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Abstract
A new method of handling the kinematic singularities

of serial robotic manipulators is proposed. The idea is to
transform the manipulator’s workspace W into a desin-
gularized workspace W�. Robotic motions can then be
planned anywhere inW�, subject to limits on spatial veloc-
ity and acceleration, and the resulting joint velocities and
accelerations will be well-behaved and bounded. W� dif-
fers from W only near a singularity surface, where a de-
formation is applied in the direction normal to the surface.
While the technique does not handle self-motion singulari-
ties and may not be practical in some cases, it is very easy
to implement for certain manipulators, such as the PUMA,
which is studied in the paper. When applicable, the method
offers various advantages when compared with other meth-
ods of singularity control.

1 Introduction

Kinematic singularities of robotic manipulators correspond
to regions in the manipulator’s workspace where execution
of a prescribed spatial motion may lead to extremely large
values of the joint velocities, accelerations, and higher time
derivatives. In particular, for revolute-jointed serial robots,
the outer workspace boundary usually corresponds to a sin-
gularity, making it quite difficult to perform tasks there.
This boundary singularity reduces the usable workspace of
the manipulator and is particularly evident to users of teler-
obotic systems.

In this paper, we demonstrate the possibility of desingu-
larizing a robot by locally deforming its workspace W in
the vicinity of singularities. Motions can then be planned
and directed anywhere within this deformed workspace
W�, using only conventional bounds Vs and As on the
spatial velocity and acceleration, and the resulting joint
velocities and accelerations will remain well-behaved and
bounded, in proportion to Vs and As.

Though not able to handle self-motionsingularities (such
as the well-known wrist singularity), and possibly not prac-
tical for robots with complex geometry, this method has
a number of advantages that should make it of interest in
cases where it can be applied:

1. It can be extremely easy to implement, as our experi-

ence with the PUMA (Section 5) suggests. Also, this
implementation requires little or no modification to
existing kinematic and control routines.

2. The desingularization is complete, in that joint veloc-
ities, accelerations, and higher time derivatives are
always well-behaved and bounded.

3. Path errors can be understood and quantified exactly
in terms of the applied workspace deformation.

4. The resultingmotions are time efficient, and the robot
will not get “stuck” at the singularity.

5. The method can be employed directly in online path
generation.

The combination of these items represents a useful con-
tribution to the state of the art. Although our method will
produce path errors, these are easy to quantify (item 3) and
may not be problematic in telerobotic or sensor-driven ap-
plications. Note that for the case where a robot is required
to follow a fixed path without error, other methods can be
used [1].

Only regional singularities (i.e., those associated with
the translational part of the robot’s kinematics) will be con-
sidered in this paper. When analyzing regional singulari-
ties, the workspace W can be considered a subset of <3,
and a pointX 2 W can be described by a vector p. The ap-
plication of workspace reparameterization to more general
singularities has not yet been studied.

Our analysis will be based mainly on a theoretical result
[9] for non-redundant serial manipulators. However, exper-
iments involving the boundary singularity of a planar 3R
robot have shown that workspace reparameterization can
be applied to redundant serial robots as well.

2 Related Work

Singularities are traditionally defined with respect to the
manipulator Jacobian J, which relates joint velocities _### to
spatial velocities v according to v = J _###. Near a singular-
ity,J becomes ill-conditionedand execution of a prescribed
v may require arbitrarily high values of _###. A common way
to handle this is to use a damping factor to desingularize



the inverse computation which produces _### [2, 3, 4]. Prob-
lems exist with this, however: exact motion in the degen-
erate (singular) direction is usually not possible, the result-
ing path errors are hard to quantify, and accelerations and
higher time derivatives are difficult to explicitly control.

If higher order derivative information is utilized, then it
becomes possible to produce motion along a singular di-
rection [5], and it has been shown that proper time-scaling
of a trajectory can permit motion along any fixed path con-
taining singularities [6, 7, 1]. This problem is closely con-
nected with reparameterizing a prescribed path in order to
remove the singularity [8, 9], the notion of which has been
used to improve conventional Jacobian-based control [10].
Enhancing Jacobian-based computations with information
from the manipulator’s Hessian has also been studied [11,
12].

