized using asinglerobot mo-
tion command, for which required contacts are realized using
impedance control combined with target position biasing.

The last module, the execution monitor, is presently imple-
mented in asimpleway using force monitoringto verify the oc-
currence of the required contact states. More robust monitor-
ing, and the use of contact information to update the work site
model, isthe subject of ongoing investigation.

1.2. Connection to Telerobotics
Although our focusis currently on model acquisition and pro-
gramming, our system can be used to perform telerobotic ma:
nipulation, and was in fact inspired by previous work in that
area (Section 2).

All thelinksbetween theoperator siteand thework site (Sec-

tion 3) are implemented using TCP/IP sockets, permitting re-
mote operation over the Internet. At a conference in Montreal
in June 1996, an earlier version of the system was successfully
demonstrated in exactly thisway, with the operator sitelocated
in Montreal and the work site located in Vancouver.

1.3. Outline

The rest of this paper is arranged as follows. Related work is
discussed in Section 2, and a more detailed description of the
system components and hardware is given in Section 3. The
vision system, task simulator, and program generator are then
presented in Sections 4, 5, and 6, respectively. Experimental
observations are given in Section 7.

2. Related Work

The work described here is closely connected to the telepro-
gramming work of Funda, Sayers, and others [11, 27], where
operator interaction with a smulated environment is used to
overcome time delay problems which can arise in some teler-
obotic situations. Teleprogramming was predated by the use
of predictive graphica simulation [15, 6]. The introduction of
synthetic “fixtures’ into the operator’sdisplay to assist in task
specification has also been explored [28, 32], and virtual real-
ity simul ation has been investigated asa platform on which fine
motion task skillscan be learned [7, 17].

Commands sent to a remote site in teleprogramming sys-
tems tend to be at the level of “guarded moves’. The ahility to
send higher level commands asking the remote manipulator to
achieve a particular contact state (recovering if necessary from
any intervening contact states which can be anticipated) isin-
vestigated in [9], using a Petri-Net-based contact state modd.

With respect to the problem of model acquisition, virtually
all practical model-based telerobotic systems currently handle
thisusing extensive operator interaction. Thetraditional way to
do thisisto have the operator manually indicate known object
featuresin avideo image of theremote site, and usethe 2D im-
age coordinates of these features to solve for the 3D positions
of the associated objects[22, 16].

Automatic model generation using computer vision has been
limited by the ability of systemsto accurately identify and lo-
cate 3-D objects, particularly inthe presence of clutter and par-
tial occlusion. Although there has been a long history of re-
search on 3-D object recognition [14, 19], it is only recently
that new approaches to model indexing have allowed such ap-
proaches to be sufficiently fast and reliable for integration with
aresl-timetel eroboticssystem. Thismodel-based approach con-
trasts with appearance-based recognition [21], which is based
on directly matching image appearance, and can thereforemodel
more genera object classes but is less robust to image clutter
and illumination changes and does not perform precise object
localization.

Finaly, in the last few years there have been a number of
projects making tel eoperated robotic systems of various kinds
available to casua users on the World Wide Web; see, for ex-
ample, [23, 12, 30].

3. System Description
A block diagram of the UBC system isshown in Figure 3. The
systemisdividedinto awork site, consisting of arobot, itscon-

(d)

®

Figure 2. Sequence showing a more complex contact task where a block is dragged around a corner of the puzzle frame while contact with the

frame is maintained.

troller, and the vision module, and an operator site, compris-
ingthe operator interface, task simulator, mode editor, and pro-
gram generator.

3.1. Work site

The work site (Figure 4) contains a 6 DOF CRS A460 robot
(Puma-type geometry), controlled at the lowest level by 1 KHz
joint servos (supplied by the manufacturer), which are in turn
driven by atask controller. The task controller isimplemented
using the Robot Control C Library (RCCL) [18] runninginreal-
time on a Sun Sparc 5. It accepts Cartesian motion commands
from the operator site, and generates the required trgjectories
at 100 Hz. The trgjectory generator aso receives input from a
force sensor, dlowingit to implement both guarded moves and
a position-based impedance control similar to that described in
[24].

The vision modul e continuoudly collectsimages from asin-
gle monochrome camera and processes them using a model-
based visional gorithm (Section 4) tol ocate obj ectsinthe scene.
Theobjectsand their positionsare continuously sent back to the
model editor at the operator site. The cameraimageitselfisalso
transmitted back to the operator site, where it isdisplayed in a
separate window.

