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Abstr act

This paper shows how to combine decision theory and logical representa-
tions of actionsin a manner that seems natural for both. In particular, we
assume an axiomatization of the domain in terms of situation calculus, us-
ing what is essentially Reiter’s solution to the frame problem, in terms of
the completion of the axioms defining the state change. Uncertainty is han-
dlied interms of theindependent choicelogic, which allowsfor independent
choicesand alogic program that gives the consequences of the choices. As
part of the consegquences are a specification of the utility of (final) states,
and how (possibly noisy) sensors depend on the state. The robot adopts
conditional plans, similar to the GOLOG programming language. Within
this logic, we can define the expected utility of a conditional plan, based
on the axiomatization of the actions, the sensors and the utility. Sensors
can be noisy and actions can be stochastic. The planning problemisto find
the plan with the highest expected utility. This representation is related to
recent structured representations for partially observable Markov decision
processes (POM DPs); herewe use stochastic situation cal culusrulesto spec-
ify the state transition function and the reward/value function. Finally we
show that with stochastic frame axioms, action representations in proba-
bilistic STRIPS are exponentially larger than using the representation pro-
posed here.



1 Introduction

Thispaper presentsaway to combinedecision theory, the situation calculus,
and conditional plans. It ignores many other issues such as concurrent ac-
tions, time, multiple agents, and the derivation of causal rulesfrom domain
congtraints. Thisfollows from the idea that we want to separately study the
orthogonal issues, and try to devise solutionsto individual subproblemsthat
are not incompatible with the solutions to other subproblems. The goal is
simplicity; the resulting system is simple, as one would hope when trying
to combine two fundamental concepts.

Therest of thisintroduction gives philosophical starting points for this
paper. Some of these arguments are standard and are given here to make
them open to scrutiny.

1.1 Reasoning about actions

In this paper, we consider reasoning about actions to be about one simple
problem: given amodel of itself and the world, and some goals (or prefer-
ences), what should an agent do?

Thisis complicated because:

e What an agent should do how depends on what it will do in the fu-
ture. The only reason | am typing these words now is because | plan
to submit thisto ajournal in the future. The only reason arobot may
be going in a particular directionis becauseit isgoing to get akey to
open adoor.

e What an agent will do in the future depends on what it will observe
in the future. Only a stupid agent, or one in avery uninteresting en-
vironment, would look at the world, decide what to do, and then act
without consulting its sensors. If | observe someone haswritten are-
lated paper to thisone, | will changewhat | writeto reflect this. If my
robot notices that the door it is getting the key for isaready open, or
noticesthat it’spath isblocked, it should changewhat it doesto reflect
this new information.

e What an agent will observein the future depends on what it does now.
The classic example of thisisin medical tests; it's not uncommon for
doctorstoinflict pain and risk on a patient for the sole purpose of find-
ing information from which they can condition future actions. Even
more mundanely an agent will observe different things depending on
whether it turns right or left.

Work on reactive robots (Brooks 1986, Brooks 1991) had proposed ignor-
ing the first point; the agent reacts to the environment without considering
what it will do in the future. There are many domainsfor which simple re-
action to the environment, without thinking, will not lead the agent to ade-
sirable state. What we can learn from the work on reactive robots is that
agents must be able to react (quickly) to the environment. The representa-
tion in this paper is not at odds with reactive agents (Poole, Mackworth &



Goebel 1998, Chapter 12), but rather emphasises how to reason about cur-
rent actions based on thinking about the future.

Classic planning work in Al (Fikes & Nilsson 1971, Yang 1997) has
ignored the second point. Theideaisto make alinear plan based on as-
suming what the world is like, and to patch this plan or replan if execution
monitoring says that the plan has not worked. However, for virtualy ev-
ery interesting domain there are no actions whose consequences can be pre-
dicted based on information known at planning time. When theinformation
needed to predict the consequences of actionswill become known at execu-
tiontime, you can use conditional planning (Manna& Waldinger 1980, Peot
& Smith 1992). It would seem that conditional planning lets us solve the
complications of planning as set out above; an agent can consider adopting
aconditional planthat letsit condition its actions on what it observes.

Thetraditional view of conditional planning (Manna& Waldinger 1980,
Peot & Smith 1992) assumes that the agent can achieve the goal no matter
which path through the conditional plan was taken. This assumes perfect
sensorsand a perfect model of theworld (apart from the conditionsthat will
bedirectly observableduring execution) so that you can provethat your con-
ditional plan will reach the goal.

Thismeansthat you need to approximate the problem; the effects of ac-
tions are not completely predictable in the real world. Unexpected things
do happen, and you can’'t always observe al of the conditions that affect
the outcome of an action. Thisistheidea of satisficing (Simon 1996); you
need to approximate the problem of finding the best plan to that of finding
a good-enough plan.

However both sequential (unconditional) and traditional conditional plan-
ning are problematic for a number of reasons:

e Not all failures are born equal. The robot failing to pick up akey is
very different from it falling down the stairs. In the first case it can
just try again, in the second case you may need to repair or replace
the robot (and anything else it fell on). Sometimes it may be worth
the risk of falling down the stairs if it has to get past the stairs. At
other times it may not. It isimportant to consider not only the most
likely state of affairs, but also deviations from these.

e Ignoring the possible effects that are not the most likely can lead to
bad plans. For example, it is usually a good idea to wear a seat belt
when driving in a car. However, when we only consider solving a
goal, wenever come up with aplantowear aseat belt. Thisisbecause
wedon’'t want it to beagoal state to have an accident while wearing a
seat belt (itisusually very easy to achieve having an accident). Infact,
wewant to avoid having an accident! By approximating the problem
we preclude good solutionsto the actual problem. Thisbecomeseven
moreridiculous, whenweworry about finding exact solutionsto these
approximate problems.

e Theremay not be any normal state of affairs. There are many actions
where the outcomes are not completely predictable at all. For exam-



ple, the effect of picking up a cup often is that everything in the cup
remainsin it, and that nothing else gets disturbed, but anyone with
kidsknowsthat thisisn’t the normal outcome (and robots are not, and
won't be for along time, as adept as kids in picking up cups).

The problem is that any model of adomain is an approximation of the do-
main. The idea of satisficing is good; to simplify the problem to make it
computationally easy to solve. Itisn’t of much usewhen the simplified prob-
lemisn’t easy to solve or when the simplified problem does not lead itself
to approximate solutions. It is dangerous when we forget the formalization
isonly an approximation, and treat it asthe real thing.

Thereis an alternative. To quote Rich Sutton®:

Approximate the solution, not the problem.

It may be better to more accurately model the problem and our knowledge
and ignoranceof the prablem (including modelling the approximation caused
by the modelling activity itself). This doesn’t mean we have to model at
the lowest level of detail or that there cannot be a more accurate model of
the world, but rather that the model contains a true reflection of the knowl-
edge and ignorance contained in the model. Wewould also likeamodel that
allows for the existence of good-enough plans (or approximately optimal
plans). The specification of a*“good enough” plan shouldn’t be embedded
in the model, but should be usable during inference. Providing a modelling
language that lets us model our knowledge of adomain and lets us find ap-
proximately optimal plansis the promise of decision-theoretic planning.

1.2 Decision Theory

Bayesian decision theory is one of the simplest, most universally applica-
ble, yet most misunderstood theory about reasoning and acting. Bayesian
decision theory specifieswhat an agent should (decideto) do, givenitspref-
erences and partial information about its environment.

