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Abstract

Bayesian belief networks have grown to promi-
nence because they provide compact representa-
tions of many domains, and there are algorithms to
exploit this compactness. The next step isto allow
compact representations of the conditional proba-
bility tables of a variable given its parents. In this
paper we present such a representation in terms of
parent contexts and provide an algorithm that ex-
ploits this compactness. The representation is in
terms of rules that provide conditiona probabili-
tiesin different contexts. The algorithmisbased on
eliminating the variables not needed inan answer in
turn. The operationsfor eliminating a variable cor-
respond to a form of partial evaluation, where we
are careful to maintain the probabilistic dependen-
cies necessary for correct probabilistic inference.
We show how this new method can exploit more
structure than previous methods for structured be-
lief network inference.

1 Introduction

Probabilistic inference is important for many applications
in diagnosis, perception, and anywhere there is uncertainty
about the state of the world from observations. Belief
(Bayesian) networks [Pearl, 1988] are a representation of in-
dependence amongst random variables. They are of interest
because the independence isuseful in many domains, they al-
low for compact representations of problems of probabilistic
inference, and there are algorithmsto expl oit the compact rep-
resentations.

Recently there has been work to extend belief networks
by allowing more structured representations of the condi-
tional probability of a variable given its parents. This has
beenin termsof either causal independencies[Heckerman and
Breese, 1994; Zhang and Poole, 1996] or by exploiting finer
grained contextual independenciesinherent in stating the con-
ditional probabilities in terms of rules [Poole, 1993] or trees
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[Boutilier et al., 1996]. In this paper we show how algorithms
for efficient inference in belief networks can be extended to
also exploit the structure of the rule-based representations.

In the next section we introduce belief networks, a rule-
based representation for conditional probabilities, and an al-
gorithm for belief networks that exploits the network struc-
ture. We then show how the algorithm can be extended to ex-
ploit the rule-based representation. We present an examplein
detail and show how it is more efficient than previous propos-
alsfor exploiting structure.

2 Background
2.1 Belief Networks

A belief network [Pearl, 1988] isa DAG, with nodes labelled
by random variables. We use the terms node and random vari-
able interchangeably. Associated with arandom variable z is
its frame, val(z), which is the set of values the variable can
take on. For avariable z, let 7, be the parents of = in the be-
lief network. Associated with the belief network is a set of
probabilitiesof the form P(z|x), the conditional probability
of each variablegivenits parents (thisincludesthe prior prob-
abilities of those variables with no parents).

A belief network represents a particular independence as-
sumption: each node is independent of its non-descendents
given its parents. Suppose the variables in a belief network
arexy,...,z, wherethevariablesare ordered so that the par-
ents of a node come before the nodein the ordering. Then the
independence of a belief network means that:

P(zilzi—q...x1) = P(xi|7mg,)
By the chain rule for conjunctions we have
Pz, .. HP(mi|$i_1...:L‘1)
i=1

-7$n) ==

| ECE)
i=1

Thisisoften given astheformal definition of abelief network.

Example 2.1 Consider the belief network of Figure 1. This
represents a factorization of the joint probability distribution:

Pa,b,c,d ey, z)
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Figure 1: Simple Belief Network

= P(e|abed)P(alyz)P(blyz)
P(elyz) P(dlyz) P(y) P(2)
If the variables are binary, thefirst term, P(e|abed), requires

the probability of e for all 16 cases of assignments of values
toa,b,c,d.

2.2 Contextual Independence

Definition 2.2 Given aset of variables C', acontext on C' is
an assignment of onevalueto eachvariablein C. Usualy C'is
left implicit, and we simply talk about acontext. Two contexts
areincompatibleif thereexistsavariablethat isassigned dif-
ferent values in the contexts; otherwise they are compatible.

Boutilier et al. [1996] present a notion of contextually inde-
pendent that we simplify. We use this definition for a repre-
sentation that looks like abelief network, but with finer-grain
independence that can be exploited.

Definition 2.3 [Boutilier et al., 1996] Suppose X, Y and C
aredigoint setsof variables. X and Y arecontextually inde-
pendent given context ¢ € val(C) if P(X|Y=y1 AC=c) =
P(X|Y=ys A C=c) for dl y1,y2 € wal(Y) such that
P(Y=y1 AC=c) > 0and P(Y=y, A C=c) > 0.
Definition 2.4 Supposewe have atotal ordering of variables.
Given variable z;, we say that ¢ € wval(C) where C' C
{z;_1...z1} isaparent context for z; if z; is contextually
independent of {z;_1 ...21} — C givenec.