3.2. Operator site

The operator siteconsistsof an SGI Indy witha 15 Mflop CPU.
It hosts a modd of the work site environment, with which the
operator interacts, using a mouse, via the task simulator (Sec-
tion 5). Model data includes polyhedral representations of the
work space objects, plus kinematic and geometric information
about the robot manipulator (dynamical informationis not nec-
essary for the low-speed contact operations presently beingin-

Figure 4. Remote site, showing the robot, camera, and work area.

vestigated). Other information about work site objects, such as
friction and stiffness models, may be added later if required.
Model information is updated, based on recognition data re-
ceived from the video/visionmodule, by the model editor (Sec-
tion 4.3). Images of recognized objects are displayedin afeed-
back window, and also overlaid on the raw video image dis-
played in the camera image window. The operator then selects

joint servo I program .
controller task generator
commands \ \
task]| f
controller
error/
e
force simulator inputs
data * f
F
work site %ﬁ
model —
model viewing
window
R
i R ——_—
T mosel || U0
vision / / feedback window
module
video \ \ @
—__
camera image
window
- S 7 Y
work site operator site

Figure 3. System architecture.

if and when specific recognized objects are introduced into the
work sitemodel. Themodel editor, together withthevision sys-
tem, constitute the model generator described in Section 1.1.
A graphical display of the work site model itself is provided
in the model viewing window, implemented using the SGI 3D
modeling package Open Inventor [33]. Thedisplay’sviewpoint
can be adjusted to suit the operator’sneeds. Figure 5 showsthe
typical arrangement of the different viewing windows on the
SGI system. Lastly, a program generator (Section 6) creates
the robot motion commands required to realize specific tasks
and sends them to the task controller at the work site.

4. Mode Generation

The principal component of the model generator is the vision
system, which must be able to provide accurate identification
and location of objectsinthework space. The state of theart in
3D vision has only recently devel oped to the point where these
capabilities can be achieved with reasonabl e speed and reliabil -
ity. This project employs the model-based recognition system
of Beisand Lowe [4, 5], which uses a nove form of rapid in-
dexing to recognize 3-D objects from any point of view in sin-
gle 2-D images.

Thevisionsystemiscurrently restricted to using straight edges
of the objectsin therecognition process. A model must be pro-
vided for each object typewhich specifies surface visibility and
the3-D location of all prominent linesand edges. For thedemon-
strations described in this paper, these models were generated
by hand. However, a separate tool has al so been devel oped that
allows models to be automatically generated from a number of
images of an object, with human input limited to pointing out
corresponding edges in the different images [3].

4.1. Recognition and matching

The recognition process begins by finding all linear edges in
an image and identifying groups of edges that are connected to
one another or are nearby and parale. Groups of 4 or more
line segments (see Figure 6) are used to generate a vector of
measurements giving therelative lengths or angles between the
lines. This“index” vector isinvariant to 2-D trandation, rota-
tion and scaling, but will vary with the projection of different
3-D rotationsof the object. Other methods, which requirefully
invariant feature groupings for indexing, will be more limited
inwhich objectstheir system can handle. A precomputed index
covering asampleof al 3-D object rotationsis used to estimate
the probability that a particular vector was produced by a par-
ticular object. One feature of thisapproach isthat index access
time remains very rapid even as the dimensionality of the fea-
ture vectors is increased [5]. The greater specificity encoded
in larger vectorsisimportant for improving indexing accuracy
[8] and hence recognition speed, and to enhance discrimination
within larger model databases. Full details of thisindexing ap-
proach are given in the paper by Beis and Lowe [4].

Once a tentative interpretation has been made for some im-
age features, it is possible to estimate the object location and
orientationin 3-D [20]. Thisis used to predict the locations of
other object edges in the image and obtain further correspon-
dences. At each stage, the solution for object location and ori-
entationin 3-D isperformed with aleast-squares fit minimizing
residualsin predicted versus actual image locations. So, while
the current system uses only straight edges, models might eas-
ily contain other feature typeswith location information, to aid
in verification and pose determination. The solution for object
poseis substantially over-determined, which meansthereislit-

Figure 5. Typical screen layout on the operator site workstation. Clockwise from top-left: cameraimage window, feedback window, model
viewing window (with tall block being manipulated by a dragger box), and textual interface window.

T'

Figure 6. Left frame shows cropped image of work space overlaid
with wire-frame models at positions determined by the recognition al-
gorithm. Right frame shows edge-detected image with examples of
correct and incorrect feature groupings used in the indexing process.

tlelikelihood that an incorrect correspondence will be found to
fit more than a few image features. If a good fit is not found
for anumber of image edges, then the match is rejected and a
new indexing hypothesisis used. Therefore, the final recogni-
tion has good robustness and accuracy, even though the initia
indexing is probabilistic.

4.2. Speed, accuracy, and calibration

The full recognition process currently requires about 5 seconds
running on a 15 Mflop SGI Indy. Thiswill be much improved
in the future once a number of optimizations have been made
for speed. Much of thetimeiscurrently spent on the low-level
edge detection process, which could be greatly accelerated by
using some image processing hardware.