The appeal of Bayesian decision theory isbased on theorems (Von Neu-
mann & Morgenstern 1953, Savage 1972) that say that under certain rea-
sonable assumptions about preferences, an agent will choose an action that
maximizes its expected utility (see Myerson (1991) and Ordeshook (1986)
for good introductions). Itisnormativeinthe sensethat if an agentisn’t act-
ing according to the tenants of decision theory, it must be violating one of
the assumptions. This result does not mean that an agent has to explicitly
manipul ate probabilities and utilities, but that its decisions can be rational-
ized in these terms. For Al researchers building intelligent systems, we can
argue that if we want to build arational agent that acts according to the ten-
ants of decision theory, we should reason directly in terms of probabilities
and utilities: if the agent isgoing to act according to some probabilitiesand

'From Reinforcement Learning: Lessons for  Artificial Intelligence,
A tak presented by Rich Sutton a the 1997 International Joint Con-
ference on Artificial Intelligence Nagoya, Japan, August 28, 1997.
http://ww-anw. cs. umass. edu/ rich/1JCAI97/1JCAI97. ht m



utilities, we should let it act according to the most reasonable set of proba-
bilities and utilities.

Bayesiandecisiontheory isradical inthat it suggeststhat all uncertainty
be summarised in terms of probabilities. This includes genuinely stochas-
tic phenomenon, ignorance, partial observability, or simplifications due to
modelling assumptions. Inall of these cases, probability isameasure of the
agent’s beliefs. Bayesian decision theory goes against the permissive trend
that suggests that we try to integrate many different ways to handle uncer-
tainty?.

It isimportant to note that decision theory has nothing to say about rep-
resentations. Adopting decision theory doesn’t mean adopting any particu-
lar representation. While there are some representationsthat can be directly
extracted from the theory, such asthe explicit reasoning over the state space
or theuseof decisiontrees, thesebecomeintractableasthe problem domains
becomelarge; it islike theorem proving by enumerating the interpretations.
Adopting logic doesn’t mean you have to enumerateinterpretations or gen-
eratethe semantictree (Chang & Lee 1973), nor does adopting decision the-
ory mean you have to use such representations.

Finally it should be noticed that decision-theoretic planning is very dif-
ferent from probabilistic planning (Kushmerick, Hanks & Weld 1995), where
the aim is to find a plan that reaches the goal with probability greater than
some threshold. Rather than having a goal, we specify the value of each
outcome. It is quite possible that the optimal plan never achieves the best-
possible goal; therisk in trying to get to that goal may not be worthwhile
when compared to another plan that getsto aless-valuablestate (e.g., it may
not beworth trying to achieve world peaceif that entailsarisk of killing ev-
eryone on Earth).

1.3 Logicand Uncertainty

There are many normative arguments for the use of logic in Al (Nilsson
1991, Poole et a. 1998). These arguments are usually based on reasoning
with symbolswith an explicit denotation, allowing relations amongst indi-
viduals, and quantification over individuals. Thisisoftentrans ated as need-
ing (at least) thefirst-order predicate calculus. Unfortunately, the first-order
predicate calculus has very primitive mechanismsfor handling uncertainty,
namely the use of digunction and existential quantification.

If we accept the normative arguments of Bayesian decision theory with

20ne such theory that has been advocated is Dempster-Shafer theory (Shafer 1976)
which could be described as allowing digunctive assertionsabout probabilities. Thismay be
useful for theoretical (as opposed to practical) reasoning about other agents, where you can
be uncertain about their probability. It doesn’t make sense to be uncertain about your own
beliefs when your beliefs are exactly a measure of your uncertainty. In practical reasoning
where you haveto act, you will act according to some probabilities, and these are your be-
liefs. For an alternative to the view expressed here, the transferable belief model (Smets &
Kennes 1994) suggests using belief functionsto represent beliefs and then converting them
to probabilities for decision making. This is more an argument about representing all up-
dating in terms of Bayesian conditioning. Smets (1991) gives a nice overview of different
models of update.



those for logic (and they don’t seem to be contradictory), then we have to
consider how to handle uncertainty. Bayesian decision theory specifiesthat
all uncertainty be handled by probahility.

The independent choice logic (ICL) (Poole 1997, Poole 1998) recon-
ciles Bayesian decision theory with logic. It is designed to include the ad-
vantages of logic, but to handle all uncertainty using Bayesian decision or
game theory.

Theideais, rather than using disjunction to handle uncertainty, to allow
agents, including nature, to make choicesfrom a choice space, and useare-
stricted underlying |l ogic to specify the consequences of the choices. We can
adopt acyclic logic programs (Apt & Bezem 1991) under the stable model
semantics (Gelfond & Lifschitz 1988) as the underlying logical formalism.
Thislogic includes no uncertainty in the sense that every acyclic logic pro-
gram has a unique stable model3. All uncertainty is handled by indepen-
dent stochastic mechanisms. A deterministic logic program gives the con-
sequences of the agent’s choices and the random outcomes.

What is interesting is that simple logic programming solutions to the
frame problem (see Shanahan 1997, Chapter 12) seem to be directly trans-
ferable to the ICL which has more sophisticated mechanisms for handling
uncertainty than the predicate calculus. | would even dareto venturethat the
main problems with formalizing action within the predicate calculus arise
because of the inadequacies of disunction to represent the sort of uncer-
tainty we need.

When mixing logic and probability, one can extend a rich logic with
probability, and have two kinds of uncertainty: that uncertainty from the
probabilities and that from digunction in the logic (Bacchus 1990, Halpern
& Tuttle 1993). An alternative that is pursued in the independent choice
logic isto have al of the uncertainty in terms of probabilities.

1.4 Representations of Actionsand Uncertainty

The combination of decision theory and planning (Feldman & Sproull 1975)
isvery appeaing. Thegeneral ideaof planning isto construct a sequence of
steps, perhaps conditional on observations that solves agoal. In decision-
theoretic planning, thisis generalised to the case where there is uncertainty
about the environment and we are interested in, not only solving agoal, but
what happens under any of the contingencies. Goal solving is extended to
the problem of maximizing the agent’s expected utility, where the utility is
an arbitrary function of the final state (or the accumulation of rewards re-
ceived earlier).

Recently there have been claims made that Markov decision processes
(MDPs) (Puterman 1990) are the appropriate framework for devel oping de-
cisiontheoretic planners(e.g., Boutilier, Dearden & Goldszmidt 1995). MDPs,
and dynamical systemin general (Luenberger 1979) are based on the notion
of astate: what istrueat atime such that the past at that time can only affect

3We can conclude either a or ~afor every closed formulaa. Thiscannot usedisjunction
to encode uncertainty because a v bisonly aconsequenceif one of a or bis. Notethat this
is aproperty of the underlying logic, not aproperty of the ICL.



the future from that time by affecting the state. In terms of probahility, the
future isindependent of the past given the state. Thisis called the Markov
property. In the discrete-time Markovian view, the notion of an action is
straightforward: an action is a stochastic function from states into states.
That is, an action and a state leads to a probability distribution over result-
ing states. Again, thisisthe semantics of actions, it doesn’t lead to efficient
representations.

The naive representation is to represent actions explicitly; for each ac-
tion and state, give the probability distribution over states. An action can
then berepresented asasx smatrix, wheresisthe number of states(L uenberger
1979). Asyou canimagine, thissoon explodesfor all but the smallest state-
spaces.

Artificial intelligenceresearchersarevery interestedin finding good rep-
resentations. We usually think of the world, not in terms of states, but in
terms of propositions (or random variables). We would then like to specify
actionsin terms of how the propositions at one time affect the propositions
at the next time. Thisis the idea behind two dice temporal Bayesian net-
works (Dean & Kanazawa1989): we dividethe stateinto random variables
and, for each action, write how the random variables at one time affect the
random variables at the next time. When the value of arandom variableis
only affected by afew (a bounded number of) random variables at the pre-
vious stage for each action, the complexity is the number of variablestimes
the number of actions. Thisis a significant improvement over the explicit
state-space representation as the state space is exponentially larger than the
number of variables (if there aren binary variables, thereare s = 2" states).