What is the relationship to a belief network? In a belief net-
work, the rows of a conditional probability table for a vari-
ablesform a set of parent contexts for the variable. However,
oftenthereisamuch smaller set of smaller parent contextsthat
coversall of the cases.

A minimal parent context for variable z; is a parent con-
text such that no subset is also a parent context.

Example 2.5 variable ¢ are a, b, ¢, d, y, z. It could be the
YIn this and subsequent examples, we assume that variables are

Boolean. If x isavariable, z = true iswrittenasz and z = false
iswrittenas .

case that the set of minimal parent contextsfor e are {{a, b},
{a,b}, {@,c}, {a,¢d b}, {a, ¢ d, b}, {@ ¢ d}}. Theproba
bility of a given valuesfor its predecessors can be reduced to
the probability of a given a parent context. For example:

P(ela, b, e, d, y,Z) = P(ela,c)

Inthe belief network, the parentsof e area, b, ¢, d, and would,
in the traditional representation, require 2* = 16 numbersin-
stead of the 6 needed above. Adding an extra variable as a
parent to e doubles the size of the table representation, but if
itisonly relevant in avery restricted context it may only in-
crease the size of the rule based representation by one.

For each variable z; and for each assignment
r;_1=v;_1,...,21=v; Of values to its preceding vari-
ables, there is a parent context 7,:~'"“*. Given this, the
probability of an assignment of a value to each variable is

given by:

P(z1=v1,...,2,=0p)
n

= H P(xi=vp|rio1=vi_1, ..., 21=21)
i=1
n

[ P@i=vilxyir) 1)
i=1

This looks like the definition of belief network, but which
variables act as the parents depends on the values. The num-
bers required are the probability of each variable for each of
itsminimal parent contexts. There can be many fewer mini-
mal parent contextsthat the number of assignmentsto parents
in abelief network.

Before showing how the structure of parent contexts can be
exploited in inference, there are afew propertiesto note:

The set of minimal parent contextsis covering, in the sense
that for each assignment of values to the variables before z;
in the ordering with non-zero probability, there is a minimal
context that is a subset.

The minimal parent contexts are not necessarily pairwise
incompatible: it is possible to have two minimal parent con-
texts whose conjunction is consistent. This can only occur
when the probability of thevariable given the compatible con-
textsisthe same, in which caseit doesn’'t matter which parent
context is chosen in the above formula

The minimal parent contexts can often, but not always, be
represented as a decision tree [Boutilier et al., 1996] where
the contexts correspond to the paths to the roots in the tree.
The operationswe perform don’t necessarily preserve thetree
structure. Section 4.1 shows how we can do much better than
the anal ogous tree-based formulation of the algorithm.

2.3 Rule-based representations
We write the probabilitiesin contexts asrules,
Ti=v X, =v;, A LA Tiy, =iy, 1D

wherez;, =v;, A ... A Ti, =iy, formsa parent context of z;
and 0 < p < 1isaprobability.
Thisrule can be interpreted in at least two ways:
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Figure 2: A tree-structured representation of the conditional
probability function for e given its parents.

Inthefirst, thisrule simply meansthe conditional probabil-
ity assertion:

VYV P(zi=v|zi,=v;, A ..

whereY; = {zi—1,..., 21} = {Zi,, ..., @i, }

The second interpretation [Poole, 1993] is as a set of defi-
nite clauses, with “noise”’ terms in the body. The noise terms
are atomsthat are grouped into independent alter natives (dis-
joint sets) that correspond to random variables. In thisinter-
pretation the above ruleis interpreted as the clause:

Awiy =vi, ANYi=Vi)=p

L=V = X, =0, A L AT, =, AN Zvll, Vi
i

wheren i, —
val ues(vh, o vlk ), the noise termsfor different values for
v aregrouped into an alternative, and thedifferent alternatives
are independent. P(n.i, v, ) = p. Thisinterpretation

may be helpful as the operatlons we consider can be seen as
instancesof resolution onthelogical formula. Oneof themain
advantagesof rulesisthat thereisanatural first-order version,
that allowsfor the use of logical variables.

isanoiseterm, suchthat, for each tuple of

Example 2.6 Considerthe belief network of Figure 1. Figure
2 gives a tree-based representations for the conditional prob-
ability of e given its parents. In thistree, nodes are labelled
with parentsof e inthebelief network. Theleft hand child cor-
respondsto the variable being true, and the right hand nodeto
thevariablebeing false. Theleavesarelabelled with the prob-
ability that e istrue. For example P(e=t|a=t A b=f) = 0.5,
irrespectively of the value for ¢ or d.