Imagelinesare determined through aleast-squaresfit toeach
pixel along an edge, and model location is based on a least-
squaresfit to theselines. Therefore, accuracy isusually precise
down to the pixd level of the image, although its mapping to
the 3-D world depends on the camera location and optics. With
a single camera, the location of the object paralld to the cam-
eraimage planeismore precise than location towards and away
fromthe camera. If thisisaproblem, then it would be possible
to useasimilar approach to recognitionwith 2 or more cameras
to achieve full accuracy in al dimensions. For this project, ac-
curacy was improved using other constraints, such as the fact
that objects close to the worktabl e surface must in fact be rest-
ing on the surface.

A standard pin-hole camera model is assumed. Intrinsic pa-
rameters (focal-lengthand radial distortion) werecalibrated off-
lineusingthealgorithmin[31]. The camera positionrelativeto
thework space was calibrated manually by having the operator
identify, in the camera image, work site features of known po-
sition.

4.3. Modd editing

Information on recognized objects and their locations is con-
tinuously sent from the vision system to the model editor inthe
operator station. A primary function of this module is to en-
surethat object informationislogically consistent, compensat-
ing for the fact that the vision system recognizes objects inde-
pendently of each other. For instance, objects located near the
table are assumed to be resting on the tabl e (since they can nei-
ther penetrate the table top nor hover above it), and their loca
tionis adjusted accordingly. Location adjustment occurs aong
the camera axis, since for our presently monocular system this
is the primary direction in which errors occur. Other consis-
tency adjustments, such as ensuring that objects do not inter-
penetratewith each other, should beimplemented here although

Figure 7. Dragger box and gripper rendering surrounding a block to
be manipulated. Dragging the mouse cursor along one of the planes of
the box causesadisplacement parallel to the plane, whichis converted
into a“virtual force” acting on the workpiece's center.

wehavenot yet doneso. After therecognized objects’ locations
have been adjusted, they are displayed in the feedback window
and awireframe overlay isaso generated in the camera image
window (Figure 3).

Updating of the world model itself is done under the control
of the operator, and is generally done between task specifica-
tionsand then only when necessary. By examining therecogni-
tion data di splayed within the feedback and cameraimage win-
dows, the operator can make a final judgement as to the data’'s
reliability. Specific objects can then be selected for inclusion
withinthework sitemodel by clicking on them withinthe feed-
back window. Similarly, work site model objects can be se-
lected for deletion by clicking on them within the model view-
ing window.

5. Task Simulation

The purpose of the task simulator is to enable the operator to
manipulate an object (or workpiece) withinthevirtual environ-
ment so as to easily specify atask. One commonly occurring
task isto simply move the workpiece to a destination position
requiring contact with one or more objects (sincetheworkpiece
must rest on something, al destination stateswill entail at |east
one contact). The cornering task of Figure 1 typifies this. A
more complex task might involve maintaining contact during
motion, such as shown in Figure 2.

To facilitate these types of actions, the task simulator alows
amanipulated object, or workpiece, to be moved about the vir-
tual environment using first order dynamics combined with a
contact model. This permits the workpiece to bump into, slide
along, and alignitself with other objects. This, in turn, makes
it very easy for the operator to place the workpiece into some
desired contact state with respect to therest of the environment.
First order dynamicsis used for the reasons mentioned in Sec-
tion 1.1. To specify motionsinvolving contact, the operator can
also request that the workpiece maintains contact with certain
selected capture objects. Once the workpiece makes contact
with acapture object, itsmotionisconstrained so asto maintain
that contact (using barrier functions, as described at the end of
Section 5.2). After the operator completes a task, she signals

this to the system, which then invokes the program generator
(Section 6) to create a sequence of robotic commands capable
of redlizing it at the work site.

The simulated environment is visible to the operator, from
any angle, throughthe model viewingwindow. Usingthemouse,
the operator selects a workpiece to be moved by clicking on
it. A simulated gripper then appears, showing how the work-
piece will be grasped, along with agraphica “dragger fixture”
(presently, a box) that maps 2D mouse inputs into 3D spatial
motionsand permitsthe workpieceto be moved about (see Fig-
ure 7 and Figure 1). Rendering only the gripper preserves the
“task-centric” focus of the operator’s actions; more proximal
parts of the robot could be rendered if necessary.

Displacements between the dragger box and the workpiece
are used to create a virtual force f, acting on the workpiece
(Figure 8). When the workpiece is brought into contact with
other objects, normal forces also arisein reaction to the applied
force (Figure 9). The normal forces plus the applied force cre-
ateanet total force on theworkpiece, fromwhichtheworkpiece
velocity iscomputed in accordance with thefirst-order dynamic
model (Section 5.1). While devices such as dragger boxes are
commonly used to generate spatial motions in graphical sys-
tems (our dragger box itself is an Inventor object), their use to
generate virtua forces for integration into a dynamic environ-
ment is more novel.

<

Figure 8. Displacementsof the dragger box relative to the object cre-
ate avirtual force f, onthe object.

Figure 9. Contact of the workpiece with other objects gives rise to
normal reaction forces (f, and f;).

