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Abstract

The standard method of building compact triangulated surface approzimations to terrain surfaces (TINs) from
dense digital elevation models(DEMs) adds points to an initial sparse triangulation or removes points from a
dense initial mesh. Instead, we find structural lines to act as the initial skeleton of the triangulation. These lines
are based on local curvature of the surface, not on the flow of water. These features use only local information.
When linked into curves, we can ascribe a “scale” to the entire curve; ranking them using this scale measure lets
us choose the most important curves for inclusion in the surface description. FExperiments in building TINs from
DEMs with points, structural lines and structural lines ranked by “scale” show that including such lines initially
reduces the error in the resulting as well as improving its fidelity to the structure of the terrain.

1 Introduction

We begin with dense terrain data specified on a grid of points, a digital elevation model (DEM), and derive a
triangulation, a collection of nonoverlapping planar triangular regions that fit the DEM with minimal error, often
called a Triangulated Irregular Network (TIN)[20].

Many techniques for approximating a surface, usually a terrain height field, begin by selecting points that are
expected to be critical in the final approximation[8, 22, 9, 15, 10]. From this initial triangulation, the surface
is improved by adding points. One particular method, [6], finds in each triangle the point that is most poorly
fit by the current triangulation, and adds that point to the Delaunay triangulation[17] of the points. Iteratively
following this process produces triangulations that eventually fit the surface well, but with many fewer points
than the source dense data.

It is clear that this method is not guaranteed to fit the surface well at surface discontinuities, or at slope dis-
continuities, both of which occur frequently in terrain, and especially in range maps produced in computer vision.
The literature[8] abounds with counterexamples. To avoid these failings, Fowler and Little[6] first identify ridges
and channels, surface lines determined by the flow of water away from them (ridges) and into them (channels),
by simple local geometric operations[21]. These structural lines are then fit by a polygonal approximation[4] and
included in the triangulation, by forcing the triangulation to include these lines. Modern methods allow incre-
mental construction of Delaunay triangulation “constrained” by initial line segments[12]. However, any errors in
the initial points/lines force the triangulation method to introduce further points, reducing the savings.

Schmitt and Chen[23] have updated Fowler and Little’s method by first identifying surface and slope discon-
tinuities and including these lines in the resulting approximation, which uses their own triangulation criterion.
They choose lines based on the local differential structure of the surface, which is independent of the choice of
coordinate system, and is not necessarily coincident with the paths determined by the flow of water[14]. [16, 7]
also insert “crest” lines into adaptive meshes to improve stereo-driven surface approximation. The resulting lines
are not in fact ridges, rather local extrema of curvature (coordinate system independent), but we will knowingly
abuse terminology and continue to refer to them as ridges. The ridges for a section of the Crater Lake DEM are
shown in white in Fig. 1. The method of deriving these ridges will be explained in Section 2.
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Figure 1: (a) Curvature-based ridges and channels (¢ = 2.5) overlaid on the Crater Lake DEM; (b) ridges and
channels (o = 1.0); c) absolute value of maximal curvature (¢ = 1.0): darker is larger.

The significance of surface lines is related to their role in the surface representation. Increasingly these tri-
angulated approximations are used in surface visualization and interaction. The usual criterion for quality of
approximation is the root-mean-square of the error, but this does not capture the importance of the “features”
such as ridge lines, streams, and slope breaks.

What is the fidelity of an approximation? Typically the root-mean-square (RMS) error of the vertical difference
is used, but in many visualization tasks, retaining features such as horizon lines is more important than aggregate
errors. Also, in drainage queries[24] and other such applications, preserving the surface-specific lines is critical.

2 Curvature Descriptions

In [6], ridges and channels are found by marking the points to which water would flow[21], leaving unmarked
the ridge lines (see Fig. 2). In a symmetric fashion the channels are found. Even in this method there are many
small segments identified to which little significance can be given. The figure shows the results of marking ridges,
after the DEM has been smoothed by a Gaussian filter with ¢ = 2.5 to reduce quantization effects. Despite the
smoothing, the ridge lines are interrupted by many gaps.

Instead, we determine the local surface properties independent of the coordinate system. Thus we can select
linear features along ridges and channels, as well as other lines where surface slope changes sharply. Like [16, 7, 19],
we determine the local surface curvature description. At each point the tangent plane is computed; it 1s orthogonal
to the surface normal 7. In any direction, the surface can be cut by a plane containing 7; the normal curvature
in that direction is the curvature of the curve formed by the intersection of the surface and the plane containing
fi. The principal directions are the two directions €7 and €3 where the value of the normal curvature reaches
its maximum and minimum values, k1 and k3. We choose subscripts so that kq is the curvature of maximum
absolute value, and €] and €3 are vectors in the local tangent plane pointing the direction of maximal and minimal
curvature.

