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Abstract

Recently, structured methods for solving factored
Markov decisions processes (MDPs) with large
state spaces have been proposed recently to al-
low dynamic programming to be applied with-
out the need for complete state enumeration. We
propose and examine a new value iteration algo-
rithm for MDPs that uses algebraic decision di-
agrams (ADDs) to represent value functions and
policies, assuming an ADD input representation
of the MDP. Dynamic programming is imple-
mented via ADD manipulation. We demonstrate
our method on a class of large MDPs (up to 63
million states) and show that significant gains can
be had when compared to tree-structured repre-
sentations (with up to a thirty-fold reduction in
the number of nodes required to represent optimal
value functions).

1 Introduction

Markov decision processes (MDPs) have become the se-
mantic model of choice for decision theoretic planning
(DTP) in the AI planning community. While classical com-
putational methods for solving MDPs, such as value itera-
tion and policy iteration [19], are often effective for small
problems, typical AI planning problems fall prey to Bell-
man’s curse of dimensionality: the size of the state space
grows exponentially with the number of domain features.
Thus, classical dynamic programming, which requires ex-
plicit enumeration of the state space, is typically infeasible
for feature-based planning problems.

Considerable effort has been devoted to developing repre-
sentational and computational methods for MDPs that obvi-
ate the need to enumerate the state space [5]. Aggregation
methods do this by aggregating a set of states and treating
the states within any aggregate state as if they were identi-
cal [3]. Within AI, abstraction techniques have been widely
studied as a form of aggregation, where states are (implic-
itly) grouped by ignoring certain problem variables [14, 7,
12]. These methods automatically generate abstract MDPs
by exploiting structured representations, such as probabilis-
tic STRIPS rules [16] or dynamic Bayesian network (DBN)
representations of actions [13, 7].

In this paper, we describe a dynamic abstraction method for
solving MDPs using algebraic decision diagrams (ADDs)
[1] to represent value functions and policies. ADDs
are generalizations of ordered binary decision diagrams
(BDDs) [10] that allow non-boolean labels at terminal
nodes. This representational technique allows one to de-
scribe a value function (or policy) as a function of the vari-
ables describing the domain rather than in the classical “tab-
ular” way. The decision graph used to represent this func-
tion is often extremely compact, implicitly grouping to-
gether states that agree on value at different points in the dy-
namic programming computation. As such, the number of
expected value computations and maximizations required
by dynamic programming are greatly reduced.

The algorithm described here derives from the structured
policy iteration (SPI) algorithm of [7, 6, 4], where deci-
sion trees are used to represent value functions and poli-
cies. Given a DBN action representation (with decision
trees used to represent conditional probability tables) and
a decision tree representation of the reward function, SPI
constructs value functions that preserve much of the DBN
structure. Unfortunately, decision trees cannot compactly
represent certain types of value functions, especially those
that involve disjunctive value assessments. For instance, if
the proposition ��������� describes a group of states that have
a specific value, a decision tree must duplicate that value
three times (and in SPI the value is computed three times).
Furthermore, if the proposition describes not a single value,
but rather identical subtrees involving other variables, the
entire subtrees must be duplicated. Decision graphs offer
the advantage that identical subtrees can be merged into
one. As we demonstrate in this paper, this offers consid-
erable computational advantages in certain natural classes
of problems. In addition, highly optimized ADD manipu-
lation software can be used in the implementation of value
iteration.

The remainder of the paper is organized as follows. We pro-
vide a cursory review of MDPs and value iteration in Sec-
tion 2. In Section 3, we review ADDs and describe our
ADD representation of MDPs. In Section 4, we describe
a conceptually straightforward version of SPUDD, a value
iteration algorithm that uses an ADD value function repre-
sentation, and describe the key differences with the SPI al-
gorithm. We also describe several optimizations that reduce
both the time and memory requirements of SPUDD. Empir-



ical results on a class of process planning examples are de-
scribed in Section 5. We are able to solve some very large
MDPs exactly (up to 63 million states) and we show that the
ADD value function representation is considerably smaller
than the corresponding decision tree in most instances. This
illustrates that natural problems often have the type of dis-
junctive structure that can be exploited by decision graph
representations. We conclude in Section 6 with a discussion
of future work in using ADDs for DTP.

2 Markov Decision Processes

We assume that the domain of interest can be modeled as
a fully-observable MDP [2, 19] with a finite set of states 	
and actions 
 . Actions induce stochastic state transitions,
with ���������������� denoting the probability with which state� is reached when action � is executed at state � . We also
assume a real-valued reward function � , associating with
each state � its immediate utility ������� . �
A stationary policy � �!	#" 
 describes a particular
course of action to be adopted by an agent, with ������ de-
noting the action to be taken in state � . We assume that the
agent acts indefinitely (an infinite horizon). We compare
different policies by adopting an expected total discounted
reward as our optimality criterion wherein future rewards
are discounted at a rate $&%('*),+ , and the value of a policy
is given by the expected total discounted reward accrued.
The expected value -/.����0� of a policy � at a given state �
satisfies [19]:-/.������213�4���0�657'489�:�;=<?>@������������A�B���C�-/.��D��� (1)

A policy � is optimal if -E.GFH- .�I for all �KJ(	 and poli-
cies � ’. The optimal value function -ML is the value of any
optimal policy.