5.1. Contact dynamics

The simulator keeps track of the distances between objects us-
ing I-CoLLIDE [10]. Objects closer than ¢, are assumed to be
in contact, in which case information provided by |-CoLLIDE

isused to determine a suitabl efinite set of contact pointsp; and
normalsn; modelingall thecontacts®. Reaction forcesf; acting
along the contact normals, in response to the applied force f,
(Figure9), aredetermined using Baraff’salgorithm[1]. Thenet
force f and moment m acting on the workpiece are then given

by
=) fi+f, m=> pxfi.

First order dynamicsisthen used to determine the workpiece's
spatial velocity (vI'w?)T, according to

v=df and w=4d-m (1)

where d; and d,. are suitable constants.

Thetask simulator computesand appliestheworkpiece sve-
locity inthisway once per time step (currently every 50 msec)
and uses thisinformationto update the workpiece' s position, as
described in the next section.

5.2. Enforcing Contact Constraintswith Barrier Potentials
The spatial velocity vg = (v'w?)T described in the previous
section is used to determine the change in workpiece position
during each simulation step. Nominally, if no collision results,
thisisgivenby vs At, where At isthesize of thesimulator time
step. On the other hand, if this does result in a collision, then
the displacement is scal ed back along thedirection of vg (asde-
scribed bel ow) to apoint where thereisno collision.

When theworkpieceisextremely closeto other objects, sec-
ond order constraints or numerica errors can render any finite
collision-free motion impossible, even when avalid vg exists.
This has the effect of making the workpiece appear to “stick”,
unreasonably, at certain configurations. In additionto thisprob-
lem, the cl osest-feature and distance information returned by | -
CoLLIDE becomes unreliable when objects are very close to-
gether, and failswhen they interpenetrate. Good simulator per-
formance thusrequirestryingto keep theworkpieceaminimum
distance ¢, away from other objects, where ¢, is less than the
distance ¢. below which objects are assumed to be in contact.
Thisreguirement isenforced using apotential barrier, whichwe
now describe,

Let d; be the distance between the workpiece and another
object ¢, and let § = d;/e,. Then define the potentid U (d;)
(see, eg., [29]) by

_JK[P—-1-1In(d)] ifo<d<1,
w“”_{o if6> 1. @)

where K isasuitable constant. Thiswill act to repel the work-
piece from the object . In order to aso induce motion of the
workpieceaong thedirection of v, we define an attractive po-
tential U/, that decreasesuniformly alongvs in proportiontothe
work doneby f and m. If motioninthedirectionof vg isparam-
eterized by s, such that s € [0, 1] corresponds to one simulator
time step At, then

vl [l

UA@:—[dt+ .

2 Face-face or edge-face contacts can be reasonably simulated using a finite
set of point contacts; see [13].

]Ats.

Summing U, and the U; for all appropriate objectsyields a
net potential U (s) that varies along the direction of vs. Dur-
ing each time step, the workpiece is moved so as to minimize
U(s) (Figure 10). If there are no obstacles nearby, al U; = 0
and this minimum will occur a s = 1, corresponding to the
nominal displacement vs At. For purposes of performing the
minimization, U; (d;) istaken to be +co for d; < 0. Because
U;(s) isnot smooth (see bel ow), the minimizationisdoneusing
a golden section search.

contact
zone

. :

Figure 10. Net potential U (thick solid line) formed by summing U;
(dotted line) and U,, (thin diagonal line), plotted here as functions of
the distance d from obstacle ;. During each simulation step, U ismin-
imized over the segment of d that correspondsto s € [0, 1].

To help maintain each d; > ¢, the trandational velocity v
in equation (1) ismodified to include, for any object i for which
d; < €y, arepulsive component computed from the gradient of
U; (d;) with respect to the workpiece' s trand ational position.

The reader may wonder why we do not treat the entire prob-
lem as apotential minimization and calculate both thev and w
of equation (1) fromthegradient of U with respect to thework-
piece's overal spatia position. The problem is that this gra-
dient is neither simple to calculate, nor smooth. Even though
U;(d;) is smooth, d; itsdlf is not smooth in the configuration
space of a polyhedra object, and so U; is not smooth with re-
spect to the configuration space either. Hence in many cases a
formal gradient doesn’t exist. While non-smooth optimization
techniquesexist that don’t require an explicit gradient, thevery
thin size of the barrier means that convergence could be quite
dow without a good estimate of initial direction. Indeed, the
Baraff calculation (Section 5.1) can be thought of as smply a
good way of estimating this direction.

The potential method described here can also be used toim-
plement those motions for which the workpiece is constrained
to maintainaparticular contact. Thisisdoneby simply modify-
ing U; (d;) so that in addition to approaching infinity at d; = 0,
it also approaches infinity as d; exceeds some outer boundary
vauee,, fore, > e..