To compute these quantities, we first locally determine the surface derivatives and thence the first and second
fundamental forms, and thence the curvature and the principal directions (see [5]). The principal directions on
the surface define a net[13].

Since the hills under ridges are elongated, the curvatures create a local cylindrical approximation to the ridge
or channel, with an non-circular cross-section. Figure 3 shows a ridge with a ridge line, at the top; the transverse
lines are in the direction of maximal curvature locally (é7).



Figure 2: The ridge lines found in the right central section of the Crater Lake DEM by the marking method of
Peucker and Douglas; the DEM has been smoothed by a Gaussian filter (o = 2.5).

Figure 3: Ridge (line at the top) with transverse curves in direction of maximal curvature.

At each point, we determine whether the maximum curvature k; at the point is locally maximal, in the
principal direction €7. The image of |k1| appears in Fig. 1(c); higher values appear darker. Unlike [16], we use
non-maximum suppression to identify these points, looking in the direction of maximal curvature, €1, and marking
points that are greater (in absolute value) than the neighboring points along the line of curvature. Thus in this
description a “ridge” is a line connecting points of locally maximal curvature, where that curvature is positive. A
“channel” or “course” is such a line with negative curvature. To find these lines, we track lines and connect the
points, employing hysteresis with thresholding, using the magnitude of the maximal curvature[2]. This tracking,
followed by pruning short features, produces the ridge and channel lines shown in Fig. 1.

An important issue in computing curvature-based ridges and channels is the scale of the features, the amount
of simplification or smoothing of the surface when curvature is computed. Because of quantization and noise, it is
important to filter the surface by smoothing with a Gaussian filter whose scale is described by the parameter o.
Figure 1 shows the effect of smoothing with different scales—at the coarser scale the curves are better connected
and some small curves have been eliminated.



3 Triangulation

In the original work in this area[6], two innovations were proposed: incremental “greedy” triangulation of
a TIN by inserting points based upon the error in each triangle, and preservation of structural lines found by
marking ridges and channels and then generalizing these 3D lines. Incremental improvement is widely used now,
together with many variations in criteria for adding points. We have not experimented with this, and include in
each triangle the point (the “worst” point) with most error in the current approximation.

Many different strategies can be used for determining the order of insertion. [6] proceeded by inserting every
“worst” point if it exceeded a desired error tolerance, continuing until all points were within this tolerance.

[8] introduced the idea of “batching” updates, collecting the worst points in each triangle, and only selecting
points whose error exceeded some fraction a of the current maximum error. As a approaches 1.0, the triangulation
becomes sequential, inserting one point for each pass over the data. This is extremely expensive, so a is set at
0.8 in our experiments, which is slow, but can, we hope, permit the triangulation process to take advantage of
the different initial skeletons provided by various feature lines.

The second innovation of [6] is not often used as the processing to determine structural lines is more com-
plex. Fowler and Little forced the structural lines into the triangulation after inserting points. Since that time,
Constrained Delaunay Triangulation (CDT) has become well understood, so the structural lines will be inserted
initially as part of the triangulation. We have the adapted the incremental CDT software of Dani Lischinski,
available at http://www.cs.huji.ac.il/ danix/ to insert points based on the error between the current trian-
gulation and the DEM.

3.1 Snakes: Deforming Large Scale Lines

Lines found at the coarse scale (¢ = 2.5) may have been displaced by the smoothing process. The crest on an
asymmetrical ridge, where slope on one side is significantly steeper than the other, will be displaced toward the
less steep side. When these lines are used as the skeleton, the triangulation process must include “corrective”
points near the ridge to model the actual location of the crest. This is undesirable. To move the coarse level line
to the location of the fine-level line, we use the “snake” method[11, 1, 3]. The essential idea of snakes is to deform
the initial line until it reaches a new position close to the line at the fine scale. The snake method allows the line
to deform to minimize the sum of “internal energy”, the energy of stretching the line, and “external energy”, the
attractive force applied by some external source, in this case the proximity to the lines at the finer scale. We used
the actual curvature field computed at the finer scale (Fig. 1(c) instead of the proximity.

Deforming the lines is an iterative process; at each step, each point checks neighboring points and finds the
best location. The local solutions are combined using dynamic programming][7]; we have used the implementation

described in [1].

4 Experiments

To determine whether including structural lines can improve the resulting triangulation, we compare trian-
gulations produced by pure “greedy” triangulation, with no lines (called no lines), with “greedy” constrained
Delaunay triangulation (CDT) with a variety of structural lines. The various feature lines are:

curvature-based feature lines at fine scale (fine)

coarse scale feature lines corrected to a fine scale (snaked)
selected lines at fine scale (selected)

selected lines at coarse scale corrected to a fine scale (sel-snaked)

The curvature-based feature lines are shown in Fig. 4(a), in white, for the fine scale (used in fine). The coarse
scale features are shown in black in both parts of the figure; in Fig. 4(b), they appear, in white, as corrected to
fine scale using the snake method of Sec. 3.1. These are used in snaked.