3 Workspace Desingularization

In this paper, the notion of desingularizing a manipulator’s
path is extended to the idea of desingularizing the entire
workspace. We being by reviewing the former.

Suppose that a manipulator is requested to follow some
spatial path X(s), where s is a scalar path parameter. Let
###(s) � (#1(s); : : : ; #M(s))T be the corresponding in-
verse kinematic solution. Motion along the path is speci-
fied in terms of a timing s(t) for the path parameter. Near
a singularity, #0j(s) and/or higher derivatives may become
very large, implying, from the chain rules

_#j = #0j(s) _s and �#j = #0j(s) �s + #00j (s) _s
2

that _#j and/or �#j may also become very large for non-zero
values of _s and �s.

In desingularizing a path, the idea is to find a reparam-
eterization s(�) for which the corresponding #0j(�) (and
higher derivatives) exist and are well-behaved at singular-
ities. The work of Kieffer [8] showed that this can some-
times be done by equating � with the arc-length of the
spatial curve in <7 formed by ###(s) and s. In [9], it was
shown that if X(s) is piecewise analytic and the robot is
non-redundant, then within either a right or left neighbor-
hood of a singularity at s = s0, an analytic reparameteriza-
tion can always be formed using

� = js� s0j1=�; (1)

where � is an integer guaranteed to be no greater than the
root multiplicity associated with the singularity. In other
words, even if ###(s) is not well behaved at s0, ###(�) will
be well behaved, and in fact analytic, at s = s0; � =
0. Because most singular points of non-redundant robots
are associated with a root multiplicity of 2 (i.e., only two
branches of the inverse kinematic solution meet there), this
implies that in most situations a singularity can be removed

by the reparameterization

� =
p
js� s0j: (2)

Without loss, only such cases will be considered in the se-
quel.

We now turn our attention to the workspaceW. The re-
gional singularities often form smooth 2D surfaces in W,
which frequently coincide with the boundary of W. Let
S 2 W be such a singular surface, let p0 be a point on
S, and assign a Euclidean x-y-z coordinate system at p0
such that the x axis is aligned with the surface normal n and
points into W (Figure 1). This means that x is parallel to
the degenerate direction of the singularity, and so constant
speed motion along x is not possible at p0 (i.e., at x = 0)
without causing _### to blow up. Correspondingly,@#j=@x is
infinite at x = 0 for at least one joint j. On the other hand,
since the y and z axes are tangential to S, motion in those
directions is feasible and so @#j=@y and @#j=@z will exist.

[]reachable part of WW

reachable part of W

p0

S

y

x

n

Figure 1: Cross section showingx and y axes of a local coordinate sys-
tem centered at a point p0 on S.

Moreover, if we reparameterize the x axis by � =
p
x, then

@#j=@� will exist, for all j, at x = � = 0. This follows
from (2), by considering the x axis itself to be a path with
s � x, x � 0 and s0 = 0. This suggests that smooth robot
motions can be created at p0 by using the coordinate system
�-y-z in place of x-y-z.

Now, the idea is to apply the above transformation to ev-
ery point on S, creating a new workspaceW� in which the
effects of the singularity at S have been removed. We do
this as follows. For each p 2 W, let d(p) be its distance to
S, let p0 be the associated closest point on S, and let n be
the normal directed from S towards p. Both p0 and n are
well-defined if S is smooth and d(p) is sufficiently small.
Also, define the function �(d) (Figure 2) by

�(d) =

(
d+ db if d � db;

2
p
db
p
d otherwise,

(3)

where db controls the distance from S at which the repa-
rameterization starts to take effect. The point p� 2 W�
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corresponding to p is then given by

p� = p0 + [�(d(p)) � db] n: (4)

Qualitatively, this produces a local stretching ofW perpen-
dicular to S. Points in W whose distance from S exceeds
db are unaffected, while the transformation of S into W�,
denoted byS�, is located a distancedb away fromS (Figure
3).

db

2db

0

�

d

Figure 2: The function �(d).
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Figure 3: Transformation ofW , bounded by S (dark circle), intoW�,
boundedbyS� (light circle). Transformation affects only those pointsp 2
W in the zone between S and the dotted line indicating d(p) = db. A
straight-line motion (a) produced in W� may produce an actual motion
(b) which is bent somewhat inside this zone.