6. Program Generation

When the operator has finished manipulating aworkpiece, this
isindicated to the system using akeystroke. The program gen-
erator then sets about creating a set of robot motion commands
to realize the specified operation.

The program generator is given the sequence of every mo-
tion made by theworkpiece during every time stepinthevirtua
environment; thisis called the workpiece path. Since the mo-
tion made by the simulator during each time step islinear, the
workpiece path is actualy a piecewise-linear curve of spatial
positions, with each node possibly associated with one or more
contacts.

A very brute-forceway to accomplish the specified task would
beto reproducetheworkpiece path verbatim. Thiswould closely
replicate the operator’s actions in a manner similar to what is
done in teleprogramming environments [11, 27]. However, in
the context of our system, there are problems with this:

1. The workpiece path may contain many unwanted or un-
necessary motions, such asthoseinduced by the operator
“feeling” her way around.

2. Because simulated motions are constrained to directions
permitted by the dragger fixtures, theworkpiece path may
have superfluous kinks and bends.

3. The path may contain unwanted contacts, caused by the
operator dragging the workpiece across or along obsta-
cles, or specifically using obstacles as virtua fixturesfor
part placement and alignment.

Nevertheless, the workpiece path does have one very desir-
able property, in that it is collision free (within the resolution
limitsimposed by the simulator’stime step). Therefore, what
we do is use the workpiece path as an initia feasible solution,
and modify it so as to remove unwanted motions and unneces-
sary contacts.

6.1. Deforming the Path

Theideaisto treat the path as a deformable spatial curvewhich
can be bent, stretched, or shrunk in order to moveit awvay from
objects or compress its length. Such a deformation can be ac-
complished using potential field methods. In particular, we ap-
ply to each of the path’s nodes

1. a constant tension force attracting it to each of its two
nearest neighbors.

2. aspring-likerepulsiveforcethat pushesit away from un-
wanted obstacles.

Path endpoints are kept fixed, as are the endpoints of any
required contact motions. The tension force (item 1) is calcu-
lated with respect to both position and orientation. A constant,
rather than variable, tension is used to keep the path from be-
coming overly stiff when stretched. The repulsive force (item
2) iscalculated with respect to trand ation only, due to difficul -
ties in computing a repulsive gradient with respect to orienta-
tion (as mentioned in Section 5.2). To keep nodes from pro-
cessing aong the path, we eliminate any repulsive force com-
ponent which istangential to the path. These “forces’ are used

to move each node along the path in succession, with thewhole
procedure being repeated until the path stablizes. An schematic
illustration of the processis shown in Figure 11.

When a node is moved, it is important to ensure that it re-
mains collision free and preserves any required contacts with
capture objects. Thisis achieved by moving each node using
the contact simulation software of Sections 5.1 and 5.2, with
the combined tension and repul sive forces assuming the rol e of
the applied forcef,.

Our path deformation approach closely followsthe work of
Quinlan[25], who originatedit to simplify and smooth collision-
free paths produced by amotion planner. Our work differsfrom
Quinlan’sin several respects. weincludecontact states, the paths
in question are formed from rigid bodiesin SZ(3) rather than
pointsin configuration space, and contact simulation software
is used to effect collision free node displacement (also allow-
ing usto maintain desired contacts during the deformation). By
contrast, collisions are prevented in [25] by surrounding path
pointswith free space “bubbles’. Thiswould be difficult to do
here because of we are dealing with rigid body motionsand be-
cause the proximity of obstacles in contact would require com-
puting bubbles at extremely fine resolutions.

6.2. Robot Motion Commands

After the workpiece path has been deformed as described in
Section 6.1, it issimplified using a scheme similar to that em-
ployed for polygonal path approximation [26]. The resultis a
piecewise-linear spatial path with possible contact states asso-
ciated with each of the knot points. This can be readily trans-
formed into a sequence of spatially linear robot motions, with
each target point possibly associated with one or more contacts.
Theinitial command of thesequenceinvolvesa“guarded grasp”
with which the manipulator graspstheworkpiece. Force sensor
dataisused to help execute and verify this command.

At present, a contact is represented only in terms of its asso-
ciated normal vector. For motion targetswhich involvecontact,
the robot’s speed islowered, and itsimpedance is controlled to
emulate a spring-damper system with low gtiffness. We have
found a simple impedance that is uniform along all axes to be
sufficient, althoughthismay changewhen weextend thesystem
to handle operationsinvolving tight fits. Contact is ensured by
adding to thetarget positionsatrand ational bias Ap to produce
asmall offset d inthe oppositedirection of the contact normals.
Letting the set of normal vectors form the columns of a matrix
N, our ability to do thisrequiresthat we can solve

dl = —N7 Ap,

preferably for || Ap|| nottoo large. This presently prohibitscon-
tact situationsinvolving tight fits. The size of d is determined
by the accuracy of the work site model and is currently around
5 mm (in an environment where objects have atypica dimen-
sion of 30to 60 mm). Motionsinvolving contact are verified by
making sure that trandational forces along the contact normal
directions exceed a prescribed threshold.