[18] describes how to determine the region surrounding a ridge (or channel) and then compute a surface measure
that can be integrated over the region. Such a scalar measure provides a metric criterion for preferring some
feature lines over others. Reducing the number of initial lines should improve the fit of the surface, all other
things being equal. We use an estimate of “creasiness” of the ridge, which is computed by summing the absolute
value of maximum curvature along the ridge. Lines selected on the basis of “creasiness” appear in Fig. 5(a) in
black. Because they have been computed at coarse scale (¢ = 2.5), they can be “corrected” using the snake
method to better fit the surface at fine scale (shown in white); these are used in sel-snaked. The structural lines
in selected are shown in Fig. 5(b).



Figure 4: (a) lines at fine scale (o = 1.0) in white, lines at ¢ = 2.5 in black; (b) lines at o = 2.5 in black with the

corrected result in white 1.0

RMS 5.0 4.0 3.0 2.5 | 225 | 2.0
Ratio of points (snaked/no lines) | 0.92 | 0.93 | 0.86 | 0.89 | 0.91 | 0.96
Points no lines 1611 | 2097 | 3219 | 3995 | 4036 | 4653
Points snaked 1478 | 1949 | 2781 | 3555 | 3696 | 4463
Percent of points no lines 1.04 | 1.36 | 2.08 | 2.59 | 2.62 | 3.02
Percent of points snaked 0.96 | 1.26 | 1.80 | 2.30 | 2.40 | 2.89

Table 1: The ratio of the number of points in snaked to points in no lines for various RMS values

The tests were run on the Crater Lake DEM, running the batched greedy triangulation (subject to constraints
provided by structural lines), with & = 0.8. The triangulation stopped when 5000 points had been included. To
understand the effect of using structural lines in the triangulation, we plot the root-mean-square error versus the
number of points, for several experiments in Fig. 6 and, at greater magnification, in Fig. 7.

The results can also be seen by considering the number of points required to achieve a particular RMS error,
as shown in Fig. 8, which is simply a rotation of Fig. 6. In all these cases the results given by using snaked,
the lines from a coarse scale corrected to a fine scale by snakes, were superior. Figure 9 shows the triangulations
(limited to 2500 points) produced by the two methods; the constrained lines are shown in black and other edges

in white.




Figure 5: (a)Selected lines at o = 2.5 in black with the corrected result in white 1.0 (sel-snaked); (b) Selected
lines at ¢ = 1.0 (selected)

Points 1000 | 2000 | 3000 | 4000 | 5000
Ratio of RMS error (snaked/no lines) | 0.94 | 0.90 | 0.85 | 0.88 | 0.97
RMS no lines 6.93 | 431 | 3.17 | 2.42 | 1.83
RMS snaked 6.47 | 3.88 | 2.70 | 2.14 | 1.77

Table 2: The ratio of the RMS of snaked to no lines for various numbers of points

The results can be presented in a tabular form, as shown in Tables 1 and 2. In both tables, it is clear that the
snaked TIN uses fewer points than the TIN produced with points along, as much as 15% fewer.

5 Discussion

How have we advanced beyond the work of Fowler and Little[6]?7 We have a sounder basis for local surface
description, more immune to quantization introduced in the DEM, and not coordinate system dependent, per-
mitting description of surface breaks as well as ridges and channels. We also can compute measures of the feature
lines or the regions surrounding them that allow us to rank the significance of the lines.

The inclusion of lines in the construction of TINs reduces the number of points required to achieve a particular
RMS error. Alternatively, at a particular size of the TIN, the RMS achieved is less when the structural lines are
included.

Finding curvatures, estimating derivatives, requires smoothing or regularization for stability, but this impedes
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Figure 6: Root-mean-square error versus the number of points, for several experiments.
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Figure 7: Root-mean-square error versus the number of points, for several experiments; only a portion of the
previous graph is shown
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Figure 8: The number of points in the TIN versus the root-mean-square error. The experiments varied the
number of points. At times, increasing the number of points increased the RMS error, which accounts for the
multiple values for a particular RMS at some locations.

localization. The snake method lets us extract significant lines at a coarse scale and correct them to improve
their localization for use in the TIN. Methods that would combine smoothing and localization, such as anisotropic
diffusion, may aid determination of structural lines.

Further work will address the issue of how the scalar measures of the feature lines relate to the linear scale
used in the curve approximation for the structural lines: how does a measure of approximation on lines translate
to a measure of curvature fidelity? There are many alternative methods for choosing the best point for insertion,
but we have not explored these here. Some may perform much better when structural lines are used. The normal
error (the error measured perpendicular to the surface), not the vertical error, is arguably more useful, but our
experiments with the normal error are still preliminary. There remains much to understand on the interaction of
smoothing, the scale of features, and incremental improvement strategies for creating TINs from DEMs.
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