These trees can be trand ated into rules:?

e+ aAb:055 (2
e—aAb:05 (3)
e+ aAc:0.08 4
e—aNeAdAb:0.025 (5)
e—aANeAdAD:05 (6)
e—aNeAd:0.85 @)

Note that the parent contexts are exclusive and covering.
Assume the corresponding rulesfor b are:

b+ 7:027 (8)
be—yNnz:0T77 (9)
be—yAnz:0.17 (10)

Definition 2.7 Suppose Risarule

Ti=v X, =v;;, A LLUA Tiy, =iy, 1D

andy isacontexton Y such that {z;, z;,,...,z;, } CV C
{z1,...,2,}. Wesay that R isapplicablein context y if y
assigns v to x; and for each i; assignsv;; to z;;.

Lemma 2.8 If thebodiesfor therulesare exclusive the prob-
ability of any context on {z1,...,z,} is the product of the
probabilitiesof the rules that are applicable in that context.

For each z;, thereisexactly onerulewith z; inthehead that is
applicablein the context. Thelemmanow followsfrom equa-
tion (1).

In general we allow conjunctions on the left of the arrow.
These rules have the obvious interpretation. Section 3.2 ex-
plainswhere these rules arise.

2.4 Bedlief network inference

The aim of probabilistic inference is to determine the poste-
rior probability of a variable or variables given some obser-
vations. In this section we outline a simple algorithm for be-
lief net inferencecalled V E [Zhang and Poole, 1996] or bucket
eliminationfor belief assessment, BEBA [Dechter, 1996], that
is based on the ideas of SPI [Shachter et al., 1990]. Thisis
aquery oriented algorithm that exploits network structure for
efficient inference, similarly to clique tree propagation [Lau-
ritzen and Spiegelhalter, 1988; Jensen et al., 1990]. One dif-
ferenceisthefactorsrepresent conditional probabilitiesrather
than the marginal probabilities the cliques represent.
Suppose we want to determine the probability of variable
x given evidence e which is the conjunction of assignments
to some variables ey, ..., es, namely e;=o; A ... A es=o;.

2We only specify the positive rules on our examples. For each
rule of the form:

a+<b:p
we assume thereisaso arule of the form
a+<b:1—p

We maintain both as, when we have evidence (Section 3.3), they may
no longer sum to one.
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Then:
P(zler=01 A ... A es=0;)
Pz Aer=o1 A ... Aes=0;)
P(ey=o01 A ... Nes=05)
Here P(e1=01 A ... A es=0,) isanormalizing factor. The

problem of probabilistic inference can thus be reduced to the
problem of computing the probability of conjunctions. Let

{yi,.. .yt ={z1,. .., zn} — {2z} —{e1,...,es},and sup-
pose that the y;’s are ordered according to some elimination
ordering. To compute the marginal distribution, we sum out

the y;'sin order. Thus:
Pz ANer=o1 A...Nes=0;)

— Z . Z P(x1,...,20){e1=01A...Aes =0, }
Yk Y1

E . Z H P(I‘Z’|7rxl){61:oll\.../\es:0s}

Yk

y1 =1

where the subscripted probabilities mean that the associated
variables are assigned the corresponding values in the func-
tion.

Thusprobabilisticinferencereducesto the problem of sum-
ming out variables from a product of functions. To sum out a
variable y; from a product, we distribute al of the factors that
don’'tinvolvethevariable out of the sum. Suppose f1, . . ., f&
are somefunctionsof the variablesthat are multiplied together
(initially these are the conditional probabilities), then

Shoofe=F i fn Y fmirofr
Y Yi

where fi ... f, arethosefunctionsthat don’t involve y;, and
fm+1 ... fr @ethose that do involve y;. We explicitly con-
struct a representation for the new function Zyl fm+1 - fr,
and continue summing out the remaining variables. After all
the y;’s have been summed out, the result is a function on z
that is proportional to z's posterior distribution.
Unfortunately space precludes a more detail ed description;
see [Zhang and Poole, 1996; Dechter, 1996] for more details.

