
On the Empirical Evaluation
of Las Vegas Algorithms

— Position Paper

Holger Hoos1

Computer Science Department
University of British Columbia
Email: hoos@cs.ubc.ca

Thomas Sẗutzle
IRIDIA

Université Libre de Bruxelles
Email: tstutzle@ulb.ac.be

Abstract

We advocate a new methodology for empirically analysing the behaviour of Las
Vegas Algorithms, a large class of probabilistic algorithms comprising prominent
methods such as local search algorithms for SAT and CSPs, like WalkSAT and the
Min-Conflicts Heuristic, as well as more general metaheuristics like Genetic Algo-
rithms, Simulated Annealing, Iterated Local Search, and Ant Colony Optimization.
Our method is based on measuring and analysing run-time distributions (RTDs) for
individual problem instances. We discuss this empirical methodology and its appli-
cation to Las Vegas Algorithms for various problem domains. Our experience so far
strongly suggests that using this approach for studying the behaviour of Las Vegas
Algorithms can provide a basis for improving the understanding of these algorithms
and thus facilitate further successes in their development and application.

1 Las Vegas Algorithms

Las Vegas Algorithms (LVAs)are nondeterministic algorithms for which, if a solution is
found, its correctness is guaranteed. However, it is not guaranteed that for soluble instance
of decision problems such an algorithm eventually finds a solution, or, for optimisation
poblems, that an optimal or close-to-optimal solution will eventually be reached. Because
of its nondeterministic nature, the run-time of a Las Vegas Algorithm is a random variable.

Las Vegas Algorithms are prominent not only in the field of Artificial Intelligence
but also in other areas of computer science and Operations Research. Because of their
inherent randomness, stochastic local search (SLS) algorithms are particular instances of
LVAs. In recent years, SLS algorithms have become quite prominent for solving both NP-
complete decision problems and NP-hard combinatorial optimisation problems. These

1Corresponding author; address: Computer Science Department, University of British Columbia, 2366
Main Mall, Vancouver, BC, Canada V6T 1Z4



algorithms, such as specific SLS algorithms for SAT and CSPs like WalkSAT [16] and
the Min-Conflicts Heuristic [12], respectively, as well as more general metaheuristics like
Tabu Search [2], Simulated Annealing [11], Genetic Algorithms [3], Evolution Strategies
[14, 15], Ant Colony Optimisation [1], or Iterated Local Search [13, 18] have been found
to be very successful on numerous problems from a broad range of domains. But also
a number of systematic search methods, like some modern variants of the Davis Putnam
algorithm for propositional satisfiability (SAT) problems, make use of non-deterministic
decisions (like randomised tie-breaking rules) and can thus be characterised as Las Vegas
Algorithms.

However, due to their stochastic nature, in analysing the behaviour of Las Vegas Algo-
rithms one is mainly restricted to empirical methods, as theoretical results are difficult to
obtain and often very limited in their practical applicability. The latter is, for example, the
case for Simulated Annealing, which is proven to converge towards an optimal solution
under certain conditions which, however, cannot be met in practice. On the other hand,
theoretical results for algorithms which could be shown to be very effective in practice are
usually very limited, as is the case for the most successful variants of Tabu Search. Often,
the empirical methods that have been applied for the analysis of Las Vegas (and partic-
ularly SLS) algorithms in AI have been rather simplistic, like measuring and comparing
average or median run-times over a test-set of instances sampled from a random problem
distribution such as Random-3-SAT, Random Binary CSP, etc. It can be shown that these
methods not only often give a very coarse description of algorithmic behaviour, but that
they can also lead to misinterpretations and erroneous conclusions, e.g., when different
sources of randomness (such as stochastic choices within the algorithm and probabilistic
generation in the instance generation procedure, resp.) are not analytically separated [7].

2 Empirical Analysis using RTDs

We argue that a more sophisticated methodology for the empirical analysis of Las Vegas
Algorithms is needed as a basis for their application, investigation, and further develop-
ment; over the past three years, we developed such a refined empirical methodology and
applied it extensively to Las Vegas Algorithms for various problem domains, foremost the
well-known satisfiability problem in propositional logic (SAT). Our method is based on
measuring and analysing run-time distributions (RTDs) for individual problem instances.
For decision problems, this is done by running the given algorithm on the same problem
instance for a number of times, where in each of these runs the time for finding a solution
is recorded. From this data, an empirical run-time distribution can easily be estimated [7].
(For examples of empirical run-time distributions, see Figure 1.)

For optimisation problems additionally the solution quality has to be taken into ac-



count. In this case, we measure qualitative run-time distributions for different bounds
on the required solution quality (which can be given, for example, as the percentage de-
viation from the best known solution or a lower bound on the optimal solution value).
This can be effectively done by running the optimisation algorithm a number of times on
the same problem instance; in each of these runs whenever a new best solution is found,
the solution quality, the computation time needed to obtain it, and possibly some other
statistic data for further analysis are recorded. This data is sufficient for estimating em-
pirical run-time distributions for different solution quality bounds [18, 4]. (For examples
of qualitative run-time distributions, see Figure 2.)