Value iteration [2] is a simple iterative approximation algo-
rithm for constructing optimal policies. It proceeds by con-
structing a series of N -stage-to-go value functions -PO . Set-
ting -MQ�1R� , we define

- OTS6� �����21U�����0��5PVXW�YZ :�[U\ '?89B:0; <&>@���]�����B���^C_- O �D����` (2)

The sequence of value functions -aO produced by value it-
eration converges linearly to the optimal value function -=L .
For some finite N , the actions that maximize Equation 2
form an optimal policy, and -PO approximates its value. A
commonly used stopping criterion specifies termination of
the iteration procedure whenb - O@S6�2c - O b )Hd �e+ c '^�f ' (3)

(where
bhg7b 1iVXW�Y �/j kj � k J g � denotes the supremum

norm). This ensures that the resulting value function -aOTS6�
is within lm of the optimal function -ML at any state, and that
the resulting policy is d -optimal [19].n

We ignore actions costs for ease of exposition. These impose
no serious complications.

3 ADDs and MDPs

Algebraic decision diagrams (ADDs) [1] are a generaliza-
tion of BDDs [10], a compact, efficiently manipulable data
structure for representing boolean functions. These data
structures have been used extensively in the VLSI CAD
field and have enabled the solution of much larger problems
than previously possible. In this section, we will describe
these data structures and basic operations on them and show
how they can be used for MDP representation.

3.1 Algebraic Decision Diagrams

A BDD represents a function o2O!"po from N boolean vari-
ables to a boolean result. Bryant [10] introduced the BDD
in its current form, although the general ideas have been
around for quite some time (e.g., as branching programs in
the theoretical computer science literature). Conceptually,
we can construct the BDD for a boolean function as follows.
First, build a decision tree for the desired function, obey-
ing the restrictions that along any path from root to leaf, no
variable appears more than once, and that along every path
from root to leaf, the variables always appear in the same or-
der. Next, apply the following two reduction rules as much
as possible: (1) merge any duplicate (same label and same
children) nodes; and (2) if both child pointers of a node
point to the same child, delete the node because it is redun-
dant (with the parents of the node now pointing directly to
the child of the node). The resulting directed, acyclic graph
is the BDD for the function.

m
In practice, BDDs are gen-

erated and manipulated in the fully-reduced form, without
ever building the decision tree.

ADDs generalize BDDs to represent real-valued functionso2Oq" r ; thus, in an ADD, we have multiple terminal
nodes labeled with numeric values. More formally, an ADD
denotes a function as follows:

1. The function of a terminal node is the constant func-
tion s^���M1t� , where � is the number labelling the ter-
minal node.

2. The function of a nonterminal node labeled with
boolean variable

g � is given bys6� k �vuDuDu k O �21 k � Cws]xDy0zB{|� k m u0u�u k O �e5 k � C s@zB} ~�z�� k m u�u�u k O �
where boolean values

k��
are viewed as $ and + , ands xDy0zB{ and s z�} ~�z are the functions of the ADDs rooted

at the then and else children of the node.

BDDs and ADDs have several useful properties. First, for a
given variable ordering, each distinct function has a unique
reduced representation. In addition, many common func-
tions can be represented compactly because of isomorphic-
subgraph sharing. Furthermore, efficient algorithms (e.g.,
depth-first search with a hash table to reuse previously com-
puted results) exist for most common operations, such as
addition, multiplication, and maximization. For example,
Figure 1 shows a computation of the maximum of two
ADDs. Finally, because BDDs and ADDs have been used�

We are describing the most common variety of BDD. Numer-
ous variations exist in the literature.
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Figure 1: Simple ADD maximization example

extensively in other domains, very efficient implementa-
tions are readily available. As we will see, these properties
make ADDs an ideal candidate to represent structured value
functions in MDP solution algorithms.

3.2 ADD Representation of MDPs

We assume that the MDP state space is characterized by a
set of variables �H1 ��g � ��C0C�C�� g O � . Values of variable

g4�
will be denoted in lowercase (e.g.,

k/�
). We assume each

g4�
is boolean, as required by the ADD formalism, though we
discuss multi-valued variables in Section 5. Actions are of-
ten most naturally described as having an effect on specific
variables under certain conditions, implicitly inducing state
transitions. DBN action representations [13, 7] exploit this
fact, specifying a local distribution over each variable de-
scribing the (probabilistic) impact an action has on that vari-
able.

A DBN for action � requires two sets of variables, one set��1 ��g � ��C0C�C�� g O � referring to the state of the system be-
fore action � has been executed, and �!�1 ��g �� ��C0C�C�� g �O �denoting the state after � has been executed. Directed arcs
from variables in � to variables in �!� indicate direct causal
influence and have the usual semantics [17, 13]. � The con-
ditional probability table (CPT) for each post-action vari-
able
g �� defines a conditional distribution < Z� I� over

g �� —
i.e., � ’s effect on

g �
—for each instantiation of its par-

ents. This can be viewed as a function < Z� I� � g ��u�u�u g O � ,
but where the function value (distribution) depends only on
those
gP�

that are parents of
g �� . No quantification is pro-

vided for pre-action variables
g �

: since the process is fully
observable, we need only use the DBN to predict state tran-
sitions. We require one DBN for each action ��J!
 .

In order to illustrate our representation and algorithm, we
introduce a simple adaptation of a process planning prob-
lem taken from [14]. The example involves a factory agent
which has the task of connecting two objects � and � . Fig-
ure 2(a) illustrates our representation for the action bolt,
where the two parts are bolted together. We see that whether
the parts are successfully connected, � , depends on a num-
ber of factors, but is independent of the state of variable �
(painted). In contrast, whether part � is punched, �!�?� ,
after bolting depends only on whether it was punched be-
fore bolting.