Thisproblemissimilar to the frame problem (McCarthy & Hayes1969,
Shanahan 1997): how to concisely specify the consequences of an action
(and how to effectively use that concise specification computationally). In
theframe problem, the assumptionisthat an action only affects afew propo-
sitions. There have been many suggestions as to how to get compact repre-
sentations of actions under these assumptions (Shanahan 1997). This pa-
per shows how one such representation, the situation calculus (McCarthy
& Hayes 1969) can be combined with decision theory.

1.5 Modelling Agents

Another dimension for considering actions is in the capabilities of agents;
what sensing they can do, and how they choose which actions to do next.
Essentially an agent should be seen as a function of its history (what it has
done and what it has observed now and inthe past) into its next action. This
is known as a transduction (Zhang & Mackworth 1995, Poole et al. 1998).
The problem with this as a specification of an agent isthat an agent doesn’t
have access to its history; it only has access to what it can sense and has
remembered. There are two traditions on how to implement transductions
in agents:

e Inthefirst tradition, agents have internal states (called belief states)
and we build agents by constructing a state transition function that



specifieshow the agent’sbelief state is updated from its previous be-
lief state and its observations, and acommand function (policy) that
specifies what the agent should do based on its observations and be-
lief state (Poole et al. 1998, Chapter 12). In fully observable MDPs,
the agent can observethe actual state and so doesn’t need belief states.
In partially observable M DPs(POMDPs), we assume (noi sy) sensors,
where the sensor output is a stochastic function of the action and the
state. In these models, the belief state is a probability distribution
over the actual states of the system, and the state transition function
is given by the model of the action and the observation (the value re-
ceived by the sensor) and Bayes' rule. In between these are agents
that have limited memory or limited reasoning capabilities.

e In the second tradition, we can think of agents implementing robot
plansasin GOLOG (Levesque, Reiter, Lespérance, Lin & Scherl 1997).
These plans consider sequences of steps, with conditions, loops, as-
signments of valuesto local variables, and other features we expect
to find in programming languages. In order to react to the world, we
would expect the conditionsin the branching to be observations about
theworld (the valuesreceived by potentially noisy sensors) aswell as
the values of internal variables (Levesque 1996).

Policies (functionsfrom belief state and observations) and plans (composed
of primitive actionsand built from sequential composition, conditionalsand
iteration) are different although each can be simulated by theother. A policy
can be simulated by an iterative structure over a conditional®. A plan can
be simulated by having a program counter as part of the state (thisis how
computers work).

If weare doing exact computation (finding the optimal agent) they should
be essentialy the same, as they would implement the same transduction.
When we are finding approximately optimal agents, they may be very dif-
ferent asasimple plan may not correspond to asimplepolicy and viceversa.

In this paper we consider ssmple plans made up of sequential composi-
tion and conditionals (conditioning on the output of potentially noisy sen-
sors). Iteration and local variables are explored briefly in Section 2.10. In
other work, we have considered the policies within the ICL including mul-
tiple agents and noisy sensors (Poole 1997). We have also investigated con-
tinuous time in the same framework (Poole 1995).

1.6 The Situation Calculusand thelCL

The independent choice logic (Poole 1997) (an extension of probabilistic
Horn abduction (Poole 1993) toinclude multiple agentsand negation asfail-
ure) is asimple framework consisting of independent choices make by na-
ture (and potentially other agents) and an acyclic logic program to give the
consequences of choices.

*In the traditional view of policies, the conditional would be a case statement over all
possible states. A while loop over an arbitrary condition would be like the tree-structured
policies of (Boutilier et a. 1995); these trees are representations of conditional statements.



In this section we sketch how the situation cal culus can be embedded in
the ICL. We only need to axiomatise the deterministic aspectsin the logic
programs; the uncertainty is handled separately. What gives us confidence
that we can use simple solutionsto the frame problem, for example, is that
every statement that is aconsequence of thefactsthat doesn’t depend on the
atomic choicesistruein every possible world. Thus, if we have a property
that dependsonly onthefactsand isrobust to the addition of atomic choices,
then it will follow in the ICL; we would hope than any logic programming
solution to the frame problem would have this property. One such property
isClark’scompletion (Clark 1978), whichistruefor every predicate defined
by the logic program and isn’t part of a choice (Poole 1998).

Before we show how to add the situation calculus to the ICL, there are
some design choicesthat need to be made.

e Inthe deterministic case, the trgjectory of actions by the agent up to
some time point determines what is true at that point. Thus, the tra-
jectory of actions, as encapsulated by the situation term of the situa-
tion calculus (McCarthy & Hayes 1969, Reiter 1991) can be used to
denote the state, asisdonein the traditional situation calculus. How-
ever, when dealing with uncertainty, the trajectory of an agent’s ac-
tions up to a point, does not uniquely determine what is true at that
point. What random occurrences or exogenous events occurred also
determineswhat istrue. We have achoice: we can keep the semantic
conception of asituation (as astate) and makethe syntactic character-
ization more complicated by perhapsinterleaving exogenous actions,
or we can keep the simplesyntactic form of the situation calculus, and
use a different notion that prescribes truth values. We have chosen
the latter, and distinguish the situation denoted by the trajectory of
actions, from the state that specifies what is true in the situation. In
general there will be a probability distribution over states resulting
from a set of actions by the agent. It is this distribution over states,
and their corresponding utility, that we seek to model.

This division means that agent’s actions are treated very differently
from exogenous actions. The situation terms define only the agent’s
actions in reaching that point in time. The situation calculus terms
indicate only the trajectory, in terms of steps, of the agent and essen-
tially just serve to delimit time points at which we want to be able to
say what holds. Thisis discussed further in Section 3.3.

e None of our representations assume that actions have preconditions;
all actions can be attempted at any time. The effect of the actionscan
depend on what elseis true in the world. Thisis important because
the agent may not know whether the preconditions of an action hold,
but, for example, may be sure enough to want to try the action.

e When building conditional plans, we have to consider what we can
condition these plans on. We assume that the agent has passive sen-
sors, and that it can condition its actions on the output of these sen-
sors. Weonly have one sort of action, and these actionsonly affect the



world (which includes both the robot and the environment). All we
need to do isto specify how the agent’s sensors depend on the world.
This does not mean that we cannot model information-producing ac-
tions(e.g., lookingin aparticular place) — these information produc-
ing actions produce effects that make the sensor values correlate with
what is true in the world. The sensors can be noisy; the value they
return does not necessarily correspond with what istrue in the world
(of course if there was no correlation with what is true in the world,
they would not be very useful sensors).

2 Thelndependent ChoiceLogic

In this section we present the independent choice logic (ICL). The seman-
tic base is the same as that in (Poole 1997, Poole 1998), but the agents are
modelled differently. In particular, all of the choices here are controlled by
nature.

2.1 Background: AcyclicLogic Programs

We use the Prolog conventions with variables starting an upper case let-
ter and constants, function symbols, and predicate symbols starting with
lower case letters. A term is either avariable, a constant, or is of the form
f(ty,...,tm) wheref isafunctionsymbol andt, . . ., tmareterms. Anatomic
formula (atom) is either a predicate symbol or is of the form p(ty, . . ., tm)
where pisapredicate symbol andty, ..., tnareterms. A formulaiseither
an atom or is of theform ~f,f Agorf v gwheref and g areformulae. A
clause is either an atom or isarule of theform a «+ f whereais an atom
and f isaformula (the body of the clause). Free variables are assumed to
be universally quantified at the level of aclause. A logic program is a set
of clauses.

A ground term isaterm that does not contain any variables. A ground
instance of aterm/atom/clause cisaterm/atom/clause obtained by uniformly
replacing ground termsfor the variablesin c. The Her brand baseisthe set
of ground instances of the atomsin the language (inventing a new constant
if the language does not contain any constants). A Herbrand interpreta-
tion isan assignment of true or false to each element of the Herbrand base.
If Pisaprogram, let gr(P) be the set of ground instances of elements of P.