3 Probabilistic Partial Evaluation

Partial evaluation [Lloyd and Shepherdson, 1991] is a tech-
niguefor removing atomsfrom atheory. Inthesimplecasefor
non-recursive theories, we can, for example partially evaluate
b, inthe clauses:

e<—bAa
be—yANz

by resolving on b resulting in the clause:
e« yNzAa

Thegeneral ideaof the structured probabilisticinferencealgo-
rithmisto represent conditional probabilitiesintermsof rules,
and use the VE algorithm with aform of partial evaluation to
sum out avariable. Thisreturnsanew set of clauses. We have
to ensurethat the posterior probabilities can be extracted from
the reduced rule set.

The units of manipulation arefiner grained than the factors
in VE or the buckets of BEBA; what is analogous to a factor
or abucket consists of sets of rules. Given avariableto elim-
inate, we can ignore (distribute out) all of the rules that don’t
involvethis variable.

The input to the algorithm is: a set of rules representing
a probability distribution, a query variable, a set of observa-
tions, and an elimination ordering on the remaining variabl es.

At each stage we maintain a set of ruleswith the following
program invariant:

The probability of a context on the non-eliminated
variables can be obtained by multiplying the prob-
abilities associated with rules that are applicable in
that context. Moreover for each assignment, and for
each non-eliminated variable there is only one ap-
plicable rule with that variable in the head.

The agorithm is made up of the following primitive opera-
tions that locally preserve this program invariant:®

Variable partial evaluation (VPE).
inating e, and haverules:

Suppose we are elim-

a+bAe:p (1)
a—bAE:py (12

such that there are no other rules that contain e in the body
whose context is compatiblewith 5. For each rule for e:

e+ h:ps (13
e+ h:ipy 14

where b and h are compatible contexts, we create the rule:

a < bAh:pips+ paps (15)

Thisisdonefor al pairs of ruleswith e in the head and body.
Theorigina rulesthat contain e are removed.

To seewhy thisis correct, consider a context ¢ that includes
a, b, and h, but doesn't give avalue for e. Then P(c) =
P(cAe)+ P(e ANE). PleAe) = pPlalb A e)P(e|h),
for some product p of terms that don’t include e. Similarly
P(c A€) = pP(alb A€)P(elh), for the same value p. Thus
wehave P(c) = p(p1ps + p2pa). Because of the structure of
Rule (15), it isonly chosen for contexts with a, b, and h true,
and it isthe only rule with head a in such contexts.

Rule Splitting. If we havearule
a+b:p (16)
We can replaceit by its split on variable d, forming rules:
a—bAd:p an
a+—bAd:p (18)

3To make this presentation more readable we assume that each
variable is Boolean. The extension to the multi-valued case is
straightforward. Our implementation uses multi-valued variables.
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Combining Heads. If we have two rules:

a+c:pr (19

b« c:ps (20)
such that @ and b refer to different variables, we can combine
them producing:

aANb—c:pips (21
Thusin the context with a, b, and ¢ al true, the latter rule can
be used instead of the first two. We show why we may need
to do thisin Section 3.2.

In order to see the algorithm, let’ s step through some exam-
plesto show what’s needed and why.

Example 3.1 Suppose we want to sum out b given the rules
in Example 2.6. b hasonechild e in the belief network, and so
b only appearsin the body of rulesfor e. Of the six rules for
e, two don’t contain b (rules (4) and (7)), and so remain. The
first two rulesthat contain b can betreated separately fromthe
other two asthey are truein different contexts. VPE of rules
(2) and (3) with rule (8), resultsin:

e+ aAny:027x 055+ (1-0.27) x0.5
Summing out b resultsin the following representation for the
probability of e. (You canignorethesenumbers, itisthestruc-
ture of the probability tablesthat isimportant.)

e+—aAy:05135

e+—aAyAz:05385

e+—aAyAzZ:0.5085

e+—aAc:0.08

e—aANeANdANy:0.37175

e+ aANCcAdAyAz:0.13425

e aNeANdAyANZ:0.41925

e+ aAcAd:0.85
Thus we need 16 rules (including rules for the negations) to
represent how e dependson its parentsonce b is summed out.

This should be contrasted with the table of size 64 that is cre-
ated for VE or in clique tree propagation.

3.1 Compatible Contexts

The partial evaluation needs to be more sophisticated to han-
dle more complicated cases than summing out b, which only
appears at the root of the decision tree and has only one child
in the belief network.

