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Abstract

A novel segmentation algorithm based on the re-
gion growing paradigm is presented. Unlike previous
segmentation methods, this novel scheme requires nei-
ther hand-tuning of parameters nor knowledge about
the scene. Instead, the parameter which controls the
segmentation is dynamically derived from the data for
each region, based on a local quality measure of the
region’s contour. The algorithm assigns a stability
value to each extracted region that reflects the robust-
ness of that region. Results are shown for some gray
level aerial itmages.

1 Introduction

We are developing a segmentation algorithm as a
first step in an image indexing and retrieval system.
Some important design criteria for such a segmenta-
tion algorithm are as follows:

e The algorithm must deliver homogeneous regions
from which various region based features (color,
shape, texture, etc.) can be computed. Edges
that don’t form closed contours, as for example
produced by the Canny edge detector [2], don’t
lead directly and naturally to regions (contour
gap problem). Edge detectors that by their de-
sign produce closed contours, as for example the
zerocrossings of the Laplacian of Gaussian, usu-
ally don’t deliver the desired regions, especially
in noisy images.

e Hand-tuning of parameters, e.g. of thresholds, is
not acceptable. The system should work fully au-
tomatically.

e A measure to quantify the stability of each region
must be provided.

e Because of the wide variety of images in a typi-
cal image database, no assumptions can be made
about the image in terms of lighting conditions,
objects to be expected, scale, number or shape
of regions etc. That is, we cannot assume any

domain knowledge or the existence of object or
scene models.

The latter point signifies a departure from the ap-
proach most image processing systems take these days.
Certainly, better results can be expected if we can
integrate knowledge about the expected objects, the
lighting conditions, the scene geometry, etc., but in the
application we have in mind, we are much more likely
to encounter images where we lack prior knowledge
but still want to perform some useful actions. There-
fore, 1t is important that the algorithm can measure
the quality of the segmentation not in terms of model
selection and parameter fitting but in terms of the im-
age data itself. We propose a metric that measures the
strength of a contour relative to its neighboring pixels
which are not part of the contour. Since the algo-
rithm dynamically adjusts the merging threshold for
each region in order to maximize the contour strength,
we call it Dynamic Region Growing (DRG). DRG ad-
dresses not only the automatic setting of thresholds
but also the unwanted region chaining problem that
has plagued many region growing algorithms [5].

Some classic region growing techniques have been
described and classified in [5]. Their greatest draw-
back has been their dependence on a good choice of
the parameters involved. A recent review [10] in-
cludes references to segmentation methods based on
fuzzy logic, neural networks, and color. A seeded re-
gion growing method has been proposed in [1]. The
authors claim that their algorithm does not require
parameter tuning; however, it critically relies on the
seed points being given as input. Active contour mod-
els (“snakes”) [7] fit contours with energy-minimizing
splines. These are attracted to nearby edges, but they
have to be placed somewhere near the desired contour
by external forces, which makes them useful in an in-
teractive environment rather than in a fully automatic
system. [15] aims at a unification of region grow-
ing with active contour models and Bayesian tech-
niques that allow the integration of global constraints.
Problems of global approaches with respect to an ap-
plication in image indexing and retrieval include the



exhaustiveness (each pixel must be labeled) and ex-
clusiveness (no overlapping regions) constraints of the
segmentation, the adequate choice of a family of prob-
ability distributions (a Gaussian distribution too often
is the ad hoc choice), and the slow convergence of the
optimization.

Many schemes have been designed to integrate re-
gion growing algorithms with edge detection in order
to get the best of both worlds. [3] uses a maximum
likelihood estimator to merge different edge maps, fol-
lowed by region growing to satisfy some constraints
on the desired regions. [4] proposes an involved pro-
cedure to determine seed points (called germs); the
region growing itself is controlled by the magnitude of
the gradient at each pixel.

Ohlander’s recursive region splitting method [9] was
an early attempt to dynamically compute the segmen-
tation parameters from the image data. The algorithm
starts with the whole image being one region which is
then recursively split. The decision whether and how
to split a region is based on the shapes of the his-
tograms of the respective feature values. Note that
histograms don’t keep spatial information.

2 Algorithm

In the absence of object or scene models, it 1s criti-
cal to have a criterion that enables us to evaluate the
quality of a segmentation. We choose this criterion to
be the contour strength where we define the contour
strength cs(R) of a region R to be the sum of the ab-
solute differences between each pixel on the contour of
a region and the pixels in the 4-neighborhood of these
contour points that are not part of the region under
consideration, 1.e.

es(R) == 3 Ipi—a (1)
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where Cg is the set of pixels on the contour of R,
q;i ¢ R is in the 4-neighborhood of p;, and n is the
number of pixels p; € C'g. The general idea is that re-
gions are bound by strong contours, so we grow regions
such as to maximize csg. Note that contour following
and taking differences of integer numbers are compu-
tationally inexpensive operations. Slightly improved
results at higher computational costs can be expected
if the contour strength is based on the intensity gradi-
ent at each contour pixel rather than on the intensity
difference.