Based on our own empirical experience and more general considerations, we suggest
the following guidelines for empirically analysing the run-time behaviour of Las Vegas
algorithms.

1. Generally measure and compare RTDs, as opposed to basic descriptive statistics
like mean, standard deviation, or percentiles. Enough runs of the algorithm should
be performed to ensure that the estimates for the RTDs are sufficiently stable.

2. Try to approximate the empirical RTDs using parameterised functional models. Sta-
tistical goodness-of-fit tests like the�2-test should be used to evaluate these func-
tional models. In our studies of SLS algorithms for various problem domains, we
found that often approximations using exponential or generalised exponential dis-
tributions [4] were surprisingly accurate.

3. When comparing algorithms, check for cross-overs in their RTDs. If present, these
typically indicate that by using portfolios or hybrid algorithms the problem can be
solved more robustly and/or more efficiently.

4. When dealing with parameterised algorithms, it is often desirable and rewarding
to study the impact of these parameters on the algorithm’s RTD. When multiple
parameters are used, care should be taken to avoid premature assumptions on the
independence of their effects.

5. When using sets of problem instances (randomly generated or not), RTDs should be
measured for individual instances to clearly detect differences in run-time behaviour
across the test-set. Ideally, if the individual RTDs can be characterised using a
parameterised model, the distribution of the model parameters across the test-set
should be studied. If a parameterised model is not available, the distribution of
basic descriptive statistics of the individual RTDs should be investigated. For sets
of randomly generated instances this method ensures that the different sources of
randomness (in the problem generation procedure and the LVA to be evaluated) are
clearly separated.



6. Likewise, when comparing the performance of different algorithms on sets of in-
stances, the comparison should be made on an individual instance basis. This allows
to precisely analyse the correlation between the algortithms’ performance across
test-sets using standard statistical techniques.

Note that while we advocate to characterise the observed RTDs using parameterised
functional models, many aspects of the RTD-based methodology do not rely on this so
that they are still applicable when such models are not available. The advantage of pa-
rameterised approximations is twofold: first, they allow the compact and yet accurate
characterisation of the observed run-time behaviour and secondly, by they often suggest
generalisations and deeper explanations of the observed behaviour, in particular if the
model parameters can be linked to algorithm parameters or properties of the given prob-
lem instances.

3 Applications of an RTD-based Methodology

Based on a classification of application scenarios for Las Vegas Algorithms, we have
shown that in general, only RTDs provide all the information required to adequately
describe the behaviour of these algorithms [4, 7]. We also demonstrated, how, based
on functional approximations of RTDs for individual problem instances, interesting and
novel characterisations for the run-time behaviour of some of the most popular stochastic
local search algorithms in various areas of AI can be obtained, including SAT, Constraint
Satisfaction, and various combinatorial optimisation problems [8, 10, 4, 18]. These char-
acterisation results are of both, qualitative and quantitative nature and have a number of
practical as well as theoretical implications.

The RTD-based methodology also provides a good basis for adequately comparing the
performance of different Las Vegas Algorithms. Here, we additionally advocate the use
of benchmark libraries comprising fundamentally different types of problems: instances
from random problem distributions, such as Random-3-SAT; individual, application-relevant
or otherwise interesting instances; and, where applicable, randomly generated, encoded
instances from other domains (such as SAT-encoded graph colouring problems in random
graphs). The latter have the advantage that they combine aspects of randomly gener-
ated and structured problem instances and are therefore, in our opinion, ideally suited for
studying the impact of certain structural aspects of the given problem instances on algo-
rithmic performance [6]. Based on these principles, we created and maintain SATLIB2,
a comprehensive public repository of SAT problem instances and algorithms; using our
RTD-based methodology, we also conducted a large-scale empirical study comparing the

2www.informatik.tu-darmstadt.de/AI/SATLIB



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

so
lu

tio
n 

pr
ob

ab
ili

ty

run-time

R-Novelty+
R-Novelty

Figure 1: Run-time distributions for finding models of a hard, SAT-encoded graph colour-
ing problem with 50 vertices using the R-Novelty algorithm and our improved version
R-Novelty+.

performance of various of the best known SLS algorithms for SAT on this benchmark
suite [4, 9].