Definition 2.1 (Gelfond & Lifschitz 1988) Interpretation M isastablemodel®
of logic program F if for every ground atom h, histruein M if and only if
either h € gr(F) or thereisaruleh «— bingr(F) such that bistruein M.
Conjunctionf A gistruein M if both f and g are truein M. Digunction
fvgistruein M if either f or g (or both) aretruein M. Negation ~f istrue
inM if and only if f isnot truein M.

SThisisasdlight generalization of the normal definition of a stable model to include more
general bodiesin clauses. Thisis done here because it is easier to describe the abductive
operations in terms of the standard logical operators. Note that under this definition b «+
~~aisthesameash « a.
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Definition 2.2 (Apt & Bezem 1991) A logic program F isacyclicif thereis
an assignment of anatural number (non-negativeinteger) to each element of
the Herbrand base of F such that, for every rulein gr (F) the number assigned
totheatominthe head of theruleisgreater than the number assigned to each
atom that appears in the body.

Acyclic programsare surprisingly general. Notethat acyclicity doesnot
preclude recursive definitions. It just meansthat all such definitions haveto
be well founded. They have very nice semantic properties, including the
following that are used in this paper:

Theorem 2.3 (Apt & Bezem 1991) Acyclic logic programs have the fol-
lowing properties:

1. Thereisaunique stable model.
2. Clark’scompletion (Clark 1978) characteriseswhat istrueinthismodel .

Apt & Bezem (1991) give many examples to show that acyclic logic
programs are agood representation for model s of deterministic state change
under complete knowledge.

2.2 Choice Space, Facts and the Semantics

An independent choice space theory is made of two principal components:

Choice space C: aset of sets of ground atomic formulae, such that if x4,
and v, arein the choice space, and x; # x2 then y; N x2 = {}. An
element of achoice spaceiscalled achoicealter native (or sometimes
just an alternative). An element of a choice aternative is called an
atomic choice.

FactsF: an acycliclogic program such that no atomic choice unifies with
the head of a clause.

Definition 2.4 Given choice space C, aselector functionisamapping r :
C — UC suchthat 7(x) € x forall x € C. Therange of selector function
7, written R(7) istheset {7(x) : x € C}. Therange of aselector function
is called atotal choice. In other words, atotal choiceis a selection of one
member from each element of C.

The semantics of an ICL is defined in terms of possible worlds. There
isapossibleworld for each selection of one element from each aternative.
The atoms which follow from these atoms together with F are true in this
possible world.

Definition 2.5 Suppose we are given an ICL theory (C, F). For each se-
lector function r thereisapossibleworld w,. Wewritew, |=c ) f, read
“f istrue in world w; based on (C, F)", iff f istruein the (unique) stable
model of F U R(7). When understood from context, the (C, F) is omitted
as a subscript of |=.
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The fact that every proposition is either true or false in a possible world
follows from the fact that acyclic logic programs have exactly one stable
model.

Note that, for each aternative y € C and for each world w., thereis
exactly one element of x that’strueinw;. In particular, w, = (y), and
w; = afordlace x —{r(x)}.

2.3 Probabilities

The next part of the formalismis a probability distribution over the alterna-
tivesS. That is, we assume we are given afunction

Po : UC — [0, 1]
such that
\V/X € C, Z Po(&) =1.

aex

The probability of aproposition is defined in the standard way. For afinite
choice space, the probability of any proposition is the sum of the probabil -
ities of the worlds in which it is true. The probability of a possible world
is the product of the probabilities of the atomic choices that are true in the
world. That is, the atomic choices are (unconditionally) probabilistically
independent. Poole (1993) proves that such independent choices together
with an acyclic logic program can represent any finite probability distribu-
tion. Moreover thestructure of therule-base mirrorsthe structure of Bayesian
networks (Pearl 1988)’. Similarly we can define the expectation of afunc-
tion that has a value in each world, as the value averaged over al possible
worlds, weighted by their probability.

When the choice space isn't finite we can define probabilitiesover mea-
surable sets of worlds. In particular, it sufficesto give a measure over finite
sets of finite atomic choices (Poole 1993, Poole 1998).

24 ThelCLgc

Withinthe | CL we can usethesituation cal culusasarepresentationfor change.
Within the logic, there is only one agent, nature, who controls al of the al-
ternatives. These aternativesthus have probability distributions over them.
The probabilities are used to represent our ignorance of the initial state and
the outcomes of actions. We can then use the situations to reflect the time
at which some fluents are true or not.

Thefollowing defines what needs to be specified as part of an indepen-
dent choice logic (for the situation calculus) theory. Note that a possible
world defines a complete history. It will specify the truth value for every
fluent in every situation. Notice that situations do not appear in this defini-
tion. Thisisanalogousto defining thefirst-order predicate cal culus without

51n terms of (Poole 1997), all of the alternatives are controlled by nature.

"This mapping also lets us see the relationship between the causation that isinherent in
Bayesian networks (Pearl 1995) and that of the logical formalisms. See Poole (1993) for a
discussion on the relationship, including the Bayesian network solution to the Yal e shooting
problem and stochastic variants.
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any need to define situations. Situationswill provide a standard interpreta-
tion for some of the terms.

Definition 2.6 AnICLgc theoryisatuple (Co, A, O, Py, F) where
C, caled nature's choice space, is a choice space.

A called the action space, is a set of primitive actions that the agent can
perform.

O theobservables, isaset of terms.

Po isafunction UCy — [0, 1] such that Vx € Cy, Y aey Po(a) = 1. l.e,
Py isaprobability measure over the alternatives controlled by nature.

F called the facts, is an acyclic logic program such that no atomic choice
(in an element of Cg) unifieswith the head of any clause.

We model al randomness as independent stochastic mechanisms, such
that an external viewer that knew the initial state (i.e., what is true in the
situation ), and knew how the stochastic mechanismsresolved themselves
would beableto predict what wastruein any situation. Thisexternal viewer,
would thus know which possible world was the actual one, and would thus
know what is true in every situation. Aswe don’t know the actual world,
we have a probahility distribution over them. The ICL lets us model this
in terms of independent stochastic mechanisms (these are the aternatives
with associated probability distributions) and a logic program to give the
consequences.

Before we introduce the probabilistic framework we present the situ-
ation calculus (McCarthy & Hayes 1969). The general idea is that robot
actions take the world from one situation to another situation. We assume
thereisasituation s, that istheinitial situation, and afunctiondo(A, S) that
given action A and asituation Sreturnsthe resulting situation. An agent that
knows what it has done, knows what situation it isin. It however does not
necessarily know what istruein that situation. The robot may be uncertain
about what is true in the initial situation, what the effects of its actions are
and what exogenous events occurred.

We uselogic (i.e, thefacts F) to specify the transitions specified by ac-
tionsand thuswhat istruein asituation. What is truein asituation depends
on the action attempted, what was true before and what stochastic mecha-
nism occurred. A fluent is a predicate (or function) whose valuein aworld
depends on the situation; we use the situation as the last argument to the
predicate (function). We assume that for each fluent we can axiomatise in
what situationsit is true based on the action that was performed, what was
truein the previous state and the outcome of the stochastic mechanisms.

Note that a possible world in this framework correspondsto a complete
history. A possible world specifies what is true in each situation. In other
words, given apossibleworld and a situation, we can determinewhat istrue
in that situation.
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door\

r101] ri11 r123
stairs

Figure 1: The example robot environment

25 An ExampleDomain

Thefollowing ongoing exampleis used to show the power of theformalism.
Itis not intended to be realistic.

