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Abstract

Two stereo vision-based mobile robots navigate and au-
tonomously explore their environment safely while build-
ing occupancy grid maps of the environment. A novel land-
mark recognition system allows one robot to automatically
find suitable landmarks in the environment. The second
robot uses these landmarks to localize itself relative to the
first robot’s reference frame, even when the current state
of the map is incomplete. The robots have a common lo-
cal reference frame so that they can collaborate on tasks,
without having a prior map of the environment.

Stereo vision processing and map updates are done at
5Hz and the robots move at 200 cm/s. Using occupancy
grids the robots can robustly explore unstructured and dy-
namic environments. The map is used for path plan-
ning and landmark detection. Landmark detection uses
the map’s corner features and least-squares optimization
to find the transformation between the robots’ coordinate
frames.

The results provide very accurate relative localization
without requiring highly accurate sensors. Accuracy of
better than2cm was achieved in experiments.

1 Introduction

Most robots that successfully navigate in unconstrained
environments use sonar transducers or laser range sensors
as their primary spatial sensors (for example, [1, 2]). While
computer vision is often used with mobile robots, it is usu-
ally used for feature tracking or landmark sensing and sel-
dom for occupancy grid mapping or obstacle detection.

In this paper, we present a working implementation of a
multi-robot navigation system that uses stereo vision-based
robots. The robots use correlation-based stereo vision to
map their environment with occupancy grids, which are
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continuously updated to reflect the robot’s changing en-
vironment. The robots use the maps to navigate and au-
tonomously explore unknown, dynamic indoor environ-
ments. We have also developed a method for detecting
corners in the map and using them as landmarks. These
landmarks are used to localize the robots with respect to
one another. The robots can then safely share and cooper-
ate within the same local environment.

Our initial robot, Spinoza[3], demonstrated stereo-
based mapping and navigation. In [4], we presented al-
gorithms for path planning and exploration using the gen-
erated map. In [5], we described in detail how to generate
occupancy grid maps from stereo vision and how to com-
pensate for various systematic errors specific to stereo vi-
sion in order to have a robust mapping system.

This paper focuses on the localization problem of ro-
bust navigation. Localization is the problem of identifying
the robot’s current position and orientation with respect to
some common coordinate system. A robot in an unknown
position must refer to its environment to determine its loca-
tion. Even after localization, drift in odometry causes the
estimated position to incrementally deviate from the true
position. We present a landmark-based method for localiz-
ing within a local coordinate system.

Localization is a difficult problem that has inspired sev-
eral different approaches. One is to place distinctive, iden-
tifiable landmarks at known locations in the robot’s envi-
ronment. This engineering solution is prohibitively expen-
sive and generally difficult to justify outside hospitals or
factories[6].

Another approach is to search the local environment for
visually distinctive locations and record as landmarks these
locations and a method to identify them (usually their vi-
sual appearance)[7]. Some systems concentrate on known
types of visual events—finding vertical lines associated
with doors, for example, or using range sensing, such as
laser stripe systems, sonar, or active stereo vision to find
locally salient geometric locations, such as corners, doors,
or pillar/floor junctions. One can also track “corners”, lo-
cal 2D image features, over sequences of image frames[8],



from which the 3D location of the corner points and the
motion of the sensor can be determined[9].

Several working systems have been reported. Borth-
wick and Durrant-Whyte [10] base their system on detect-
ing corner and edge features in 2D maps, using Extended
Kalman Filtering to estimate both feature locations and
robot position. Weckesseret al. [11] usea priori land-
marks at known positions in the global coordinate frame
and particular models for landmarks (such as door jambs).
Their system uses active stereo cameras and can effec-
tively solve for pose of the robot with respect to landmarks.
Thrun and Bucken [12] base their system on sensing regu-
lar landmarks, such as overhead lights or doorways, rather
than distinctive ones. It uses a Bayesian approach imple-
mented in neural nets and learns which landmarks are most
salient.

Our system uses landmarks within the 2D map, as do
Borthwick and Durrant-Whyte. Since the occupancy grids
are the result of the integration of several sensor readings,
features within the map tend to be more robust and less
subject to noise than features in a single sensor reading.
We divide our map into a series of local coordinate frames,
each with a set of landmarks for localization within the
local frame. When two robots are within the same “node”
of the map, they can localize with the same landmarks and
operate in a common coordinate system.