Rather than the standard, locally exponential, tabular repre-�
We ignore the possibility of arcs among post-action variables,

disallowing correlations in action effects. See [4] for a treatment
of dynamic programming when such correlations exist.

sentation of CPTs, we use ADDs to capture regularities in
the CPTs (i.e., to represent the functions < Z� I� � g � u0u�u g O � ).
This type of representation exploits context-specific inde-
pendence in the distributions [9], and is related to the use
of tree representations [7] and rule representations [18] of
CPTs in DBNs. Figure 2(b) illustrates the ADD represen-
tation of the CPT for two variables, �P� and �K�?�K� . While
the distribution over �M� is a function of its seven parent vari-
ables, this function exhibits considerable regularity, readily
apparent by inspection of the table, which is exploited by
the ADD. Specifically, the distribution over �P� is given by
the following formula:<P�e��� 9� I �������?�a���!�&�������?�*���K���X�����!����� �¡�¢1£ �¤5 � £ ���?�*C �!�&�¥5 �&�2�2C��!�X�¥C��4�X�5P�?�7CA�K�?�HC��4�?��¦§C����P¦�C0$ uw¨
(we ignore the zero entries). Similarly, the ADD for �K�?�K�
corresponds to:< �e��� 9©«ª6¬ I ���!�?�K�21U�K�?�HC�+ u $
Reward functions can be represented similarly. Figure 2(c)
shows the ADD representation of the reward function for
this simple example: the agent is rewarded with 10 if the
two objects are connected and painted, with a smaller re-
ward of 5 when the two objects are connected but not
painted, and is given no reward when the parts are not con-
nected. The reward function, ��� g � � u0u�u � g O � , is simply���������&��1�iC0�3C�+0$ u $®5¯�,C �3C�°
This example action illustrates the type of structure that can
be exploited by an ADD representation. Specifically, the
CPT for �P� clearly exhibits disjunctive structure, where a
variety of distinct conditions each give rise to a specific
probability of successfully connecting two parts. While this
ADD has seven internal nodes and two leaves, a tree repre-
sentation for the same CPT requires 11 internal nodes and
12 leaves. As we will see, this additional structure can be
exploited in value iteration. Note also that the standard ma-
trix representation of the CPT requires 128 parameters.

ADDs are often much more compact that trees when rep-
resenting functions, but this is not always the case. The
ordering requirement on ADDs means that certain func-
tions can require an exponentially larger ADD representa-
tion than a well-chosen tree; similarly, ADDs can be expo-
nentially smaller than decision trees. Our initial results sug-
gest that such pathological examples are unlikely to arise in
most problem domains (see Section 5), and that ADDs offer
an advantage over decision trees.

4 Value Iteration using ADDs

In this section, we present an algorithm for optimal pol-
icy construction that avoids the explicit enumeration of the
state space. SPUDD (stochastic planning using decision
diagrams) implements classical value iteration, but uses
ADDs to represent value functions and CPTs. It exploits
the regularities in the action and reward networks, made



true false
KEY

T

F

F

F

F

F

F

F

F
F

F

F

1.0 0.0

APU

C

P

10.0 5.0

0.0

APU APU’
APU’

T

F

1.0

0.0

APU

REWARD

C

P

Matrix 
Representation

ADD

Representation
Reward

Network

(a) (b) (c)

BO’BO

BDR

ADR

BPU BPU’

PL PL’

C C’

ADR’

BDR’

C’BOBDRADRBPUAPUPLC

T/F

T

T

T

T

T

T

T

F
F

F

F

T/F

T

T

F

F

F

F

T

T/F
T/F

T/F

T/F

T/F

T

F

T/F

T/F

T/F

T/F

T/F

T/F

T/F

T/F

T/F

T/F

T

T

T

F

T/F

T
T

T

F

T/F

T/F

T/F

T

T

F

T/F

T/F

T
T

F

T/F

0.9

0.0

0.0

0.9

0.0

0.0

0.0

0.9

0.9
0.0

0.0

0.0

T
F

T/F

T

F

T/F

T/F

T

T
F

T/F

T/F

T/F

T/F

PL

C

0.9

APU

BPU

ADR

BDR

BO

0.0

P’P

Figure 2: Small FACTORY example: (a) action network for action bolt; (b) ADD representation of CPTs (action diagrams);
and (c) immediate reward network and ADD representation of the reward table.

explicit by the ADD representation described in the previ-
ous section, to discover regularities in the value functions
it constructs. This often yields substantial savings in both
space and computational time. We first introduce the algo-
rithm in a conceptually clear way, and then describe certain
optimizations.

OBDDs have been explored in previous work in AI plan-
ning [11], where universal plans (much like policies) are
generated for nondeterministic domains. The motivation in
that work, avoiding the combinatorial explosion associated
with state space enumeration, is similar to ours; but the de-
tails of the algorithms, and how the representation is used
to represent planning domains, is quite different.

4.1 The Basic SPUDD Algorithm

The SPUDD algorithm, shown in Figure 3, implements
a form of value iteration, producing a sequence of value
functions -=Q]�h-M����C0C�C until the termination condition is met.
Each ± stage-to-go value function is represented as an ADD
denoted - � � g � � u�u0u � g O � . Since -?Q�1q� , the first value
function has an obvious ADD representation. The key in-
sight underlying SPUDD is to exploit the ADD structure
of - � and the MDP representation itself to discover the ap-
propriate ADD structure for - � S6� . Expected value calcula-
tions and maximizations are then performed at each termi-
nal node of the new ADD rather than at each state.