By the arguments above, we can expect the inverse kine-
matic function to be differentiable everywhere in W�, im-
plying that any motion generated in W� (subject to con-
straints on velocity and acceleration) should result in joint
velocities and accelerations which are also well-behaved.

The actual motion inW corresponding to a motion pre-
pared inW� can be determined by the inverse transforma-
tion W� ! W. If for each p� 2 W� we let �(p�) be its
distance to S�, and n� and p�0 are the associated normal
and closest point on S�, then the corresponding p 2 W is
given by

p = p�0 + [��1(�(p�)) + db] n
�; (5)

where

��1(�) =

(
�� db if � � 2db;

�2=(4db) otherwise.
(6)

In particular, motions prepared as straight lines in W�

will result in actual motions which are bent slightly within
the threshold zone defined by d(p) � db (Figure 3). There
will not, however, be any bending of motions which are per-
pendicular to S.

The continuityof the transformW� !W is the same as
the continuityof��1(�). As presently defined,��1(�) has
C(1) continuity, meaning that position and velocity conti-
nuity will be preserved when mapping fromW� back toW .
If necessary, smoother functions �(d) and ��1(�) can be
produced by smoothing the junction point at d = db.

4 Usage and Discussion

A standard way to employ workspace desingularization is
as follows:

Map the necessary task goals intoW�;
Compute the required motions;
Map back intoW and compute the inverse
kinematics.

For example, suppose a robot is required to track a refer-
ence pointpd which is changing in real-time. Every control
cycle, we can then: (a) determine p�d 2 W� correspond-
ing to pd; (b) adjust the robot’s position p� in W� so as to
try and rendezvous with p�d; and (c) find p 2 W corre-
sponding to p� and solve for the required joint values. The
resulting _### and �### will be well-behaved at singularities.

In step (c), joint solution determination is certainly eas-
iest if the manipulator has a direct kinematic solution. If
not, then a Jacobian-based solution can probably be used
without too much difficultly, since forming the motion in
W� implicitly provides much of the step-size adjustment
needed near singularities.

To remove all the singularities of a manipulator, a repa-
rameterization is required in the vicinity of each singular
surface Si. It is possible that the above method may be dif-
ficult to apply to some surface types, or near the intersection
of two or more surfaces (for the PUMA, however, surface
intersection could be handled using composite mappings,
as described in Section 5). Also, when two singular sur-
faces meet, the kinematic root multiplicity will be greater
than 2, and so by equation (1), a higher order reparameter-
ization may be required. For the PUMA, the inverse kine-
matics decouples sufficiently that this is not necessary.

Workspace desingularization is probably not directly ap-
plicable to self-motion singularities, which cannot be han-
dled by path reparameterization [9].

An important quantity to consider is the threshold db,
which controls how much of W is deformed when con-
structing W�. There is no “required” value for db. Low-
ering db reduces the path error (Figure 3), but also necessi-
tates lowering the spatial velocity and acceleration bounds,
Vs and As, used to produce motions in W�. One way to
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accommodate this would be to vary Vs and As over differ-
ent regions of W�. While the exact relationship between
db, Vs, As, _#j and �#j can in principle be derived analyti-
cally, it is probably easiest to determine a good value for db
empirically with a few experiments.