Corner landmarks in the map are found with a least-
squares model fitting approach that fits corner models to
the edge data in the map. These landmarks are found
for both the reference map and the current map. A least-
squares approach then finds the transformation between the
two maps based on matching the landmarks between the
two.

Section 2 describes the robots and how they build maps
with stereo vision using occupancy grids. Section 3 shows
how we detect corner features in the occupancy grids. Sec-
tion 4 describes how we localize the robots given the land-
mark information. In section 5, we show the results of our
localization approach. The final section concludes and de-
scribes future work.

2 Mapping

We used a RWI B-14 mobile robot,Jośe, to conduct
our experiments.Jośe uses a Triclops trinocular stereo vi-
sion camera module.1 Jośe’s partner,Eric, is identically
equipped. The stereo vision module has 3 identical wide
angle (90◦ degrees field-of-view) cameras. The environ-
ment is like a normal office: it is not highly textured and it
has many right-angled corners. The hallway that produced
the localization data is shown in Figure 1.

1Seewww.ptgrey.com.

Figure 1: Hallway near where map was localized

2.1 Occupancy grid mapping and stereo vision

Occupancy grid mapping, pioneered by Moravec and
Elfes [13, 14], is simple and robust, flexible enough to ac-
commodate many kinds of spatial sensors, and adaptable
to dynamic environments. It divides the environment into
a discrete grid and assigns to each grid location a value
related to the probability that the location is occupied by
an obstacle. Sensor readings are used to determine regions
where an obstacle is anticipated. The grid locations that
fall within these regions have their values increased, while
locations in the sensing path between the robot and the
obstacle have their probabilities of occupancy decreased.
Grid locations near obstacles thus tend to have a higher
probability of being occupied than do other regions.

Although occupancy grids may be implemented in any
number of dimensions, most mobile robotics applications
(including ours) use 2D grids. The stereo data provides 3D
information that is lost in the construction of a 2D occu-
pancy grid map. This reduction in dimension is justified
because indoor mobile robots inhabit a fundamentally 2D
world. The robot possesses 3 DOF (X, Y, heading) within
a 2D plane corresponding to the floor. By projecting all
sensed obstacles to the floor, we can uniquely identify free
and obstructed regions in the robot’s space.

Figure 2 shows the construction of the 2D occu-
pancy grid sensor reading from a single 3D stereo im-
age. Figure 2(a) shows the reference camera grayscale
image (160x120 pixels). The resulting disparity image is
shown in Figure 2(b). White regions indicate areas of the
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Figure 2: From stereo images to top-down views: (a)
grayscale image (b) disparity image (white indicates in-
valid, otherwise brighter indicates closer to the cameras)
(c) the maximum disparity in each column of the disparity
image (d) depth versus column graph (depth in centime-
ters) (e) the resultant estimate of clear, unknown and occu-
pied regions (white is clear, black is occupied and gray is
unknown)

image which were invalidated and thus not used. Darker ar-
eas indicate lower disparities, and are farther away from the
camera. Figure 2(c) shows a column-by-column projection
of the disparity image, taking the maximum valid disparity
in each column. The result is a single row of maximum dis-
parities, representing the closest obstacle in each column.
Figure 2(d) shows these column values converted into dis-
tance, and (e) shows these distance values converted into
an occupancy grid representation, with black indicating
the uncertainty region around the object and white indicat-
ing regions that are clear. The two “spikes” in Figure 2(d)
were caused by mismatches in the stereo algorithm; their
causes and removal are discussed in [5].

The process illustrated in Figure 2 generates the input
into our stereo vision occupancy grid. The mapping system
then integrates these values over time, to expand the map
and keep it current in the changing world. Although the
map in Figure 3 looks like directions to buried treasure, it
actually depicts our lab and nearby hallways.

Figure 3: Map generated over single run

3 Landmarks in Occupancy Grids

We do localization using visual information stored in
an occupancy grid, so we need to detect features in the
map. Corners are appealing because they are distinctive,
each constrain 2 degrees of freedom, occur frequently in
indoor environments, and stand out well in occupancy
grids despite quantization. There are many ways to detect
features (correlation, Hough transform, Karhunen-Loeve
Transform), but we chose a least-squares model matching
approach because it is capable of subpixel resolution and
is fast and trackable, meaning that if we have an estimate
of the solution, we can use it to find the real solution.