Given an ADD for - � , Step 3 of SPUDD produces - � S6� .
When computing - � S6� , the function - � is viewed as rep-
resenting values at future states, after a suitable action has
been performed with ±�5X+ stages remaining. So variables in- � are first replaced by their primed, or post-action, coun-
terparts (Step 3(a)), referring to the state with ± stages-to-
go; this prevents them from being confused with unprimed

variables that refer to the state with ±�5²+ stages-to-go. Fig-
ure 4(a) shows the zero stage-to-go primed value diagram,-a�³Q , for our simple example.

For each action � , we then compute an ADD representa-
tion of the function - � S6�Z , denoting the expected value of
performing action � with ±65¥+ stages to go given that - �
dictates ± stage-to-go value. This requires several steps,
described below. First, we note that the ADD-represented
functions < Z� I� , taken from the action network for � , give the

(conditional) probabilities that variables
g �� are made true

by action � . To fit within the ADD framework, we introduce
the negative action diagrams< Z� I� � g � � u0u�u � g O �1¥�´+ c < Z� I� � g � � u0u�u � g O �e�
which gives the probability that � will make

g �� false. We
then define the dual action diagrams µ Z� I� as the ADD

rooted at
g �� , whose true branch is the action diagram < Z� I�

and whose false branch is the negative action diagram < Z� I� :µ Z� I� � g ��A¶ g � � u0u�u g O �·1 g �� CA< Z� I� � g � � u0u�u g O ��5g �� C < Z� I� � g � � u0u�u g O �´� (4)

Intuitively, µ Z� I� � k �� ¶ k � � u�u�u k O � denotes <�� g �� 1 k �� j g � 1k � �0C�C�C�� g O 1 k O � (under action � ). Figure 4(a) shows the
dual action diagram for the variable C’ from the example in
Figure 2(b).

In order to generate - � S6�Z , we must, for each state � , com-
bine the ± stage-to-go value for each state � with the prob-
ability of reaching � from � . We do this by multiplying, in
turn, the dual action diagrams for each variable

g �� by -P� �



1. Set ¸¡¹»º²¼ where ¼ is the immediate reward diagram; set½ º*¾
2. Create dual action diagrams, ¿ÁÀÂ I��ÃÅÄ!ÆÇBÈ Ä n È�É�É�É Ä=Ê]Ë for eachÌ?Í&Î , and for each Ä!ÆÇ Í4Ï Æ
3. Repeat until Ð�¸ ÇÒÑ nÓ ¸ Ç Ð®Ô,Õ�Ö n�×/Ø�Ù�eØ

(a) Swap all variables in Ä Ç with primed versions to createÄ!Æ Ç
(b) For all Ú Í�Î

Set ÛÅÜ�ÝÁÞ?ºß¸ Æ Ç
For all primed variables, Ä Æà in ¸ Æ ÇÛáÜ0ÝÁÞ4º7ÛáÜ0Ý¡Þaâ2¿ ÀÂ Iã

Set ÛÅÜ0Ý¡Þ4º Sum the sub-diagrams of ÛáÜ0Ý¡Þ
over the primed variable Ä!Æà

End For
Multiply the result by discounting factor ä

and add ¼ to obtain ¸ ÇÀEnd For

(c) Maximize over all ¸ ÇÀ ’s to create ¸ ÇÒÑ n .
(d) Increment i

End Repeat

4. Perform one more iteration and assign to each terminal node
the actions Ì which contributed the value in the value ADD
at that node; this yields the å -optimal policy ADD, æ�ç . Note
that terminal nodes which have the same values for multiple
actions are assigned all possible actions in æ�ç .

5. Return the value diagram ¸ ÇÒÑ n and the optimal policy æ ç .
Figure 3: SPUDD algorithm

and then eliminating
g �� by summing over its values in the

resultant ADD. More precisely, by multiplying µ Z� Iã by -a� � ,
we obtain a function s6� g �� �0C�C0C�� g �O � g � ��C0C�C g O � wheres6� k � � �0C�C0C�� k �O � k � �0C�C0C k O ��1- � � � k � � �0C�C0C�� k �O �´<�� k �� j k � � u0u�u k O �
(assuming transitions induced by action � ). This intermedi-
ate calculation is illustrated in Figure 4(b), where the dual
diagram for variable �M� is the first to be multiplied by -a�³Q .
Note that �P� lies at the root of this ADD. Once this func-
tion s is obtained, we can eliminate dependence of future
value on the specific value of

g �� by taking an expectation
over both of its truth values. This is done by summing the
left and right subgraphs of the ADD for s , leaving us with
the functionè � g �� ��C0C�C�� g ���é � � g �� S6� �0C�C0C�� g �O � g � � u0u�u g O �218Òê Iã - � � � g �� ��C0C�C�� k �� �0C�C0C�� g �O �´<�� k �� j g � � u�u0u g O �
This is illustrated in Figure 4(c), where the variable �P� is
eliminated. This ADD denotes the expected future value (or$ stage-to-go value) as a function of the parents of �P� with

+ stage-to-go and all post-action variables except � � with $
stages-to-go.