Example 2.7 Supposewehavearobot that cantravel around an officebuild-
ing, pick up keys, unlock doors, and sense whether the key is at thelocation
it iscurrently at. In the domain depicted in Figure 1, we assume we want
to enter the lab, and there is uncertainty about whether the door islocked or
not, and uncertainty about where the key is (and moreover the probahilities
are not independent). There are also stairs that the robot can fall down, but
it can chooseto go around the long way and avoid the stairs. The utility of a
plan depends on whether it getsinto the lab, whether it falls down the stairs
and the resources used. Therobot startsat r111.

Example 2.8 We can write standard situation calculus rules; the only dif-
ference is that some of the elements of the body of a rule may be atomic
choices. The following rule says that the robot is carrying the key after it
has (successfully) picked it up:

carrying(key, do(pickup(key), S)) «
at(robot, Pos, S) A
at(key, Pos, S) A
pickup_succeeds(S).
Here pickup_succeeds(S) is true if the agent would succeed if it picks up
the key and is false if the agent would fail to pick up the key. The agent
typically does not know the value of pickup_succeeds(S) in situation S, or
even the position of the key. We would expect that each ground instance of
pickup_succeeds(S) would be an atomic choice. That is
VS {pickup_succeeds(S), pickup_fails(S) } € Cq

Po (pickup_succeeds(S)) reflects how likely it is that the agent succeedsin
carrying the key given that it was at the same position as the key and at-
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tempted topick it up. For the examplebel ow weassume Py (pickup_succeeds(S)) =
0.88

The general form of aframe axiom specifiesthat afluent istrue after asitu-
ation if it were true before, and the action were not one that undid the fluent,
and there was no mechanism that undid the fluent.8

Example2.9 For example, an agent is carrying the key as long as the ac-
tion was not to put down the key or pick up the key®, and the agent did not
accidentally drop the key while carrying out another action:

carrying(key, do(A, S)) «

carrying(key, S) A

A # putdown(key) A

A = pickup(key) A

keeps_carrying(key, S).
If therewereno other clausesfor carrying, we mean the completion of these
two rules (Clark 1978). Thusthe agent is carrying thekey if and only if one
of thebodiesistrue. Notethat thisimpliesthat putting down the key always
succeeds.

keeps_carrying(key, S) may be something that the agent does not know

whether it is true — there may be a probability that the agent will drop the

key. If dropping the key isindependent at each situation, we can model this
as.

VS {keeps_carrying(key, S), drops(key, §)} € Cq

The above clause thusforms a stochastic frame axiom. For the example be-
low we assume

Po(keeps_carrying(key, S)) = 0.95

2.6 Axiomatising Utility

Given the notion of an ICL s¢ theory, we can write rulesfor utility. Assume
the utility dependson the situation that the robot endsup in and the possible
world. In particular weallow for rulesthat imply utility(U, S), whichistrue
in a possible world if the utility is U for situation Sin that world. That is,
utility(U, S) means that if the robot stopsin situation Sit will get utility U.
The utility depends on what istrue in the state defined by the situation and
theworld— thuswewriterulesthat imply utility. In order to make surethat

8This is now areasonably standard logic programming solution to the frame problem
(Shanahan 1997, Chapter 12), (Apt & Bezem 1991). It is essentially the same as Reiter’s
(1991) solution to the frame problem. It isclosely related to Kowal ski’s (1979) axiomatiza-
tion of action, but for each proposition, we specify which actions are exceptional, whereas
Kowalski specifies for every every action which propositions are exceptional. Kowalski’'s
representation could also be used here.

“We want the condition A # pickup(key) to cover the case where the agent is carrying
the key and tries to pick it up. Inthis case only thefirst ruleis applicable, and this situation
is like the case where the agent is picking up the key. If we didn’t have this condition, then
the rules would say that the agent is only not carrying the key if both the pickup failed and
the robot dropped the key.
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we can interpret these rules as utilities we need to have utility being func-
tional: for each situation S, and for each possible world w.-, there exists a
unique U such that utility(U, S) trueinw... If thisisthe case we say thethe-
ory isutility complete. Ensuring utility completeness can be done locally;
we haveto make surethat therulesfor utility cover all of the casesand there
aren’t two rulesthat imply different utilities whose bodies are compatible.

Example2.10 Supposethe utility isthe sum of a prize plus the remaining
resources:

utility(R+ P, §) +
prize(P, S) A
resources(R, S).
The prize depends on whether the robot reached its destination or it crashed.
No matter what the definition of any other predicatesis, thefollowing defini-
tion of prize will ensure thereisaunique prizefor each world and situation:
prize(—1000, S) < crashed(S).
prize(1000, S + inlab(S) A ~crashed(S).
prize(0, S) « ~in_lab(S) A ~crashed(S).
Theresources used dependsnot only on thefinal state but ontheroutetaken.
To model this we make resources afluent, and like any other fluent we ax-
iomatise it:
resources(200, S).
resources(R — Cost, do(goto(To, Route), S))
at(robot, From, S) A
path(From, To, Route, Risky, Cost) A
resources(R, S).
resources(R, do(A, S)) «
crashed(S) A
resources(R, S).
resources(R — 10, do(A, S)) «
~gotoaction(A) A
~crashed(S) A
resources(R, S).
gotoaction(goto(To, Route)).

Herewe have assumed that non-goto actionscost 10, and that pathshave
costs. Note that we are assuming that if the robot has crashed it isn’t at any
location. Onceit has crashed, attempting to do an action doesn’'t incur any
cost (but doesn’t achieve anything either).

Paths and their risks and costs are axiomatised using

path(From, To, Route, Risky, Cost)

that istrueif the path from Fromto To via Route hasrisk given by Risky and
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costs Cost. An example of thisrelation for our domainiis:
path(r101,r111, direct, yes, 10).
path(r101,r111,long, no, 100).
path(r101, r123, direct, yes, 50).
path(r101,r123,long, no, 90).
path(r101, door, direct, yes, 50).
path(r101, door, long, no, 70).

2.7 Axiomatising Sensors

We &l so need to axiomatise how sensors work. We assume that sensors are
passive; thismeansthat they receiveinformation from the environment, rather
than doing anything; there are no sensing actions. This seems to be a bet-
ter model of actual sensors, such as eyes, ears, cameras or sonar and makes
modelling simpler than when sensing is an action. So called “information
producing actions’ (such as opening the eyes, moving a camera, perform-
ing abiopsy on a patient, or exploding a parcel to seeif it is (was) a bomb)
are normal actions that are designed to change the world so that the sen-
sors correlate with the value of interest. Note that under thisview, there are
no information producing actions, or even informational effects of actions;
rather various conditionsin the world, some of which are under the robot’s
control and some of which are not, work together to give varying values for
the output of sensors.

A robot cannot condition its action on what is true in the world; it can
only condition its actions on what it senses and what it remembers (which
we don’t consider till Section 2.10). Theonly usefor sensorsisthat the out-
put of asensor depends, perhaps stochastically, on what istruein theworld,
and thus can be used as evidence for what is true in the world.

Within our situation calculus framework, we write axioms to specify
how sensed values depend on what istrue in the world. What is sensed de-
pends on the situation and the possible world. We assume that there is a
predicate sense(C, S) that istrue if Cis sensed in situation S HereCisa
term in our language, that represents one value for the output of asensor. C
isobservable (that is, C € O in Definition 2.6).

Example2.11 A sensor may be able to detect whether the robot is at the
same position asthe key. It is not reliable; sometimesit saysthe robot is at
the same position asthe key whenit is not (afalse positive), and sometimes
it saysthat therobot is not at the same position when it is (afalse negative).
Suppose that noisy sensor at_key detects whether the agent is at the same
position as the key. Fluent sense(at_key, s) is true (in aworld) if the robot
sensesthat it is at the key in situation s. It can be axiomatised as:

sense(at_key, S) +
at(robot, P, S) A
at(key, P, S) A
sensor _true_pos(S).
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sense(at_key, S)
at(robot, Py, ) A
at(key, P2, S) A
P1 # Py A
sensor false_pos(S).