Traditional region growing algorithms base their
decision whether to merge a region with a pixel on
a homogeneity criterion that usually takes into con-
sideration the mean and standard deviation of the re-
gions [1],[5]. DRG is similar in that it grows regions

based on the difference between the mean of a region
and the intensity of the pixel to be merged. How-
ever, DRG maximizes the contour strength which is a
purely local criterion that allows pixels to be merged
with a region if this merging results in a stronger con-
tour, even if those pixels don’t meet such homogeneity
criteria. We contend that our criterion i1s more useful
in the presence of noise since it does not depend on
any a priori homogeneity thresholds or statistics.

To be more specific, let R, be a region to be grown,
and p. the mean intensity of that region. The region
growth is controlled by a parameter €: A pixel p with
intensity 7, that is spatially adjacent to the region R,
is merged with R, if |pu. — I,| < €. p. is updated
immediately.

For each region, DRG starts with a seed that con-
sists of one or more pixels. ¢ is set to a low value
€low- Then DRG loops through increasing values of €
until a termination criterion is met. For each €, we
compute the corresponding contour strength csgp, and
keep the maximum strength. In other words, for each
seed DRG creates a whole family of segmentations and
then picks the best one. In order to define an adequate
termination criterion, we must address the problem of
overspill.

Region growing algorithms generally are subject to
overspill, referred to as region chaining in [5]. Over-
spill occurs when two regions that should be separate
are merged. An exampleis given in figure 1. Overspills
are frequently caused by noise and therefore happen
quite often in natural images.

Figure 1: Left: before overspill; Right: after overspill

Generally, it is undesirable to continue region grow-
ing beyond an overspill. Overspills are not apparent
from looking at the contour strength alone. However,
detection of an overspill is fairly straightforward and
robust. An overspill is usually characterized by the
sudden emergence of three properties: (i) a large in-
crease in the region size, (ii) a decrease of the circu-



larity of the region, and (iii) a change in the average
region intensity. We define circularity to be the ratio of
region size to the square of the contour length. Typ-
ically, an overspill creates a small “bridge” between
the two regions chained together which in turn causes
a large increase in the contour length and therefore
a decrease in circularity. These three properties are
combined in a fuzzy function to decide whether an
overspill has occurred.

We can now return to the problem of determining
the range of the parameter e. DRG sets €4, to a small
integer value. The more noise in the image, the higher
€10w Should be. The exact value of ¢;,,, 1s not critical.
The conservative strategy is to set €, low enough
such that no good segmentation is to be expected for
€ < €ow- As for the upper bound of ¢, DRG stops
either when an overspill has been detected or when an
upper bound ¢p;,4, has been reached. Again, the exact
value of €545 1s not critical. The conservative strategy
is to set €pigp high enough such that no good segmen-
tation is to be expected beyond it. We implemented
DRG such that for each region at least three different
values of €, 1.e. €4y tO €10y + 2, are tried.

A high level description of algorithm DRG is given
in figure 2. It remains to elaborate on the strategies
for the selection of seed points and for dealing with
overlapping regions.

while seeds remain
find next seed R; o
€ = €low
while ¢ < ¢pig5 and no overspill
grow region R; .
compute contour strength csg, ,
e—=e+1
end while
end while
R; = R;c | (¢sp,, = maxc(csr, . ))
if R; does not coincide with R;, 1 < R; < ¢
then keep R;

Figure 2: Dynamic Region Growing DRG

Several strategies for choosing the seed points are
conceivable. The lack of scene knowledge implies that
we cannot assume a fixed number or certain initial
positions of the seeds. Instead, they must be derived
from the data. The strategy we chose for DRG is this:
find the next anchor that is not labeled as being part
of a region extracted so far. By anchor, we mean a
homogeneous micro-region where all pixel intensities
lie within €4, of the intensity of the upper left pixel

of that micro-region. This way, DRG does not try to
grow regions from noisy pixels or areas that are ob-
viously not homogeneous. The adequate anchor size
depends on the image. If the image is smooth, a larger
anchor size could be chosen. Under the no-knowledge
assumption, the conservative strategy used by DRG
is to chose a small anchor size. Note that the com-
putational workload is linear in the number of seeds.
Therefore, reducing the number of seeds is an effective
way to reduce the runtime of DRG, at the cost of pos-
sibly missing some regions with high contour strength.