Once the landmarks are found, we match the landmarks
in the two maps being considered to find the local coordi-
nate transformation between the two maps.

3.1 Landmark Detection

First we find boundaries between empty and solid
spaces in the occupancy grid—we call these edges. Next,
we find possible locations for corner models and use these
as initial estimates. Third, we do a least-squares fit of a
corner model to the map edge data to find all the corner
landmarks.



Figure 4: Edges found in the occupancy grid (left), and the
occupancy with landmarks found (right).

3.1.1 Finding edges in map

Finding edges in occupancy maps is complicated by the
fact that there is often a region of uncertainty between a
region that is certainly occupied and one that is not. To
overcome this we grow regions of certainty in the map into
regions of uncertainty. Where we are highly confident that
a certain region is empty or occupied, we mark these ac-
cordingly. We preserve the regions that have never been
seen. Next we find occupied regions that are adjacent to
empty regions and mark them as “edge” pixels. Models
are fit directly to edge grid locations. Figure 4 shows the
edges found by this process.

3.2 Model initialization

Our problem is finding initial estimates of possible loca-
tions that might fit a corner model. We start with the edge
image. We dilate this several times and then compute an
orientation map for each grid location—theith bit is set if
a line in the dilated edge map can extend for a fixed number
of grid locations from this location in a direction ofi×45◦.
Then we determine the corner map by looking within the
orientation map for grid locations that have theith and the
(i+2)th bits set. The search for a model fit is performed in
the dilated edge map in order to save processing time. The
dilated map has been dilated enough that a line at22.5◦ di-
lates to an area that overlays a line at0◦ for a length as long
as the legs of the corners being matched. This guarantees
that the orientation map will have a bit set if the model fits
the edge data at any rotation.

3.3 Model fitting

The corner model is just two line segments of a fixed
length (500mm in our case) that intersect at a90◦ angle.
The problem is to fit a model of a corner that is parameter-
ized byX,Y,Θ to the edge grid locations, given an initial
estimate of position and orientation.

The model of the corner is discretized inton points, la-
beledm1,m2, ..mn, which are evenly distributed along the
model. Letx = [X,Y, θ]T . Now, then points can be de-
termined as a function ofx, somi = fi(x). Let x0 be the
initial estimate ofx. The error of the model at each point
mi is the distance frommi to the nearest edge location. A
Euclidean distance metric is used. These distances form
the vector

e =


dist(m1, nearestedge),
dist(m2, nearestedge),
...,
dist(mn, nearestedge),


The vectore has the distance from each point to the nearest
edge. The Jacobian,J , of e with respect tox is computed
by evaluating the partial derivative of

∂dist(fi(x), nearestedge)
∂xj

evaluated around the current estimate ofx. Most of the
time in localization is spent finding the nearest edge loca-
tion to a given point while computing the Jacobian. Fol-
lowing the technique of Newton, the change inx from this
estimatexi to the next estimatexi+1 is given by:

J(xi+1 − xi)

This is an over-constrained system, since the model is dis-
cretized inton points, which make it much larger than the
3 DOF of the model. The least-squares solution to this is
given by

min ||J(xi+1 − xi)− e||2

This is the same as solving the normal equations

JTJ(xi+1 − xi) = JT e

This model fitting works much better when this system of
equations is stabilized by adding the constraint

xi+1 − xi = 0

This constraint needs to be appropriately scaled in the
least-squares solution, as shown by Lowe[15].

We measure position in grid cells and angle in degrees,
and we scale all constraints equally by0.1. This scaling
indicates that we are willing to change the solution by 10
grid locations to avoid a 1 grid location error. Let the ma-
trix W be 1

10I. The system to which we wish to find the
least-squares solution becomes:[

J
W

]
(xi+1 − xi) =

[
e
0

]



and the normal equations become

(JTJ +WTW )(xi+1 − xi) = JT e

These are solved with Gaussian elimination with pivoting
on the optimal row. The system is run for 10 iterations or
until the change from the previous iteration is very small.
Convergence is fairly good, normally occurring after 3 it-
erations.

4 Localization

4.1 Corner Matching

The goal at this stage is to take two maps, the reference
and current maps, and match the corners between them.
First we eliminate all corner models with an RMS error
above 1.5 pixels. (This is one of the few “magic numbers”
in the system.) A corner will suppress all corners with
a higher RMS error that are within500mm of the sup-
pressing corner. This non-maximal suppression reduces
the chances of the corner being mismatched.