5 Desingularizing a PUMA

In this section we will construct a W� which removes the
elbow and shoulder singularities of a PUMA. The surfaces
associated with both of these comprise an outer sphere So
with radiusRo, an inner sphereSi with radiusRi, and an in-
ternal cylinder C with radiusRc (Figure 4). Together, these
define the workspace boundary [13]. If a2, a3, d3, and d4
denote the significant Denavit- Hartenburg parameters for
the PUMA [14, 15], and we define l4 �

p
d2
4
+ a2

3
, then it

can be shown that Rc = d3, and

Ro =
q

(a2 + l4)2 + d2
3

and Ri =
q

(a2 � l4)2 + d2
3
:

z

y

x

Ri

Rc

Ro

C

Si

So

Figure 4: Surfaces associated with the elbow and shoulder singularities
of the PUMA (not to scale).

The workspace W lies outside of C and between So and
Si. So is associated with the elbow singularity, reached
when the arm is fully outstretched and #3 = �=2 �
tan�1(a3=d4). C is associated with the shoulder singular-
ity, and Si is the counterpart to the elbow singularity that
occurs when the arm completely folds up on itself. On a
real PUMA, limits on #3 prevent Si from being reached,
and so we need consider only So and C.

The deformation at So will be considered first, with do
denoting the associated deformation size db. Because So is
a sphere centered on the origin, the transformations given
by equations (4) and (5) are particularly simple. For any
point p 2 W, we have n = �p=kpk, p0 = �Ron, and

d(p) = Ro � kpk. Equations (4) and (5) then become:

p� =
Ro + do � �(Ro � kpk)

kpk p; (7)

p =
Ro � ��1(Ro + do � kp�k)

kp�k p�: (8)

The transformed surface S�o is a slightly larger sphere of ra-
dius Ro + do (Figure 5).

The deformation aroundC is also easy to compute. Since
the distance to C is independent of z, it occurs entirely in the
x-y plane, so that p�z = pz. If we then let pxy � (px; py)T

and p�xy � (p�x; p
�

y)
T , and let dc denote the desired defor-

mation size db, the calculations corresponding to (4) and (5)
are:

p�xy =
Rc � dc + �(kpxyk � Rc)

kpxyk pxy; (9)

pxy =
Rc + ��1(kp�xyk+ dc �Rc

kp�xyk
) p�xy:

(10)

The transformed surface C� is a slightly narrower cylinder
of radius d3 � dc.

Ro

Rc

So S�oC

do

Figure 5: Cross section through the workspace, showing the transfor-
mation of So (heavy circle) into S�o (light circle), along with the induced
bending of C near S�o .

The transformation of W at points close to both So and
C can be handled using composite mappings. First, the de-
formation atSo is performed, transformingW� intoW�

o ac-
cording to equation (8). Then the deformation at C is per-
formed, transforming W�

o into W� according to equation
(10). The only complication is that the first deformation
modifies the shape of C near S�o , so that its radius, rather
than being constant, tapers outward slightly (Figure 5). To
accommodate this, the value ofRc used in (10), which nor-
mally equals d3, is made a function of the value of z within
W�

o . This function Rc(z) is tedious to solve analytically,
but can be quickly determined online using a spline ap-
proximation1. Moreover, by replacing dc with d0c = dc +
Rc(z)� d3, it is possible to ensure that the transformed C�
inW� remains a cylinder of radius d3 � dc.

In summary, the desingularized workspace W� looks
exactly likeW (Figure 4), except that S�o is slightly larger
and C� is slightly narrower.

1The surface normal of C near S�o also contains a small z component,
but this effect can be ignored.
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Figure 6: Straight line motion from p = (0; 400;300)T into a shoulder
singularity at p = (0; d3; 300)

T . Nominal velocities are shown on the
left; desingularized velocities are shown on the right. Plots are scaled as
indicated by the dotted lines on the rightmost graph for _#3.