Example 3.2 Suppose, instead of summing out b, we wereto
sum out d where the rulesfor d were of the form:

d+z:0.29 (22)
d+—ZANy:0.79 (23)
d+—ZAy:0.59 (29)

Thefirst three rules for e (rules (2)-(4)) don't involve d, and
remain as they were. Variable partial elimination is not di-
rectly applicable to the last three rules for e (rules (5)-(7))
as they don’t contain identical contexts apart from the vari-
able being eliminated. It is simple to make the variable par-
tial elimination applicable by splitting rule (7) on b resulting

inthetwo rules:
e—aNeAdAb:0.85 (25)
e—aNeAdAb:0.85 (26)

Rules (25) can be used with rule (5) in avariable partial eval-
uation, and (26) can be used with rule (6). The two rules cor-
responding variable partial evaluation with rule (22) are:

e+—aATAzANb:0.025x0.294 0.85 x (1 — 0.29)
e aACAZzAb:0.5x02940.85x (1 —0.29)

Four other rulesare created by combining with the other rules
for d.

In general, you have to split rules with complementary liter-
alsand otherwise compatible, but not identical, contexts. You
may need to split the rules multiple times on different atoms.
For every pair of such rules, you create the number of rules
equal to the size of the union of the literals in the two rules
minus the number of literalsin the intersection.

3.2 Multiple Children

One problem remains. when summing out a variable with
multiple children in the belief network, using the technique
above, we can't guarantee to maintain the loop invariant.
Consider the belief network of Figure 1. If you were to sum
out y, thevariablesa, b, ¢, and d become mutually dependent.
Using the partial evaluation presented so far, the dependence
islost, but itiscrucia for correctness.

To overcome this, we allow multiple variables in the head
of clauses. Therulesimply different combinationsof thetruth
of the variablesin the heads of clauses.

Example 3.3 Consider a belief network with a and b are the
only children of y, and y istheir only parent, and y hasasingle
parent z. Suppose we have the following rulesinvolving a, b,
and y:

a ¢+ y:0.02 (27)
a+7y:0.22 (28)
b y:0.77 (29)
b+ 75:027 (30)
Yy z:03 (3D

We could imagine variable partial elimination on therulesfor

a withrule (31), and therulesfor b with rule (31), resultingin:
b+ 2:027%x0340.77x(1-0.3)
a++2:002%x034+022x(1-0.3)

However, thisfailsto represent the dependency between a and

b that isinduced by eliminating y.

We can, however, combine rules (27) and (29) resulting in
thefour rules:

aAb—y:0.02x0.77 (32)
aAb < y:0.02x (1-0.77) (33)
aAb—y:(1-002) x0.77 (34)

GAb+—y:(1-0.02) x (1-0.77) (35)
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Similarly, we can combine rules (28) and (30), resulting in
four rulesincluding:

aAb—75:022x%x0.27 (36)
which can be combined with rule (32) giving
aAb+ z:0.0462 (37)

Note that the rules with multiple elementsin the head follow
the same definition as other rules.
3.3 Evidence

We can set the values of all evidence variables before sum-
ming out the remaining non-query variables (asin VE). Sup-
poseei;=o1 A...Aes=os isobserved. There arethree cases:

¢ Remove any rule that contains e; —o}, where o; # o} in
the head or the body.

¢ Removeany term e¢;=o; in the body of arule.
e Replaceany e;=o; in the head of arule by true.

Ruleswith ¢rue in the head are treated as any other rules, but
we never resolve on ¢rue. When combining heads containing
true, we can use the equivalence: true A a = a.

Example 3.4 Supposed isobserved. Therulesfor e become:

e anb:0.55 (38)
e—anb:0.5 (39
e+ anc:0.08 (40)
e+—ane:0.85 (41)
Therules (22)—(24) for d become:
true < z : 0.29 (42)
true <~z Ay :0.79 (43)
true <z Ay :0.59 (44

d doesn't appear in the resulting theory.

3.4 Extracting the answer

Once evidence has been incorporated into the rule-base, the
program invariant becomes:

The probability of the evidence conjoined with a
context ¢ on the non-eliminated variabl escan be ob-
tained by multiplying the probabilities associated
with rulesthat are applicablein context c.

Suppose z is the query variable. After setting the evidence
variables, and summing out the remaining variables, we end
up with rules of the form:

T true :py
true <— x : p3
T+ true : pa
true <— 7T : ps

The probability of z A e is obtained by multiplying the rules
of thefirst two forms. The probability of Z A e is obtained by
multiplying the rules of the last two forms. Then

Pz Ae)
P(zAe)+ P(TNe)

P(zle) =

3.5 TheAlgorithm

We have now seen all of the components of the algorithm. It
remainsto put them together. We maintain the loop invariant
of Section 3.4.