Finally each corner is matched to the nearest corner
in the other map. If no matching corner is found within
1000mm of a particular corner, the corner is left un-
matched and not used for localization. Checking that
the orientations of the corners matches does not seem to
change the system’s robustness much. If there had been
more mismatches, it would likely have helped.

4.2 Localization

The goal here is to find the transformation that maps
the corners in one map to the other. This stage uses the
same least-squares model matching technique that we used
to match the corner models to the edges. The transform is
parameterized by a2D translation and rotation about the
robot. The three parameters are found by setting up equa-
tions for each pair of landmarks that match between the
maps. The rotation error between the maps is usually quite
small (less than15◦), so the linearization of the transform
in the least-squares matching process introduces minimal
error and the method quickly converges. The stabilization
technique mentioned in Section 3.3 is important for nice
convergence at this stage.

5 Experiments

The first robot toured around our building creating the
map shown in Figure 3. The intersection of two hallways
(Figure 1) was selected as a localization node. The local
occupancy map for this area is shown in Figure 5. The map

edges are shown in Figure 6 with the detected landmarks
drawn as black corners and overlaid on the edges. The

Figure 5: Reference map from first robot

Figure 6: Edges and landmarks in reference map

location of the robot when it acquired this map was marked
so that it could be used as ground truth for comparing the
location of the second robot. The second robot was run out
to a nearby location and created the map shown in Figure 7.
The associated edges and landmarks are shown in Figure 8.

Figure 7: Current map from second robot

The odometry estimates have drifted, as shown in Fig-
ure 9, which overlays the edges from the first and second



Figure 8: Edges and landmarks in current map

robots. By comparing the locations of the two robots as
marked on the floor, we know the length of the transforma-
tion between the reference frames should be80± 20mm.
The localization routine produced a transform of length
92mm.2 The transformation found was applied to the
edges in the second map, and they were overlayed on the
reference map from the first robot to get the image shown
in Figure 10.

Figure 9: Edges of two maps overlayed before localization

Figure 10: Edges of two maps overlayed after correction
for localization

The system is quite robust and correctly localizes the
robot in a wide variety of situations. It starts to fail where
the odometry estimate is so far out that the corners are mis-
matched. By using fairly large corners (500mm per side)
and non-maximal suppression we ensure that we do not

2In the final paper we plan to do additional test runs and gather some
statistics relating the ground truth and localization results

detect multiple corners very close together. Most of our
corners are more than1000mm apart. This ensures that
for up to 500mm of odometry error, we are highly likely
to match to the correct corner.

Since the system finds naturally occurring corners in the
environment, it can localize fairly often and have much
smaller odometry errors between localizations. The tech-
nique can be used to localize a robot to a location that it
has previously visited or that has been visited by another
robot. It can also be used to localize two robots that are
in the same space and need to share coordinate systems to
collaborate on a task.

The system is fast enough for real time robotics. The
landmark detection for the image shown in this paper took
14 seconds running on a 266MHz Pentium II. Computing
the localization took only a few milliseconds. The speed
of this localization would allow for many possible trans-
formation models to be tested and the best one chosen if
needed. We did not find a need for this.

6 Conclusions and Future work

This paper demonstrates a working system in which
robots can localize themselves relative to other robots or
to themselves at other times. The system is very accurate
and works with incomplete maps of environments that are
being explored. It was shown that localization using fea-
tures in stereo vision occupancy grids is a feasible solution
to the mobile robot localization problem. Accuracy better
than a few centimeters are attainable in real time.

Our corner localization works well because we base
the localization on data integrated over several views, a
method more robust than a single reading would be. We
can also extend the landmark detection method to use
’multi-level’ 2D maps. These are collections of 2D slices
of the 3D environment. Near ceilings, room corners are
rarely obstructed and are readily apparent. These can be
used as commonly occurring landmarks.

Further, a more comprehensive cooperative mobile
robot environment could be built relying on the ground-
work presented here. A group of landmarks can form a
local coordinate frame, and locally consistent frames can
be linked so as to create nodes useful for developing topo-
logical maps. Exploration of the environment can also be
a cooperative task, with one robot altering its behavior in
response to its partner’s activities. These and other related
ideas would be suitable topics for future work.
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