Thefluent sensor false_pos(S) istrueif the sensor is giving afal se-positive
value in situation S, and sensor _true_pos(S) is true if the sensor is not giv-
ing afalse negativein situation S. Each of these could be part of an atomic
choice, whichwould let usmodel sensorswhoseerrorsat different timesare
independent.

VS {sensor _true_pos(S), sensor false_neg(S)} € Cy
VS {sensor false_pos(S), sensor true_neg(S)} € Cy

Suppose the sensor has a 3% false positive rate and an 8% false negative
rate. In the syntax of our implementation, this can be written as

random([sensor _true_pos(S) : 0.92, sensor false_neg(S) : 0.08]).
random([sensor false_pos(S) : 0.03, sensor true_neg(S) : 0.97]).

where Py (sensor _true_pos(S)) = 0.92, and Py (sensor _false_pos(S)) = 0.03.
Alternatively, if we had a theory about how sensors break, we could
write rules that imply these fluents.

2.8 Conditional Plans

Theideabehind the ICL s isthat agents get to choose situations (they get to
choose what they do, and when they stop), and nature gets to choose worlds
(there is a prabability distribution over the worlds that specifies the distri-
bution of effects of the actions).

Agentsget to choose situations, but they do not haveto choose situations
blind. We assume that agents can sense the world, and choose their actions
conditional on what they observe. Moreover agents can have sequences of
acting and observing.

Agents do not directly adopt situations, they adopt plans or programs.
In general these programs can involve atomic actions, conditioning on ob-
servations, loops, nondeterministic choiceand procedural abstraction (Levesgue
et a. 1997). In this paper we only consider simple conditional planswhich
are programs consisting only of sequential composition and conditioning on
observations (Levesgue 1996, Poole 1996)).

Example2.12 An example of a conditional planis:
a;if cthen b else d; eendif; g

An agent executing this plan will start in situation sy, then do action a, then
it will sensewhether cistrueintheresulting situation. If cistrue, itwill dob
then g, andif cisfalseit will dod then ethen g. Thusthisplan either selects
thesituation do(g, do(b, do(a, ) )) or thesituation do(g, do(e, do(d, do(a, 5)))).
It selects the former in al worlds where sense(c, do(a, &) ) is true, and se-
lectsthelatter inall worldswhere sense(c, do(a, s)) isfalse. Notethat each
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world is definitive on each fluent for each situation. The expected utility of
this planistheweighted average of the utility for each of theworlds and the
situation chosen for that world. The only property we need of ¢ isthat its
value in situation do(a, sp) will be able to be observed. The agent does not
need to be able to determine its value beforehand.

Definition 2.13 A conditional plan, or just aplan, isof the form
skip
A where A isaprimitive action
P;Q whereP and Q are plans
if Cthen P else Q endif
where C is observable; P and Q are plans

Notethat “skip” isnot an action; the skip plan meansthat the agent does not
do anything — time does not pass. Thisisintroduced so that the agent can
stop without doing anything (this may be a reasonable plan), and so we do
not need an “if C then P endIf” form aswell; thiswould be an abbreviation
for “if C then P else skip endIf”.
Plans select situationsin worlds. We can define arelation:
trans(P, W, S, S2)

that istrueif doing plan P in world W from situation S, resultsin situation

S,. Thisissimilar to the DO macro of Levesqueet al. (1997) and the Rdo of

Levesgue (1996), but here what the agent does depends on what it observes,

and what the agent observes depends on which world it happensto bein.
We can define the trans relation in pseudo Prolog as:

trans(skip, W, S, S).
trans(A, W, S do(A, 9)) «
primitive(A).
trans((P; Q),W, S, S;) «
trans(P, W, S, S;) A
trans(Q,W, S, S5).
trans((if Cthen P elseQ endIf), W, S;, S;) +
W = sense(C, S;) A
trans(P,W, S, S).
trans((if CthenP elseQ endIf), W, S;, S;) «
W £ sense(C, S;) A
trans(Q,W, S, S).

Now we are at the stage where we can define the expected utility of a
plan. The expected utility of aplan isthe weighted average, over the set of
possible worlds, of the utility the agent receives in the situation it ends up
in for that possible world:
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Definition 2.14 If our theory isutility complete, theexpected utility of plan
Pist:

e(P) = _p(w;) x u(w,,P)

(summing over al selector functions r on Cqy) where
u(W,P) = U if W = utility(U, S)
wheretrans(P, W, , S
(thisiswell defined as the theory is utility complete), and
p(w;) = H Po(xo0)
x0€R(7)

u(W, P) isthe utility of plan Pinworld W. p(w. ) isthe probability of world
w;. The probability isthe product of the independent choices of nature.

2.9 Detailsof our Example

We can model dependent uncertainties. Supposewe are uncertain about whether
the door is locked, and where the key is (it could bein room r101 or room
r123), and suppose that these are not independent, with the following prob-
abilities:

P(locked(door, s5)) = 0.9

P(at(key, r101, s)|locked(door, sp)) = 0.7

P(at(key, r101, s,)|unlocked(door, s5)) = 0.2

(from which we conclude P(at_key(r101, s5)) = 0.65.)
Following the methodology outlined in (Poole 1993) this can be mod-
elled as:
random([locked(door, 5) : 0.9,
unlocked(door, o) : 0.1]).
random([at_key_lo(r101, ) : 0.7,
at_key_lo(r123, ) : 0.3]).
random([at_key_unlo(r101, ) : 0.2,
at_key_unlo(r123, ) : 0.8]).
at(key, R, s) <
at_key_l0(R, s9) A
locked(door, ).
at(key, R, )
at_key_unlo(R, sp) A
unlocked(door, sp).

whererandom([a : P1, ..., an : Pn]) Means{a, ..., an} € CoandPy(a) =
pi. Thisisthe syntax used by our implementation.

We need a dlightly more complicated construction when we have infinitely many
worlds. We need to define probability over measurable subsets of the worlds (Poole 1993,
Poole 1998), but that would only complicate this presentation.
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We can model complex stochastic actions using the same mechanism.
The action goto is risky; whenever the robot goes past the stairs thereisa
10% chance that it will fall down the stairs.

Thisis modelled with the choice alternatives:

random({would_fall_down_stairs(S) : 0.1,
would_not_fall_down_stairs(S) : 0.9]).
which means
VS {would_fall_down_stairs(S),
would_not_fall_down_stairs(S)} € Cy
VS Py (would_fall_down_stairs(S)) = 0.1

These atomic choices are used in the bodies of rules. We can define the
propositional fluent at:

at(robot, To, do(goto(To, Route), S)) «+
at(robot, From, S) A
path(From, To, Route, no, Cost) A
resources(R, S) A
R > Cost.

at(robot, To, do(goto(To, Route), S)) «+
at(robot, From, S) A
path(From, To, Route, yes, Cost) A
would_not_fall _down_stairs(S) A
resources(R, S) A
R > Cost.

at(robot, Pos, do(A, ) «
~gotoaction(A) A
at(robot, Pos, S).

at(X,P, S «
X # robot A
carrying(robot, X, S) A
at(robot, P, S).

at(X, Pos,do(A, S))
X # robot A
~carrying(robot, X, S) A
at(X, Pos, S).