The problem of contact transitioninstability isdealt with by
clipping the output velocity of the impedance controller to a
magnitude not exceeding the current robot speed (on the princi-
plethat this should be large enough to remove observed forces

Figure 11. Simple diagram showing the path deformation process. The original path (left) starts with the operator’s grabbing the workpiece at
A, wandering off to theleft, then using the middle obstacle to align the workpiece before dragging it over to the right (causing it to go partly out
of alignment asit clearsthetop of the obstacle) and finally sliding it into the corner at B. Only thefinal contact state at B isdesired, whereas other
contacts and extraneous motions are not. Path deformation is achieved by applying to each path node (as illustrated by the one at C) forcesto
repel it from unwanted contacts(f,.) and inter-node attractive forcesto help straightenit out (f.1, f.2), with the final result shownon theright. The
deformation processtendsto be good at ensuring robust approachesto contact states; for instance, in thefinal path shown here, it isimportant that
the corner destination B is approached from the right as well asfrom above, in order to avoid the possibility of getting snagged on the obstacle

lip immediately abovethe corner.

within one control cycle).

7. Demonstrationsand Observations

In Figure 12, the behavior of the task simulation and program
generation part of thesystemisillustrated for two tasks: corner-
ing ablock, and dragging ablock around the outside of a corner
while maintaining contact. Actual execution of thelater task is
shown in the Figure 2.

7.1. Vision system performance

Thevision agorithmisfairly robust to variationsin light com-
position and intensity (although thisis mainly afunction of the
edge detection scheme used rather that higher-level a gorithm).
A moderate amount of occlusionisalso tolerable, provided that
at least one good edge sequence of an objectisvisible. For this
reason, objects are sometimes not seen when they presenting a
minimal number of faces to the camera “straight on”, a prob-
lem that should be greatly reduced by implementing the al go-
rithm in stereo. Indexing does occasionaly fail due to occlu-
sion and/or noise, if no appropriate feature groupings are de-
tected for a particular object. In offline experiments, better ro-
bustnessinthisarea has been be achieved by indexing with sev-
era typesof groupingin parald. Modulesusing smaler, more
local groupings can then succeed in the difficult cases of major
occlusions, at a penalty of dightly increased processing time,
withthelarger groupingsproviding better efficiency inthetypi-
cal cases. During the Vancouver-Montreal demonstration, false
obj ect detection sometimes occurred dueto thesimplicity of the
verification criterion (requiring 50% of visible festure lengths
to be matched). More sophisticated criteria should indeed be
used, athough thisis rarely a problem when the objects have
grester complexity. At present, the problemhasbeen aleviated
by culling objects whose locationsindicate they cannot redis-
ticaly lie within the work site.

7.2. Task simulation

Thetask simulator runseasily inreal -time (20 Hz) onal5 MFlop
SGI Indy. Objects closer than e, = 0.5 mm are assumed to be

10

in contact, and for the barrier function we have ¢, = .1 mm

(compared to awork areadiameter ~ 350 mm and atypical ob-

ject dimension of & 45 mm). The golden section search (Sec-

tion 5.2) is performed to an accuracy of about 1.0~°, requiring
about 25 |-CoLLIDE calls per time step, or 500 per second. |-

CoLLIDE'scollisionand distance computations can sometimes
fail in non-generic situations (e.g., when two object faces are
very closeto parald), athough such problems are common in
fast geometric modeling systems whose computations are done
using floating point arithmetic. We observed that the use of bar-

rier functionsto keep objects a minimum distance apart greatly
enhances the overall performance and smoothness of the con-

tact simulation over theraw Baraff method [2]. However, when

barrier functionsare used to al so enforceworkpi ece contact with
acapture object (whichisusualy donewithe, = 2 mm), stick-

ing will occasionally occur in some configurations, such as go-

ing around a corner.

The discrete-time nature of the simulation means that in cer-
tain pathological situationsthe simulator can “tunnel” through
an obj ect without detecting acollision (similar observationswere
madein [2]). With a maximum speed of 400 mm/sec, asample
rate of 20 Hz, and 4 tests per sample, we currently need to be
wary of objectsthinner that 5 mm.