This process is repeated for each post-action variable
g ��

that occurs in the ADD for -a� � : we first multiply µ Z� Iã into

the intermediate value ADD, then eliminate that variable by
taking an expectation over its values. Once all primed vari-
ables have been eliminated, we are left with a functionë � g � �0C�C�Ce� g O �18ê I ìeíwîwîwîwí ê I ï - � � � k � � �0C�C�C�� k �O �´<�� k � � j g � � u�u�u g O ��C�C�C< � k �O j g � � u�u0u g O �
By the independence assumptions embodied in the action
network, this is precisely the expected future value of per-
forming action � . By adding the reward ADD � to this
function, we obtain an ADD representation of - � S6�Z . Fig-
ure 5 shows the result for our simple example. The remain-
ing primed variable �P� in Figure 4(c) has been removed,
producing -?�ð@ñ�ò³ó using a discount factor of $ uw¨ . Finally, we
take the maximum over all actions to produce the - � S6� dia-
gram. Given ADDs for each - � S6�Z , this requires simply that
one construct the ADD representing V�W_Y Z :�[ - � S6�Z .

The stopping criterion in Equation 3 is implemented by
comparing each pair of successive ADDs, - � S6� and - � .
Once the value function has converged, the d -optimal pol-
icy, or policy ADD, is extracted by performing one further
dynamic programming backup, and assigning to each ter-
minal node the actions which produced the maximimizing
value. Since each terminal node represents some state set of
states ô , the set of actions thus determined are each optimal
for any �PJ�ô .
4.2 Optimizations

The algorithm as described in the last section, and as shown
in Figure 3, suffers from certain practical difficulties which
make it necessary to introduce various optimizations in or-
der to improve efficiency with respect to both space and
time. The problems arise in Step 3(b) when -M� � is multi-
plied by the dual action diagrams µ Z . Since there are po-
tentially N primed variables in the ADD for -a� � and N un-
primed variables in the ADD for µ Z , there is an interme-
diate step in which a diagram is created with (potentially)
up to
f N variables. Although this will not be the case in

general, it was deemed necessary to modify the method in
order to deal with the possibility of this problem arising.
Furthermore, a large computational overhead is introduced
by re-calculating the joint probability distributions over the
primed variables at each iteration. In this section, we first
discuss optimizations for dealing with space, followed by a
method for optimizing computation time.

The increase in the diagram size during Step 3(b) of the al-
gorithm can be countered by approaching the multiplica-
tions and sums slightly differently. Instead of blindly mul-
tiplying the - � � by the dual action diagram for the variable
at the root of -�� � , we can traverse the ADD for -�� � to the
level of the last variable in the ADD ordering, then mul-
tiply and sum the sub-diagrams rooted at this variable by
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the corresponding dual diagram. This process will only re-
move the dependency of the -a� � on a primed variable for
a given branch, and will therefore only introduce a single
diagram of N unprimed variables at a leaf node of -a� � . By
recursively carrying out this procedure using the structure
of the ADD for -P� � , the intermediate stages never grow too
large. Essentially, the additional unprimed variables are in-
troduced only at specific points in the ADD and the corre-
sponding primed variable immediately eliminated—this is
much like the tree-structured dynamic programming algo-
rithm of [7].

Unfortunately, this method requires a great deal of unnec-
essary, repeated computation. Since the action diagrams

for a given problem do not change during the generation of
a policy, the joint probability distribution <?>@���]�����B��� from
Equation 2 could be pre-computed. In our case, this means
we could take the product of all dual action diagrams for a
given action � , as shown in Equation 5 below, prior to a spe-
cific value iteration. We refer to this product diagram, < Z ,
as the complete action diagram for action � :< Z � g �� � u�u�u � g �O � g � � u�u�u � g O �1 Oö�Å÷ � µ Z� I� � g ��0¶ g � � u�u0u � g O �(5)
The resulting function < Z provides a representation of the
state transition probabilities for action � . This explicit < Z
function could then be multiplied by the -a�wO during Step
3 of the algorithm, and then primed variables eliminated.
Although this may lead to a substantial savings in compu-
tation time, it will again generate diagrams with up to

f N
variables.

As a compromise, we implemented a method where the
space-time trade-off can be addressed explicitly. A “tun-
ing knob” enables the user to find a middle ground between
the two methods mentioned above. We accomplish this
by pre-computing only subsets of the complete action di-
agram. That is, we break the large diagram up into a few
smaller pieces. The set of variables � g � � u0u�u � g O � is di-
vided into ø subsets, preserving the total ordering (e.g.,£ g � � u0u�u � g � ì ¦ , £ g � ì S6� � u�u0u � g �Åù ¦ , ...,

£ g ��ú � u�u0u g O ¦ ), and
the complete action diagrams are pre-computed for each
subset (e.g., ��< Z � g �� ã � u�u�u � g �� ã�û ì ��ü � � u0u�u � g O � ). Step 3(b)
of the algorithm must be modified as shown in Figure 6.
The primed value diagram -a� � is traversed to the top of the
second level ( ± � 5ý+ ), and the procedure is carried out re-
cursively on each sub-diagram rooted at variables

g �� ì S6� . If
a level is reached with no variables below it, then the sub-
diagram rooted at each variable

g ���ú of -P� � is multiplied
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Set ÛáÜ0Ý¡Þ4º ADD constant 1
Set �?º	��
HÝUºG¾� ½�� Ü«º7¾

2. While ��Ô number of variables� º��½ à º��
While � ½�� ÜÁÔ�þ�ÿ��������

Set ÛáÜ0Ý¡Þ=º²ÛÅÜ�ÝÁÞaâ2¿ À� I�� ½�� Ü«º no. of internal nodes in ÛáÜ0Ý¡Þ�?º������
End While� À Ã�� Æà È�É�É�É�È � Æ� ×|n È � n È�É�É�É�È � Ê Ë º7ÛÅÜ�ÝÁÞÝUº²Ý����

End While
3. Repeat until Ð�¸ ÇÒÑ n Ó ¸ Ç Ð®Ô Õ�Ö n�×/Ø�Ù�eØ

...
(c) For all Ú Í�Î

Set � Ì �AÛ � Ü � Ü��|º7Ý
Call pRew( ¸ Æ Ê , � À , ¾ , � )

procedure pRew ( � Ì � �]Ü , Ì�! Û ½�"�#
, � Ì%$ ,

# Ü'&EÛ �DÜ � Ü'� )
If � Ì%$)( ½ Ê+*-,�. /0* � *1/

If � Ì%$2( ½ / À'3 . /0* � *1/$ Ü����4�ÅÛ�º � Ì � �]Ü� Ì �AÛ � Ü � Ü��|º�� Ì �AÛ �DÜ � Ü�� Ó �
ElseÛÅÜ�ÝÁÞ = pRew ( � Ì ���]Ü , Ì�! Û ½�"5#

, � Ì%$ ,
# Ü�&/Û � Ü � Ü��6��� )ÛÅÜ�ÝÁÞ?ºßÛáÜ0Ý¡Þ¡â Ì�! Û$ Ü����4�ÅÛ�º sum all sub-diagrams of ÛáÜ0Ý¡Þ

over primed variables, ��Æà � ( ½ / À'3 . /0* � *1/
elseÛáÜ0ÝÁÞ877º prRew(then( � Ì � �]Ü ),Ì�! Û ½�"5#

, �DÜ � Ü��8��� ,
# Ü'&EÛ � Ü � Ü�� )ÛáÜ0ÝÁÞ:9ßº prRew(else( � Ì � �]Ü ),Ì�! Û ½�"5#

, �DÜ � Ü��8��� ,
# Ü'&EÛ � Ü � Ü�� )$ Ü��'�%�ÅÛ�º tree rooted at ��ÆÇ<;0=1>1=�;

with then,else branches: ÛáÜ0ÝÁÞ87 , ÛáÜ0Ý¡Þ?9 , resp.
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Figure 6: Modified SPUDD algorithm

with the corresponding subset of the complete action dia-
gram, < Z � g ���ú � u�u�u � g �O � g � � u�u�u � g O � , and summed over
primed variables

g �@ , ACBq± D . In this way, the diagrams
are kept small by making sure that enough elimination oc-
curs to balance the effects of multiplying by complete ac-
tion diagrams. The space and time requirements can then
be controlled by the number of subsets the complete action
diagrams are broken into. In theory, the more subsets, the
smaller the space requirements and the larger the time re-
quirements. Although we have been able to produce sub-
stantial changes in the space and time requirements of the
algorithm using this tuning knob, its effects are still un-
clear. At present, we choose the ø subsets of variables by
simply building the complete action diagrams according to
some variable ordering until they reach a user-defined size
limit, at which point we start on the next subset. We note
that this space-time tradeoff bears some resemblance to the
space-time tradeoffs that arise in probabilistic inference al-
gorithms like variable elimination [15].

Although we have not implemented heuristics for variable
ordering, there are some simple ordering methods that could
improve space efficiency. For instance, if we order vari-
ables so that primed variables with many shared parents are
eliminated together, the number of unprimed variables in-
troduced will be kept relatively small relative to the number
of primed variables eliminated. More importantly, we must
develop more refined heuristics that keep the ADDs small
rather than minimizing the number of variables introduced.

This revised procedure (Figure 6) has a small inefficiency,
as our results in the next section will show. Since we are
pre-computing subsets of the complete action diagrams, any
variables which are included in the domain, but are not rel-
evant to its solution, will be included in these pre-computed
diagrams. This will increase the size of the intermediate
representations and will add overhead in computation time.
It is important to be able to discard them, and to only com-
pute the policy over variables that are relevant to the value
function and policy [7]. A possible way to deal with these
types of variables in our algorithm would be to progres-
sively build the complete action diagrams during the iter-
ative procedure. In this way, only the variables relevant to
the domain would be added.

5 Data and Results

The procedure described above was implemented using the
CUDD package [20], a library of C routines which pro-
vides support for manipulation of ADDs. Experimental re-
sults described in this section were all obtained using a dual-
processor SUN SPARC Ultra 60 running at 300Mhz with 1
Gb of RAM, with only a single processor being used. The
SPUDD algorithm was tested on three different types of
examples, each type having MDP instances with different
numbers of variables, hence a wide variety of state space
sizes. The first example class consists of various adapta-
tions of a process planning problem taken from [14]. The
second and third example classes consist of synthetic prob-
lems taken from [7, 8]. These are designed to test best- and
worst-case behavior of SPUDD.E
The first example class consists of process planning prob-
lems taken from [14], involving a factory agent which must
paint two objects and connect them. The objects must be
smoothed, shaped and polished and possibly drilled before
painting, each of which actions require a number of tools
which are possibly available. Various painting and connec-
tion methods are represented, each having an effect on the
quality of the job, and each requiring tools. The final prod-
uct is rewarded according to what kind of quality is needed.
Rewards range from $ to +0$ and a discounting factor of $ uw¨
was used throughout.

The examples used here, unlike the one described in Sec-
tion 3, were not designed with any structure in mind which
could be taken advantage of by an ADD representation. In
the original problem specification, three ternary variables
were used to represent painting quality of each object (good,
poor or false), and the connection quality (good, bad or
false). However, as discussed above, ADDs can only rep-

F
Data for these problems can be found at the Web page:

www.cs.ubc.ca/spider/staubin/Spudd/index.html.



resent binary variables, so that each ternary variable was
expanded into two binary ones. For example, the vari-
able connected, describing the type of connection between
the two objects, was represented by boolean variables con-
nected and connected well. This expansion enlarges the
state space by a factor of G8H%I for each ternary variable so
expanded (by introducing unreachable states). A number of
FACTORY examples were devised, with state space sizes
ranging from 55 thousand to 268 million.