In those worlds where the path is risky and the agent would fall down the
stairs, then it crashes:

crashed(do(A, 9)) «
crashed(S).

crashed(do(A, 9) «
risky(A, S) A
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would_fall_down_stairs(S).
risky(goto(To, Route), S) «+
path(From, To, Route, yes, ) A
at(robot, From, S).
Anexampleplanis:

goto(r101, direct);
if at_key
then
pickup(key);
goto(door, long)
else
goto(r123, direct);
pickup(key);
goto(door, direct)
endIf;
unlock_daoor;
enter_lab

Given the situation calculus axioms, and the choice space, this plan has an
expected utility. Thisis obtained by deriving utility(U, S) for each world
that is selected by the plan, and using a weighted average over the utilities
derived. The possible worlds correspond to choices of elements from alter-
natives. We do not need to generate the possible worlds— only the expla-
nations (Poole 1998) of the utility and the conditions used in the plans. For
example, in al of the worlds where the following are true,

{locked(door, ), at_key_lo(r101, s),
would_not_fall_down_stairs(s),
sensor _true_pos(do(goto(r101, direct), s)),
pickup_succeeds(do(goto(r101, direct), s))
keeps_carrying(key, do(pickup(key), do(goto(r101, direct), s0))) }

the sensing succeeds (and so the “then” part of the condition is chosen), the
prizeis 1000, and the resources |eft are the initial 200, minusthe 10 going
fromr111tor101, minusthe70 going to the door, minusthe 30 for the other
three actions. Thustheresulting utility is1090. The sum of the probabilities
for all of theseworldsisthe product of the probabilitiesof the choices made,
whichis0.9 x 0.7 x 0.9 x 0.92 x 0.88 x 0.95 =~ 0.436.

Similarly all of the the possible worldswith would_fall _down_stairs(sy)
true have prize — 1000, and resources 190, and thus have utility —810. The
probability of al of these worldssumsto 0.1.

The expected utility of this plan can be computed by enumerating the
other cases. We don’'t have to enumerate the worlds, just the explanations
(Poole 1998) of the different values for the utility and the conditional. In
particular, we need to explain:

sense(at_key, do(goto(r101, direct), s0)) A
utility(V, do(enter lab, do(unlock_door, do(goto(door, long),
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do(pickup(key), do(goto(r101, direct), s0)))))).
~sense(at_key, do(goto(r101, direct), s0)) A
utility(V, do(enter_lab, do(unlock_door, do(goto(door, direct),
do(pickup(key), do(goto(r123, direct),
do(goto(r101, direct), 80))))))).

2.10 Richer Plan Language

There are two notable deficiencies in our definition of a plan; these were
omitted in order to make the presentation simpler.

1. Our programs do not contain loops.

2. There are no local variables; al of the interna state of the robot is
encoded in the program counter.

One way to extend the language to include iteration in plans, is by adding a
construction such as

while C do P endDo

as a plan (where C is observable and P is a plan), with the corresponding
definition of trans being™*:

trans((whileC do P endDo), W, S;, S;) «+
W £ sense(C, S)).
trans((whileC do P endDo), W, S}, ;) «+
W = sense(C, S)) A
trans(P, W, S, S;) A
trans((whileC do P endDo), W, S;, S3).
Thiswould allow for interesting programs including loops such as
while everything_ ok do wait endDo

(where wait has no effects) which is very silly for deterministic programs,
but is perfectly sensible in stochastic domains, where the agent loops until
an exogenous event occurs that stops everything being OK. Thisisnot part
of the current theory as it violates utility completeness, however, for many
domains, the worldswhere this program does not halt have measure zero —
aslong as the probability of failure > 0, given enough time something will
always break

Local variables can easily be added to the definition of a plan. For ex-
ample, we can add an assignment statement to assign local variablesvalues,
and allow for branching on the values of variables as well as observations.
This (and allowing for arithmetic values and operators) will expand the rep-
resentational power of the language (L evesgue 1996).

2 Note that we really need a second-order definition, as in (Levesgue 1996), to properly
definethetransrelation rather than the recursive definition here. Thiswill let uscharacterize
loop termination.
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The addition of local variables will make some programs simpler, such
as those programs where the agent is to condition on previous values for a
sensor. For example, suppose the robot’s sensor can tell whether a door is
unlocked along time beforeit is needed. With local variables, whether the
door isunlocked can be remembered. Without local variables, that informa-
tion needsto be encoded in the program counter; this can be done by branch-
ing on the sense value when it is sensed, and having different branches de-
pending on whether the door was open or not.

3 Comparison with Other Representations

3.1 Probabilistic STRIPS

One of the popular action representations for stochastic actions is proba-
bilistic STRIPS(Kushmerick et al. 1995, Draper, Hanks & Weld 1994, Boutilier
& Dearden 1994, Haddawy, Doan & Goodwin 1995). In this section we
show that the proposed representation is more concise in the sense that the
ICLsc representation will not be (more than a constant factor) larger than
the corresponding probabilistic STRIPS representation plus arule for each
predicate, but that sometimes probabilistic STRIPS representation will be
exponentially larger than the corresponding ICL sc representation.

It is easy to trandlate probabilistic STRIPS into ICLsc: using the nota-
tion of (Kushmerick et al. 1995), each actionaisrepresented asaset { (ti, pi, &) }.
Each tuple can be translated into the rule of form:

bi(a,S) « [ AT
(f[Y means the state term is added to every atomic formulain formulaf),
where b isaunique predicate symbol, the different r; for the same trigger

are collected into an alternative set, such that Py (ri(S)) = p; for all S For
those positive elements p of g, we have arule:

p[do(a, §)] + hi(a, S

For those negative elements p of & we havetherule,
undoes(p, &, ) + bi(a, S

and the frame rule for each predicate:
p[do(A, §)] + p[§ A ~undoes(p, A, S).

The ICLsc action representation is much more modular for some prob-
lemsthan probabilistic STRIPS, where, asin STRIPS, the actions haveto be
represented all at once. Probabilistic STRIPSisworsethanthe ICL g repre-
sentation when actions effect fluentsindependently. At one extreme (where
the effect does not depend on the action), consider stochastic frame axioms
such as the axiom for carrying presented in Example 2.9. In probabilistic
STRIPS the conditional effects have to be added to every tuple represent-

ing an action — in terms of (Kushmerick et al. 1995), for every trigger that
is compatible with carrying the key, we have to split into the cases where
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the agent drops the key and where the agent doesn’t. Thus the probabilis-
tic STRIPS representation grows exponential ly with the number of indepen-
dent stochasticframeaxioms: consider n fluentswhich persist stochastically
and independently and the wait action, with no effects. TheICL s represen-
tation is linear in the number of fluents, whereas the probabilistic STRIPS
representation is exponential in n. Notethat if the persistence of the fluents
are not independent, then the ICLsc representation will also be the expo-
nential in n — we cannot get better than this; the number of probahilities
that have to be specified is aso exponential in n. In some sense we are ex-
ploiting the conciseness of Bayesian networks — together with structured
probability tables (Poole 1993) — to specify the dependencies amongst the
outcomes.

3.2 MPD and POMDP Representations

The ICLsc representation is closely related to two slice temporal Bayesian
networks(Dean & Kanazawa1989) or the action networksof (Boutilier et al.
1995, Boutilier & Poole 1996) that are used for Markov decision processes
(MDPs). The latter represent in trees what is represented here in rules —
see (Poole 1993) for acomparison between the rule language presented here
and Bayesian networks. The situation calculus rules can be seen as struc-
tured representations of the state transition function, and the rulesfor utility
can be seen as a structured representation of the reward or value function®?,
One problem with the action networks is that the problem representations
grow with the product of the number of actionsand the number of state vari-
ables— thisis exactly the frame problem (McCarthy & Hayes 1969) that is
solved here using Reiter’s solution (Reiter 1991); if the number of actions
that affect afluent is bounded, the size of the representation is proportional
the number of fluents (state variables).