7.3. Program generation

The path deformation agorithm (Section 6.1) tendsto produce
paths which have a“good” intuitivefed to them. It is partic-
ularly good at placing node points so as to ensure reliable and
“snag free” approaches and departures from contact situations
(Figure 11), something which is by contrast rather difficult for
a user to specify manually. The only cavest isthat path nodes
must be placed fairly close together (less than the thickness of
any lip) for thisto work. Algorithm convergenceis not a prob-
lem, except that the constant tension force can cause minor in-
stabilitiesto arise when nodes are very closetogether. Thiswas
corrected by using a tension proportional to distance for nodes
closer than a certain minimum distance. However, the problem
of maintaining proper node spacing isatricky one and could

(d)

C

®

Figure 12. Top: Cornering. The operator has placed the workpiecein acorner of the frame (a); its original location is shown by agrey “shadow
block” at the right. The outside of the frame was used to help align the workpiece, as can be seen from the initial workpiece path (b), where
the tightly spaced nodes are shown as half-sized white blocks. After modification (c), the nodes have been pushed away from the table and
have kept their distance from the tall block, and the initial and final positions are approached at angles that prevent collision with the frame.
Bottom: Here, the operator has moved the workpiece around the outside of the frame (d), while requesting that contact with the frame and table
be maintained while going around the corner. The resulting initial workpiece path is shown in (€). After the path is modified (f), frame/table
contact is maintained near the corner, while nodes are pushed away from the table elsewhere. The execution of this motion is shown in Figure

2.

use additional work. With regard to computation time, the de-
formationsassociated with theexamples of Figure12 took around
five seconds to compute on a 12 Mflop SGI Indy, but thiswas
without any effort having been made to optimize performance.

8. Conclusion

Wehave demonstrated anintegrated system which linkstogether
vision, contact simulation, localized planning, and manipula-
tor control into an easy-to-use interactive environment for pro-
gramming contact tasks.

A fast, occlusion-tolerant grey-scal e vision systemisused to
obtain model information, providing an ongoing link between
the simulation and reality. Object recognition proceeds rapidly
(on the order of several seconds) and locations are computed
to approximately pixel accuracy. The vision system isreliable
enough to be used inacontext wherethe operator simply selects
recognized objects to be loaded into the work site model. As
long astheviewed objectshaveagood subset of edgesvisibleto
the camera, the need to supplant the vision system by manually
indicating featuresisrare.

We have aso demonstrated the utility of using simulation
as arobotic programming tool, specificaly for part mating and
contact tasks. Aninteresting resultisthat afull 3D contact sim-
ulation combined with first order dynamics alowsthe operator
to usetheenvironment itself asa“virtua fixture” toeasily align

11

and place parts. This, combined with entities such as dragger
fixtures, makes it simple to accomplish awide range of place-
ment tasks using inputs from a simple 2D mouse.

The problem of turning a feasible but possibly complex set
of simulated motion stepsinto asimpler set of robot commands
is handled using local planning: artificial forces straighten the
path out, when possible, moveit awvay from unwanted contacts,
and hel p ensure good approach and departure from desired con-
tact states. The resulting path is simplified into one containing
a moderate number of via points (possibly including contact),
connected by straight-line spatial robot motions. Interestingly,
the specification of spatia viapoints, particularly those in free
space, is a very tedious task for an operator to perform man-
ually. Therefore, the automation of this process using a loca
planner is particul arly important.

I mportant futurework includesextending thissystemto han-
dlepart mating whichinvolves“tight fits’, aswell asgenerating
robot motion sequences which are provably robust to environ-
mental errors. More genera use can aso be made of thevision
system, particularly for task verification, and we aso wish to
explore the automatic synthesis and insertion of virtual fixtures
during task simulation, based on the estimates of the operator’s
intentions.

References

(1]

(2]
(3]

(4]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

D. Baraff. Fast contact force computation for nonpentratingrigid
bodies. In SGGRAPH 94 Conference Proceedings, pages 23—
34, July 1994.

D. Baraff. Interactive simulation of solid rigid bodies. |EEE
Computer Graphicsand Applications, 15(3):63—75, May 1995.

Jeffrey S. Beis. Building models with planar faces using a
structure-from-motion algorithm plus a small amount of post-
processing. Technical Report TR-96-14, Computer Science De-
partment, University of British Columbia, 201-2366 Main Mall,
Vancouver, CanadaV6T 174, June 1996.

Jeffrey S. Beisand David G. Lowe. Learning indexing functions
for 3-d model-based object recognition. In Proceedings of the
|EEE Conferenceon Computer Vision and Pattern Recognition,
pages 275280, Seattle, June 1994.

Jeffrey S. Beis and David G. Lowe. Shape indexing using ap-
proximate nearest-neighbour search in high-dimensional spaces.
In Conference on Computer Vision and Pattern Recognition,
pages 1000-1006, Puerto Rico, June 1997.

A.K.Bejczy, W. S.Kim, and S. C. Venema. The phantom robot:
Predictivedisplaysfor teleoperation with time delay. In Proceed-
ings of the |EEE International Conference on Robotics and Au-
tomation, pages 546-551, Cincinnati, Ohio, May 1990.

H. Bruyninckx, J. De Schutter, P. Van de Poel, and W. Witvrouw.
A cad-based contact force simulator asalearning tool for compli-
ant motions. In International Symposiumon Intelligent Control,
pages 287292, 1992.