Optimal policies were generated using SPUDD and a struc-
tured policy iteration (SPI) implementation for comparison
purposes [7]. Results, displayed in Table 1, are presented
for SPUDD running on six FACTORY examples, and for
SPI running on five. SPI was not run on the factory4 ex-
ample, because its estimated time and space requirements
exceeded available capacity. SPI implements modified pol-
icy iteration using trees to represent CPTs and intermedi-
ate value and policy functions. SPI, however, does allow
multi-valued variables—so versions of each example were
tested in SPI using both ternary variables, and thier binary
expansion. Table 1 shows the number of ternary variables
in each example, along with the total number of variables.
The state space sizes of each FACTORY example are shown
for both the original and the binary-expansion formulations.
SPUDD was only run on the binary-expanded versions.

The examples labelled factory1 and factory2 differ only by
a single binary variable, which is not affected by any action
in the domain, and which does not itself affect any other
variables. Hence, the number of internal nodes resulting
in Table 1 are identical for the two examples. This vari-
able was added in order to show how structured represen-
tations like SPUDD and SPI can effectively discard vari-
ables which do not affect the problem at hand, as discussed
in Section 4.2. Since SPUDD pre-computes the complete
action diagrams, as shown in Figure 6, the running time for
SPUDD almost doubles when this new variable is added,
since it creates overhead for the iterative procedure. This
problem could be circumvented using the method described
at the end of Section 4.2.

Running times are shown for SPUDD and SPI. However,
the algorithms do not lend themselves easily to comparisons
of running times, since implementation details cloud the re-
sults; so running times will not be discussed further here.
The SPI results are shown in order to compare the sizes
of the final value function representations, which give an
indication of complexity for policy generation algorithms.
However, a question arises when comparing such numbers
about the variable orderings, as mentioned in Section 3. The
variable ordering for SPUDD is chosen prior to runtime and
remains the same during the entire process. No special tech-
niques were used to choose the ordering, although it may be
argued that good orderings could be gleaned from the MDP
specification. Variable orderings within the branches of the
tree structure in the SPI algorithm are determined primarily
by the choice of ordering in the reward function and action
descriptions [7]. Again, no special techniques were used
to choose the variable ordering in SPI. Finding the optimal
variable orderings in either case is a difficult problem, and
we assume here that neither algorithm has an advantage in
this regard. Dynamic reordering algorithms are available in

CUDD, and have been implemented but not yet fully tested
in SPUDD (see below).

In order to compare representation sizes, we compare the
number of internal nodes in the value function represen-
tations only. This is most important when doing dynamic
programming back-up steps and is a large factor in deter-
mining both running time and space requirements. Further-
more, we compare numbers from SPUDD using binary rep-
resentations with numbers from SPI using binary/ternary
representations in order not to disadvantage SPI, which can
make use of ternary variables. We also compare both imple-
mentations using only binary variables. The equivalent tree
leaves column in Table 1 gives the number of leaves of the
totally ordered binary tree (and hence the number of inter-
nal nodes) that results in expanding the value ADD gener-
ated by SPUDD. These numbers give the size of a tree that
would be generated if a total ordering was imposed. Com-
paring these numbers with the numbers generated by SPI
give an indication of the savings that occur due to the re-
laxation of the total ordering constraint. The rightmost col-
umn in Table 1 shows the ratio of the number of internal
nodes in the tree representation to the number in the ADD
representation. We see that reductions of up to 30 times
are possible, when comparing only binary representations
to binary/ternary representations, and reductions of over
40 times when comparing the same binary representations.
These space savings also showed up in the amount of mem-
ory used. For example, the factory3 example took 691Mb
of memory using SPI, and only 148Mb using SPUDD. The
factory4 example took 378Mb of space using SPUDD.

The BIGADD limit (see Figure 6) was set to 10000 for the
factory, factory0, factory1 and factory2 examples and to
20000 in the factory3 and factory4 examples. These lim-
its broke up the complete action diagrams into ø 1 f or
I pieces, with typically 6000-10000 nodes in the first and
second and under 1000 nodes in the third if it existed. In the
large examples (factory2, 3 and 4), it was not possible (with
1Gb of RAM) to generate the full complete action diagram
( ø 1#+ ), and running times became too large when BI-
GADD was set to 1. The functionality of this “tuning knob”
was not fully investigated, but, along with studies of differ-
ent heuristics for variable grouping, is an interesting avenue
for future exploration.

For comparison purposes, flat (unstructured) value iteration
was run on both the factory and factory0 examples. The
times taken for these problems were 895 and 4579 seconds,
respectively. For the larger problems, memory limitations
precluded completion of the flat algorithm.