Finally, RTD-based analyses provide an important basis for tuning and improving
the performance of SLS algorithms. Along these lines, e.g., it is easy to show under
which conditions randomly restarting an SLS algorithm compromises its performance;
also based on the methodology outlined above, we could recently develop significantly
improved variants of some of the best known algorithms for SAT (Novelty+ and R-
Novelty+, [4, 5]). The original algorithms suffered from premature stagnation of the
search for a number of benchmark problem instances, which is clearly reflected in the re-
spective RTDs (as exemplified in Fig. 1). Based on this observation, the algorithms could
be slightly modified by allowing unconditional random walk steps with a small proba-
bility, which resulted in a significant improvement of their ability to solve the previously
problematic problem instances (while for the other instances the performance remained
essentially unaffected). This fact again can be easily and accurately established by an
analysis of the empirical RTDs (see Fig. 1).

Similarly, we analysed the run-time behaviour of Iterated Local Search (ILS) algo-
rithms which currently rank among the best performing approximation algorithms for
large Travelling Salesman Problems. Our analysis revealed that ILS algorithms tend to
quickly find good solutions for TSPs; yet, if very high solution qualities are required, ILS
algorithms suffer from a type of stagnation which may strongly compromise their perfor-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

so
lu

tio
n 

pr
ob

ab
ili

ty

run-time

ILS+
ILS

Figure 2: Run-time distributions for finding optimal solutions of TSP instancelin318
using the basic ILS algorithm “ILS” and our improved version “ILS+”.

mance. Based on this observation we could devise modifications to the ILS algorithms
which, in practice, considerably increase their performance with respect to the detection
of very high quality and even optimal solutions for TSP instances with several thousand
cities (see Fig. 2; more details can be found in [18, 17]).

4 Conclusions

Although run-time distributions have been observed occasionally before, their use has
been limited to concrete examples and specific application aspects. Our improved and
refined empirical methodology is considerably more general and has already proven to
be very useful for analysing the run-time behaviour of Las Vegas Algorithms in general,
and SLS algorithms in particular. In the past, even the most successful applications of Las
Vegas Algorithms in various areas of AI have been based on a fairly limited understanding
of their behaviour. Our experience so far strongly suggests that using the RTD-based
methodology for empirically studying the behaviour of Las Vegas Algorithms can provide
a basis for improving the understanding of these algorithms and thus facilitate further
successes in their development and application.



References
[1] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System: Optimization by a Colony

of Cooperating Agents.IEEE Transactions on Systems, Man, and Cybernetics – Part B, 26(1):29–42,
1996.

[2] F. Glover. Tabu Search – Part I.ORSA Journal on Computing, 1(3):190–206, 1989.

[3] John H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, 1975.

[4] H.H. Hoos. Stochastic Local Search - Methods, Models, Applications. PhD thesis, TU Darmstadt,
Germany, 1998.

[5] H.H. Hoos. On the Run-time Behaviour of Stochastic Local Search Algorithms for SAT. InProc.
AAAI-99, 1999 to appear.

[6] H.H. Hoos. SAT-Encodings, Search Space Structure, and Local Search Performance. InProc. IJCAI-
99, 1999 to appear.

[7] H.H. Hoos and T. St¨utzle. Evaluating Las Vegas Algorithms — Pitfalls and Remedies. InProceed-
ings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 238–245.
Morgan Kaufmann Publishers, San Francisco, CA, 1998.

[8] H.H. Hoos and T. St¨utzle. Some Surprising Regularities in the Behaviour of Stochastic Local Search
(poster abstract). InProc. CP’98, volume 1520 ofLNAI, page 470. Springer Verlag, 1998.

[9] H.H. Hoos and T. St¨utzle. Local Search Algorithms for SAT: An Empirical Evaluation.Submitted to:
J. Automated Reasoning, special Issue “SAT 2000”, 1999.

[10] H.H. Hoos and T. St¨utzle. Towards a Characterisation of the Behaviour of Stochastic Local Search
Algorithms for SAT.Submitted to: Artificial Intelligence, 1999.

[11] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by Simulated Annealing.Science,
220:671–680, 1983.

[12] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing Conflicts: A Heuristic Repair
Method for Constraint Satisfaction and Scheduling Problems.Artificial Intelligence, 52:161–205,
1992.

[13] O. Martin and S.W. Otto. Combining Simulated Annealing with Local Search Heuristics.Annals of
Operations Research, 63:57–75, 1996.

[14] I. Rechenberg.Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologis-
chen Information. Fromman Verlag, Freiburg, 1973.

[15] H.-P. Schwefel.Numerical Optimization of Computer Models. John Wiley & Sons, Chichester, 1981.

[16] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strategies for Improving Local Search. In
Proceedings of AAAI’94, pages 337–343. MIT Press, 1994.

[17] T. Stützle and H.H. Hoos. Analyzing the Run-time Behaviour of Iterated Local Search for the TSP.
Submitted to: III Metaheuristics International Conference, 1999.

[18] T. Stützle.Local Search Algorithms for Combinatorial Problems — Analysis, Improvements, and New
Applications. PhD thesis, Darmstadt University of Technology, Department of Computer Science,
1998.