A. Califano and R. Mohan. Multidimensional indexing for rec-
ognizing visua shapes. |EEE Transactionson Pattern Analysis
and Machine Intelligence, 16(4):373-392, 1994.

Y. J. Cho, T. Kotoku, and K. Tanie. Discrete-event-based plan-
ning and control of tel erobotic part-mating processwith commu-
nication delay and geometric uncertainty. In Proceedingsof the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 2, pages 1-6, Pittsburgh, Pennsylvania,
August 1995.

J.Cohen, M. Lin, D. Manocha, and K. Ponamgi. |-COLLIDE: An
interactive and exact collision detection system for large-scaled
environments. In Proceedingsof ACM Int. 3D Graphics Confer-
ence, pages 189-196, 1995.

J. Funda, T. S. Lindsay, and R. P. Paul. Teleprogramming: To-
ward delay-invariant remote manipulation. Presence, 1(1):29—
44, Winter 1992.

K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter,
and J. Wiegley. Desktopteleoperation viatheworld wide web. In
Proceedings of the |EEE International Conference on Robotics
and Automation, pages 654-659, Nagoya, May 1995.

S. Goyal, E. N. Pinson, and F. W. Sinden. Simulation of Dy-
namicsof Interacting Rigid BodiesIncluding Friction|: General
Problemsand Contact Model, pages 162—-174. Springer-Verlag,
London, 1994,

E. Grimson and T. Lozano-Pérez. Localizing overlapping parts
by searching the interpretation tree. IEEE Transactionson Pat-
tern Analysisand Machine Intelligence, pages 469482, 1987.

G. Hirzinger, B. Brunner, J. Dietrich, and J. Heindl. Sensor-
based space robotics — rotex and its telerobotic features. IEEE
Transactions on Robotics and Automation, RA-9(5):649-663,
October 1993.

W. S. Kim and L. W. Stark. Cooperative control of visual dis-
plays for telemanipulation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 1327—
1332, Scottsdale, Arizona, May 1989.

12

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[29]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

R. Koeppe and G. Hirzinger. Learning Compliant Motions by
Task-Demonstrationsin Virtual Environments, pages 299-307.
Number 223. Springer, London, 1995.

John E. Lloyd and Vincent Hayward. Multi-rccl user’s guide.
Technical report, Centre for Intelligent Machines, McGill Uni-
versity, 3480 University Street, Montreal, Canada, H3A 2A7,
April 1992.

David.G. Lowe. Three-dimensional object recognition from sin-
gle two-dimensional images. Artificial Intelligence, 31(3):355—
395, March 1987.

David G. Lowe. Fitting parameterized three-dimensional models
to images. |EEE Transactionson Pattern Analysis and Machine
Intelligence, 13(5):441-450, May 1991.

H. Murase and S. K. Nayar. Visual learning and recognition of
3-d objectsfrom appearance. International Journal of Computer
Vision, 14(1):5-24, 1995.

E. Oyama, N. Tsunemoto, S. Tachi, and Y. Inoue. Experimen-
tal study on remote manipulation using virtual reality. Presence,
2(2):112-124, Spring 1993.

E. Paulos and J. Canny. Delivering real reality to the world
wide web via telerobotics. In Proceedings of the |EEE Inter-
national Conference on Robotics and Automation, pages 1694—
1699, Minneapolis, April 1996.

Michel Pelletier and Michel Doyon. On the implementation
and performance of impedance control on position controlled
robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, volume 2, pages 1228-1233, San
Diego, California, May8-13 1994.

Sean Quinlan. Real-time Maodification of Collision-Free Paths.
PhD thesis, Department of Computer Science, Stanford Univer-
sity, Stanford, California 94305, December 1994.

Urs Ramer. An iterative procedurefor the polygonal approxima-
tion of plane curves. Computer Graphicsand Image Processing,
1:244-256, 1972.

C. R. Sayers. Operator Control of Telerobotic Systems for Real
World Intervention. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, Philadelphia,
Pennsylvania 19104, 1995.

C. R. Sayersand R. P. Paul. An operaan operator interface for
teleprogramming employing synthetic fixtures. Technical report,
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, Pennsylvania19104, June 1994.

R. J. Spiteri, U. M. Ascher, and D. K. Pai. Numerical solution of
differential systems with algebraic inequalities arising in robot
programming. In Proceedings of the IEEE International Con-
ference on Roboticsand Automation, pages 2373-2380, Nagoya,
May 1995.

Ken Taylor and James Trevelyan. Australia’s telerobot on the
web. In 26th International Symposium On Industrial Robots,
Singapore, October 1995.

R. Tsai. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses. |EEE Transactions on Robotics and Au-
tomation, RA-3(4):323-344, August 1987.

National Research Council (U.S.A.). Virtual Reality. Scientific
and Technological Challenges. National Academy Press, Wash-
ington, D.C., 1995.

J. Wernecke. The Inventor Mentor. Addison-Wesley, Reading,
Massachusetts, 1994.