6 Demonstrations

The effectiveness of the reparameterization is now shown.
Each example involves a straight-line motion toward a sin-
gular point, and is illustrated by a three-frame animation.
Time profiles are shown of the resulting joint velocities,
first for a nominal motion prepared in W (with no singu-
larity compensation applied), and second for a motion pre-
pared in W�. The nominal motions were executed with
constant path speed _s = Vs. The motions prepared in W�

were executed using a trapezoidal profile for _s, with j _sj and
j�sj bounded by Vs and As. Values for Vs and As were 250
mm/s and 500 mm/s2.

The Denavit-Hartenburg parameters used for the PUMA
were a2 = 431:8, d3 = 149:09, a3 = �20:32, and d4 =
433:07, with the kinematics described in [14]. The motions
were undertaken using the “right-handed, elbow down” so-
lution branch2. W� was constructed with do = dc = 80
mm.

In the first example (Figure 6), the robot is driven into
a shoulder singularity (i.e., the path terminates on C), nom-
inally causing large spikes in _#1 and _#2. However, if the
same motion is prepared in W�, with bounds on _s and �s,
the resulting _#j and �#j are well-behaved.

Similar results hold for the other examples. In Figure
7, the robot is driven along a straight line that makes tan-

2meaning that that �� � #1 � atan2(py; px) < 0 and ��=2 <
#3 + atan(a3; d4) � �=2.

60 deg/s

150 deg/s
2

_#1

_#2

_#3

t t

Figure 7: Straight line motion from p = (�d3; 300;300)T to p =
(�d3;�300;300)

T , which goes through a shoulder singularity by mak-
ing tangential contactwith C at its midpoint. Nominal velocities are shown
on the left; desingularized velocities are shown on the right.

gential contact with C, so that it is driven through a shoul-
der singularity. Our choice of kinematic solutions on either
side of the singularity caused nominal discontinuities in _#1
and _#2. These are removed, however, when the motion is
prepared in W�. Lastly, Figure 8 shows the results when
the robot is driven into a double singularity near the ready
position, such that the final path point makes contact with
bothSo and C. The nominal motion therefore causes veloc-
ity spikes in all three joint angles, but again these are prop-
erly removed by preparing the motion inW�.

7 Conclusion

A new method for controlling manipulators at kinematic
singularities has been presented, involving the creation of
an alternate workspace W� in which the singularities are
removed. Motions can then be prepared in W�, with lim-
its on the spatial velocity and acceleration, and the resulting
joint velocities and accelerations will be well behaved and
bounded. W� equalsW except within a certain distance db
of a singular surface. The actual motions resulting in W
will generally have a path error near the singularity. How-
ever, this error can be understood and quantified directly in
terms of the mapping fromW toW�. Moreover, the size of
the deformation (and hence the error) associated with W�

can be controlled by adjusting the thresholddb, with the un-
derstanding that as db is decreased, lower limits on the spa-
tial velocity and acceleration will be required withinW� to
keep joint velocities and accelerations within bounds.

Loosely speaking, our approach turns the singularity
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Figure 8: Straight line motion from p = (0;400;300)T to a combi-
nation elbow-shoulder singularity at p = (0; d3; a2 + l4)T . Nominal
velocities are shown on the left; desingularized velocities are shown on
the right.

control problem into an ordinary collision control problem
in W�.

The method is not directly applicable to self-motion type
singularities (including the wrist singularity), and the com-
putation of W� may not always be easy or possible. How-
ever, our experience with the PUMA shows that the method
can be very easy to apply to certain simple manipulators.
Advantages of the method include: (a) computational and
implementational ease, (b) control over accelerations and
higher derivatives as well as joint velocities, (c) precise
knowledge of the resulting path errors, (d) time efficient
motions which don’t get stuck at singularities, and (e) the
ability to handle motions generated online.

Our experience with this method is very new, and so
many questions remain. A more rigorous mathematical
analysis is also required. Experiments involving the bound-
ary singularity of a planar 3R arm indicate that the method
can also be applied to redundant robots. It will be interest-
ing to see how broadly applicable the method is, and how
it relates to (or can be used to enhance) more traditional
Jacobian-based singularity control methods.
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