In order to examine the worst-case behaviour, we tested
SPUDD on a series of examples, drawn from [7, 8], in
which every state has a unique value; hence, the ADD rep-
resenting the value function will have a number of termi-
nal nodes exponential in the number of state variables. The
problem EXPON involves N ordered propositions and N
actions, one for each proposition. Each action makes its
corresponding proposition true, but causes all propositions
lower in the order to become false. A reward is given only
if all variables are true. The problem is representable inJ ��N m � space using ADDs; but the optimal policy winds
through the entire state space like a binary counter. This



Example State space size SPUDD - Value SPI - Value ratio of
Name variables states time (s) internal leaves equiv. time (s) internal leaves tree nodes:

ternary total nodes tree nodes ADD nodes
leaves

factory 3 14 55296 - - - - 2210.6 6721 7879 8.12
0 17 131072 78.0 828 147 8937 2188.23 9513 9514 11.48

factory0 3 16 221184 - - - - 5763.1 15794 18451 13.89
0 19 524288 111.4 1137 147 14888 6238.4 22611 22612 19.89

factory1 3 18 884736 - - - - 14731.9 31676 37315 14.60
0 21 2097132 279.0 2169 178 49558 15430.6 44304 44305 20.43

factory2 3 19 1769472 - - - - 14742.4 31676 37315 14.60
0 22 4194304 462.1 2169 178 49558 15465.0 44304 44305 20.43

factory3 4 21 10616832 - - - - 98340.0 138056 168207 29.31
0 25 33554432 3609.4 4711 208 242840 112760.1 193318 193319 41.04

factory4 4 24 63700992 - - - - - - - -
0 28 268435456 14651.5 7431 238 707890 - - - -

Table 1: Results for FACTORY examples.

problem causes worst-case behaviour for SPUDD because
all
f O states have different values. SPUDD was tested on

the EXPON example with K/�ML/��+0$ and + f variables, leading
to state spaces with sizes KNG|� f °%K��0+�$ f G and G@$ ¨ K , respec-
tively. The initial reward and the discounting factor in these
examples must be scaled to accommodate the

f O -step look-
ahead for the largest problem (12 variables), and were set
to +�$@�PO and $ uw¨�¨ , respectively. Q Figure 7 compares the run-
ning times of SPUDD and (flat) value iteration plotted (in
log scale) as a function of the number of variables. Run-
ning times for both algorithms exhibit exponential growth
with the number of variables, as expected. O It is not sur-
prising that flat value iteration performs better in this type
of problem since there is absolutely no structure that can be
exploited by SPUDD. However, the overhead involved with
creating ADDs is not overly severe, and tends to diminish
as the problems grow larger. With N²1 + f , SPUDD takes
less than 10 times longer than value iteration.

One can similarly construct a “best-case” series of exam-
ples, where the value function grows linearly in the number
of problem variables. Specifically, the problem LINEAR
involves N variables and has N^5�+ distinct values. The MDP
can be represented in

J ��N m � space using ADDs and the op-
timal value function can be represented in

J ��N�� space with
an ADD (see [8] for further details). R Hence, the inherent
structure of such a problem can easily be exploited. As seen
in Figure 8, SPUDD clearly takes advantage of the struc-
ture in the problem, as its running time increases linearly
with the number of variables, compared to an exponential

S
Since the value obtained at the state furthest from the goal is

the goal reward discounted by the number of system states (since
each must be visited along the way), the goal reward must be set
very high to ensure that the value at this state is not (practically)
zero.T

The running times are especially large due to the nature of the
problem which requires a large number of iterations of alue itera-
tion to converge.U

Of course, best-case behavior for SPUDD involves a problem
in which all variables are irrelevant to the value function. This
problem represents a “best case” in which all variables are re-
quired in the prediction of state value.
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Figure 7: Worst-case behavior for SPUDD.

increase in running time associated with flat value iteration.

6 Concluding Remarks

In this paper, we described SPUDD, an implementation of
value iteration, for solving MDPs using ADDs. The ADD
representation captures some regularities in system dynam-
ics, reward and value, thus yielding a simple and efficient
representation of the planning problem. By using such a
compact representation, we are able to solve certain types
of problems that cannot be dealt with using current tech-
niques, including explicit matrix and decision tree methods.
Though the technique described in this paper has not yet
been tested extensively on realistic domains, our prelimi-
nary results are encouraging.

One drawback of using ADDs is the requirement that vari-
ables be boolean. Any (finite-valued) non-boolean vari-
able can be split into a number of boolean variables, gen-
erally in a way that preserves at least some of the struc-
ture of the original problem (see above), though it often
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Figure 8: Best-case behavior for SPUDD.

makes the new state space larger than the original. Con-
ceptually, there is no difficulty in allowing ADDs to deal
with multi-valued variables (all algorithms and canonicity
results carry over easily). However, for domains with rela-
tively few multi-valued variables, SPUDD does not appear
to be handicapped by the requirement of variable splitting.

At present, SPUDD uses a static user-defined variable or-
dering in order not to cloud the initial results with the ef-
fects of dynamic variable reordering. However, dynamic
reordering of the variables at runtime can make significant
improvements in both the space required, by finding a more
compact representation, and in the running time, by choos-
ing more appropriate subsets of variables as discussed in
Section 4.2. The CUDD package provides a rich set of
dynamic reordering algorithms [20]. Typically, when the
ADD grows too large, variable reorderings are attempted
by following one of these algorithms, and a new ordering
is chosen which minimizes the space needed. Some of the
available techniques are slight variations of existing tech-
niques while some others were specifically developed for
the package. It may be necessary, however, to implement a
new heuristic which takes into account the variable subsets
which influence the running time. Future work will include
more complete experimentation with automatic dynamic
reordering in SPUDD. Another extension of SPUDD would
be the implementation of other dynamic programming algo-
rithms, such as modified policy iteration, which are gener-
ally considered to converge more quickly than value itera-
tion in practice. Finally, we hope to explore approximation
methods within the ADD framework, such as have previ-
ously been researched in the context of decision trees [6].
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