In partially observable Markov decision processes (POMDPs), the state
of the world isn’t observable by the agent. Asin this paper, the agent can
only observe the values of its sensors. The representation in this paper can
be seen as arepresentation for POMDPs. POMDP researchers (Kaelbling,
Littman & Cassandra 1996) have proposed policy trees, which correspond
to the plans developed here. Boutilier & Poole (1996) exploit the action
network representation for finding optimal policiesin partially observable
MDPs. The general idea behind their structured POMDP algorithm is to
usewhat isessentially regression (Waldinger 1977) on the situation calculus
rules to build plans of future actions contingent on observations — policy
trees. The difficult part for exact computation isto not build plans that are
stochastically dominated'® (Kaglbling et al. 1996).

2t least for finite stage MDPs. Infinite stage MDPs usually use areward for each time
step and the value of a policy is the cumulative reward. Often rewards at future times are
discounted compared to immediate rewards (Puterman 1990). Thisisn't a big distinction
when comparing representations, although it is when comparing a gorithms.

B ntuitively, conditional plan = can be stochastically dominated by a set of conditional
plans, if whatever the agent believes (i.e., whatever its probability distribution over states),
the expected utility of one of the plansin the set of planswill be greater than or equal to the
expected utility of =.
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In contrast to (Haddawy & Hanks 1993), we allow a general language
to specify utility. Utility can be an arbitrary function of the final state, and
because any information about the past can be incorporated into the state,
weallow the utility to be an arbitrary function of the history. Theaim of this
work isnot to identify useful utility functions, but rather to give alanguage
to specify utilities.

Theuseof probability in thispaper should be contrasted to that in (Bacchus,
Halpern & Levesque 1995). The agents in the framework presented here
do not (have to) do probabilistic reasoning. Asin MDPs, the probabilistic
reasoning is about the agent and the environment. An optimal agent (or an
optimal program for an agent) may maintain abelief state that is updated by
Bayes' rule or some other mechanism, but it does not haveto. It only hasto
do theright thing. Moreover welet the agent condition its actions based on
its observations, and not just updateits belief state. We can also incorporate
non-deterministic actions.

3.3 Independent Choice L ogic and Reactive Policies

There is a conceptually different way to use the ICL to model time and ac-
tion. Herewe canonly sketch theidea; see Poole(1997) for details. We only
consider discrete time here. See Poole (1995) for away to handle continu-
ous time (allowing for integration and differentiation with respect to time)
using a method similar to the event calculus.

Theideaisto represent agentsand naturein the sameway. For the situa-
tion cal culus axiomatization above, the single agent wastreated quitediffer-
ently to nature. Symmetry isimportant when we consider multiple agents.

We represent time in terms of the integers. The fact that the agent at-
tempted an action isrepresented by aproposition indexed by time. We usea
predicatedo(A, T) that istrueif theagent attempted action Aat timeT. What
istrue at atime depends on what was true at the previoustimes and what ac-
tions have occurred, and the outcome of stochastic mechanisms. Thisplaces
actions by the agent at the same level as actions by nature (or actions by
other agents).

There are two parts to axiomatise. The first is to axiomatise the effect
of actions, and the second isto specify what an agent will do based on what
it observes(i.e., itspalicy).

To axiomatise the effect of actions, for the discrete time case we write
how what is true at one time depends on what was true at the previous time
(including what actions occurred). We would write similar axioms to the
situation calculus, but indexed by time, and using do as a predicate.

Example 3.1 Theaxiom for carrying of Example 2.8 can be stated as:
carrying(key, T+ 1) «+
do(pickup(key), T) A
at(robot, Pos, T) A
at(key, Pos, T) A
pickup_succeeds(T).
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The frame axiom for carrying in Example 2.9 would look like:
carrying(key, T+ 1) «+
carrying(key, T) A
~do(putdown(key), T) A
~do(pickup(key), T) A
keeps_carrying(key, S).
These don't ook very different to the situation calculus axioms!

Similarly axioms for sensing that only refer to a single situation/state,
such asthose of Example 2.11 would remain the same, but the variables are
quantified over times, not situations.

Thisdlight changeto the representation of thefacts has profound effects
on the plans. There are no situations. What an agent doesis a set of propo-
sitions for different times. Within this framework, it is natura to think in
terms of agents adopting policies.

What an agent does depends on what it observesand what it remembers.
A policy is alogic program that specifies what an agent will do based on
what it senses and what it has remembered (Poole 1997).

Example 3.2 Thefollowingrule could be one part of apolicy for the robot:
do(pickup(key), T) «
sense(at_key, T) A
recall (want_key, T).

Hererecall could beapredicatethat representstheinternal state of the agent.
It can be axiomatised like any other relation.

Thisruleisvery different to asituation calculusprogram, becauseit says
that whenever the robot sensesit isat akey, and wantsit, it should pick it up
(aswell asdoing any other actionsthat areimplied by other rules). In order
toimplement a situation-cal culustype plan using such rules, the robot needs
to maintain something like a program counter or continuations. In order for
a situation calculus program to implement such rules, it hasto loop over a
conditional statement that checks the conditions of the rules, and does the
appropriate concurrent actions.

With axioms about utility, apolicy hasa utility in a possible world, and
so, by averaging over possibleworldsit has an expected utility. Thegoal is
to choose the policy with the highest expected utility.

Within the policy-based framework, concurrent actionsand multipleagents
are easy to represent. The proposed framework hereis, like the event calcu-
lus, narrative-based (Shanahan 1997) in that it is reasoning about a particu-
lar course of events. Thisis true for each possible world, but we can have
a probability distribution over possible worlds. We have a mechanism for
allowing multiple agents to choose which events that they can control oc-
cur for each context, and to allow a probability distribution over eventsthat
nature controls (Poole 1997).

Extending the situation cal culusversionto multipleagentsisn’t asstraight-
forward. The way we have treated the situation cal culus (and we havetried
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hard to keep it as close to the origina as possible) really gives an agent-
oriented view of time — the situations in some sense mark particular time
points that correspond to the agent completing its actions. Everything else
(e.g., actions by nature or other agents) then has to meld with this division
of time. Thisiseven trickier when we realize that when agents have sloppy
actuators and noisy sensors, the actions defining the situations correspond
to action attempts; the agent doesn’t really know what it did, it only knows
what it attempted and what its sensors now tell it. When there are multiple
agents, either there hasto beacommon clock, somemaster agent withwhich
theother agentsdefinetheir statetransition, or complex actions(Reiter 1996,
Lin & Shoham 1995). These all mean that the actions need to be carried
out lock-step, removing the intuitive appeal of the situation calculus, and
making it much closer to the event calculus. Thework of Reiter (1996) and
Lin & Shoham (1995) assumes a very deterministic world. Not only must
the world unfold deterministically, but you must know how it unfolds. This
is very different to the assumptions that hold here, where an agent doesn’t
even know what it hasdone, only what it has attempted. The work here may
show how to reconcile such an omnipotent view with stochastic actions and
limited sensing.

4 Conclusion

This paper has presented a formalism that lets us combine situation cal cu-
lus axioms, conditional plans and Bayesian decision theory in a coherent
framework. It is closaly related to structured representations of POMDP
problems. The hopeisthat we can form a bridge between work in Al plan-
ning and in POMDPs, and use the best features of both. Thisisthe basisfor
ongoing research.

We area soinvestigating (Poole 1995, Poole 1997) alternate representa-
tionsfor actions that are much closer to the event calculus. Which will turn
out to be amore useful representation isamatter for debate, further research
and, eventually, history to determine.

We are betting that decision theory will be eventually seen as the appro-
priateformal basisfor acting under uncertainty (asit isin many disciplines).
You can ignore it a the peril of your work becoming irrelevant. Workers
in knowledge representation should take heart that the need for knowledge
representation won't go away; we will still need good representations and
good agorithms.
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