The seed picking strategy adopted assures that
there are no identical regions — they must differ at
least in the seed pixels of the second region. How-
ever, they might overlap a lot. Unlike most other re-
gion growing schemes; DRG does not prevent a region
from growing into an area already labeled by another
region. The reasons behind it is that (i) it is not
necessarily true that the previous labeling is better
than the new one, and (ii) for many applications, hav-
ing mutually exclusive regions is not a requirement.
In fact, mutual exclusion might turn out to be too
hard a constraint given the assumptions above. It has
been argued that regions might naturally overlap [11],
e.g. “sky” and “tree”. Furthermore, segmentations
based on other criteria than homogeneity or contour
strength, e.g. texture based segmentation, will lead to
regions that also overlap with the regions extracted
by DRG. Let us define two regions to coincide if they
have more than 90% of their pixels in common. The
simple approach adopted in this paper is to eliminate
the region with weaker contour strength if two regions
coincide, otherwise to keep both. In the present im-
plementation, DRG also eliminates all regions below
a certain size, typically 100 pixels.

As € increases, the size of the corresponding re-
gion R; . either also increases or remains constant. A
straightforward measure to evaluate the stability of a
region is to determine the range of € such that R, is
similar in size to the region R, . Therefore, we de-
fine the stability stab(R) of region R to be

St(lb(R) = €top — Cbottom (2)
where

size(Re) — size(Re,,,,) <
size(Re,,..) -

€rop = maz(e) |

size(Re,,,.) — size(Re) <d
size(Re,,..) -

€bottom = min(e) |

Again, the choice of # is not critical, and € remains
constant for all images. Here, we set § = 0.2, i.e. we



look at the range of e for which the region sizes haven’t
changed by more than 20%.

Note that a high stability implies a high contour
strength, but the converse is not generally true. Re-
call that the contour strength sums up all individual
intensity differences along the contour line. Even if
the overall sum 1s large, there might be some “weak
links” in the “contour chain”, resulting in an overspill
and therefore in a low stability. By contrast, a high
stability reveals that there is no such weak link along
the contour line.

Our notion of stability 1s not unlike Witkin’s defi-
nition of stability as the range of a scaling parameter
o over which no visual events occur [14].

3 Properties

The four most important properties of DRG follow
directly from the design criteria above:

e DRG returns spatially coherent regions whose
contour lines form closed curves.

e No hand-tuning of parameters is required. The
most critical parameter, ¢, is automatically var-
ied over a certain range. DRG employs a contour
strength criterion to select the best value for e.
This best ¢ is determined for each region sepa-
rately.

e DRG provides a stability measure for each region
extracted.

e DRG does not use any domain knowledge.
Other properties of DRG are as follows:

e The regions extracted can overlap, i.e. the seg-
mentation is not exclusive. Also, the union of all
regions does not necessarily cover the whole im-
age, 1.e. the segmentation is not exhaustive.

e The regions extracted might contain “holes”.
Closing such holes, if required by an application,
is left to a postprocessing stage. Note that the
contour strength of a region is exclusively based
on the outer contour line, not on any inner con-
tour lines caused by holes.

e The region contours tend to be rugged. DRG does
not attempt to smooth boundaries. While smooth
boundaries are a desirable feature in many do-
mains, especially if it is known that many man-
made structures are likely to occur in an image,
such a smoothing cannot be justified in the ab-
sence of such domain knowledge. However, if

smooth boundaries are required, then the ap-
proach given in [13] which combines regions with
active contour models can be used to obtain them.

e DRG uses a purely local criterion, based only on
the contour pixels and their 4-neighborhoods, to
evaluate a region. No global constraints are con-
sidered.

e DRG is not guaranteed to find the optimal solu-
tion. Basically, there are three reasons for this.
First, DRG grows regions by incrementing € in
steps of one. This quantization might cause the
optimal solution to be missed. Second, the strat-
egy chosen for selecting seed points might miss
some seeds necessary to obtain the optimal solu-
tion. Third, DRG is not completely independent
of the scanning direction.

o DRG offers an intuitive way to measure a region’s
stability.

e A generalization to multispectral images 1is
straightforward. Only the distance function for
computing the distance between a region’s mean
vector and a pixel’s intensity vector has to be
modified. Typically, a Euclidean norm is used.
An alternative approach is to run DRG separately
on each band and then to combine the results.

e DRG shares some less desirable properties with
other region growing algorithms. Most notable
are the dependence of the results on the order in
which pixels are added to a region, and the diffi-
culty of a precise mathematical analysis because
of the inherent nonlinearity of region growing. On
the other hand, DRG successfully addresses the
problem of region chaining.

4 Experimental Results

Figure 3 shows a 160x140 pixels aerial image. It
contains various fields and roads. Figure 4 shows the
result of applying DRG to the original image, while
figure 5 shows only those regions of the previous image
that show a high degree of stability (stab(R) > 4).

In the example given in figure 4, an arbitrary
lookup table has been used to render the 27 extracted
regions. However, a compact visualization of the re-
sults is difficult because regions can and do overlap.
Here, in the printout, regions with a larger label sim-
ply overwrite regions with a smaller label at pixels
where regions overlap. Unlabeled pixels are shown in
black.

Some of the properties of DRG mentioned above,
like rugged region boundaries and holes in the regions,



are clearly visible in the segmentation shown in fig-
ure 4. At first sight, it may seem desirable to have
smooth contour lines of the fields along the roads, but
the intensity values don’t justify such a segmentation.
Also, it seems surprising that the large road across
the upper left part of the image is not labeled at all.
However, a closer look reveals that the intensity of the
road varies dramatically; it is not a very homogeneous
region.

Fig. 6 shows the result obtained by running DRG
on a rotated version (90 degrees) of the original im-
age. Some of the stable regions are almost identical to
the ones extracted from the original image, but others
are not, demonstrating the undesirable dependence of
region growing algorithms on the scanning direction.

We looked also at the behavior of DRG with re-
spect to noise. Fig. 7 shows the stable regions ex-
tracted from the original image with gaussian noise
added (zero mean, ¢ = 1.0). Since the noise actually
changes the data, it is not surprising to observe that
the extracted regions have changed slightly. However,
the segmentation changes significantly in the upper
left corner of the image where regions are merged, and
in the lower left corner where a region is split. Inter-
estingly, this outcome is similar to the level 2 segmen-
tation of Ohlander’s algorithm (see fig. 9).

Filtering of images often has to be done to remove
noise or to simulate scaling [14]. Linear smoothing,
e.g. by gaussian convolution, leads to blurring of edges
and therefore poses a problem for DRG and other re-
gion growing methods. For example, at region bound-
aries, smoothing induces a transition area that might
be wrongly labeled as a new region. We experimented
with a simple non-linear filtering method, namely me-
dian filtering. As fig. 8 shows (we used a small 3x3
window), this kind of filtering tends to enlarge the
stable regions and to smooth their boundaries. Some
previously separated regions are merged. Also, some
artifacts are introduced.

As a future research direction, we will work on the
design of methods to simulate multiscaling which co-
operate well with region growing algorithms like DRG.
[12] includes several new results in the area of linear
and non-linear scale space that we want to build upon.
Another non-linear scaling operator based on morpho-
logical dilation-erosion has been proposed in [6]. An
examination of the interdependencies between scaling
and the parameter settings of the segmentation algo-
rithm should also provide better results.

The run time of DRG depends on the data. It is
faster to segment images with large, homogeneous ar-
eas than to segment noisy images with only small ho-

mogeneous areas. We also observed that most coin-
ciding regions that were eliminated were grown from
seeds located in holes of already existing regions. That
is, the overall run time can be reduced by disallowing
such seeds.

There is no generally accepted methodology in the
field of computer vision which elucidates how to evalu-
ate segmentations algorithms (for short discussions of
this topic, see [8],[10]). Comparing different segmen-
tation algorithms with each other is difficult mainly
because they differ in the properties they try to sat-
isfy and in the image domain they are working in. Of
all the algorithms the author is aware of, Ohlander’s
algorithm [9] comes closest to the proposed DRG algo-
rithm because it also tries to derive the segmentation
parameters dynamically from the image data rather
than to operate with a priori thresholds, and it does
not assume high-level knowledge or a specific image
domain.

In the implementation of Ohlander’s algorithm that
we used, the maximum number of recursive splits
could be limited by the user. Fig. 9 shows the seg-
mentation we obtained by setting the maximum level
to two, while fig. 10 shows the result for level three.
One can see that Ohlander’s algorithm extracts well
the diagonal road across the upper left corner of the
original image. Like with DRG, the extracted regions
often have rugged boundaries and small holes. On
the other hand, Ohlander’s algorithm clearly tends to
split regions without any consideration of spatial con-
nectivity, leading to artifacts. The most difficult prob-
lem with Ohlander’s algorithm, however, lies with the
decision whether to keep on splitting a region. Ide-
ally, the shape of the histograms suggest an answer to
this question, but in noisy images this is often not the
case. For example, we feel that the level three image
in fig. 10 is already oversegmented.

5 Conclusion

We have presented a dynamic region growing al-
gorithm that has some novel features that are impor-
tant for an application in image indexing and retrieval.
DRG allows to arrive fully automatically at a reason-
able segmentation in noisy images without having to
rely on a priori knowledge. The monitoring of the re-
gion growing steps provides strong clues that can be
exploited for the segmentation process. First results
show that stable regions can be successfully extracted.
The important question whether the extracted regions
are useful can only be answered relative to the appli-
cation and has to remain open at this point. It is also
obvious that the no-knowledge constraint puts a limit
on what DRG can achieve.
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Figure 7: Stable regions, noisy image Figure 10: Ohlander’s algorithm, level 3