Thetop-level algorithm isthe same as VE:

To compute P(z|e;=01 A ... A es=05)

given elimination ordering y1, . . ., yx:
1. Settheevidencevariablesasin Section 3.3.
2. Sumoutyq, ...,y inturn.

3. Compute posterior probability asin Section 3.4
The only tricky part isin summing out variables.

To sum out variable y;:
1. {Rulesplitting for combining heads}
for each pair of ruleshy < by : p; and hy < by : ps
such that 5, and b, both contain y;
and hy A by and hs A by are compatible,
but not identical
split each rule on variablesin body of the other rule.
{Following 1, all ruleswith y; in the body that are applicable
in the same context have identical bodies.}
2. {Combining heads}
for each pair of ruleshy <« b :py and hs < b : po
such that b contains y;
and h; and h- are compatible
replace them by therule hy A hs < b : p1p
{Following 2, for every context, there isa single rule with y;
in the body that is applicable in that context.}
3. {Rulesplitting for variable partial evaluation}
for every pair of rule of theform h < y;=v; A by : py
and h + y;=v} A by : pa, Wwherev] # v;
and b, and b, are comparable and not identical
split each rule on atomsin body of the other rule.
{Following 3, all rules with complementary values for the
y;, but otherwise compatible bodies have otherwise identical.
bodies and identical heads}
4. {Variable partial evaluation}
for each set of rules. h < yi=vy A b : pg
wherethe vy are all of the values for y;
for each set of rules hs A yi=vg < by : qx
suchthat A A b and hy A by are compatible
createtheruleh A hy < b A by 0 >, Prgx.
5. {Clean up}
Removeall rules containing y;.

4 Comparison with other proposals

In this section we compare standard belief network algo-
rithms, other structured algorithms and the new probabilistic
partial evaluation algorithm. Example 2.6 is particularly illu-
minating because other algorithms do very badly onit.

Under the elimination ordering b, d, ¢, a, y, z, to find the
prior on e, the most complicated rule set created istherule set
for e givenin Example 3.1 with 16 rules (including the rules
for thenegations). After summingout d therearealso 16 rules
for e. After summing out ¢ there are 14 rules for e, and after
summing out a there are 8 rules for e. Observations simplify
the algorithm as they mean fewer partial evaluations.
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Figure 3: Exemplar for a node with multiple children: e to
eliminate.

Incontrast, VE requiresafunctor withtablesize64 after b is
summed out. Clique tree propagation constructs two cliques,
one containing y, z, a, b, ¢, d of size 2° = 64, and the other
containing a, b, ¢, d, e of size 32. Neither takes the structure
of the conditional probabilities into account.

Note however, that VE and clique tree propagation manip-
ulate tables which can be indexed much faster than we can
manipulate rules. There are cases where the rule-base expo-
nentially is smaller than the tables (where added variables are
only relevant in narrow contexts). Thereare other caseswhere
we require as many rules as there are entries in the table (we
never require more), in which case the overhead for manipu-
lating ruleswill not make us competitive with the table-based
methods. Where real problemslie in this spectrum is till an
open question.

Boutilier et al. [1996] present two algorithms to exploit
structure.  For the network transformation and clustering
method, Example 2.6 istheworst case; no structure can be ex-
ploited after triangulation of theresulting graph. (Thetreefor
e in Example 2.6 is structurally identical to the tree for X (1)
in Figure 2 of [Boutilier et al., 1996]). The structured cutset
conditioning algorithm does well on this example. However,
if the exampleis changed so that there are multiple (discon-
nected) copies of the same graph, the cutset conditioning al-
gorithm is exponential in the number of copies, whereas the
probabilistic partial evaluation algorithm s linear.

Thisalgorithm is most closely related to the tree-based al-
gorithms for solving MDPs [Boutilier et al., 1995], but these
work with much more restricted networks and with stringent
assumptions on what is observable.

4.1 Why not trees?

It may be thought that the use of rules is a peculiarity of the
author and that one may as well just use a tree-based repre-
sentation. Inthis section | explain why the rule-based version
presented here can be much more efficient than a tree-based
representation.

Figure 3 shows an exemplar for summing out a variable
with multiple children. The ancestors of ¢, d, f, g, and h are

not shown. They can be multiply connected. Similarly the de-
scendents of ¢ and b are not shown.

Supposewewereto sum out e. Oncee iseliminated, « and
b become dependent. In VE and bucket elimination we form
a factor containing all the remaining variables. This factor
represents P(a, blc, d, f, g, h). One could imagine a version
of VE that builds a tree-based representation for this factor.
We show here how the rule-based version is exploiting more
structure than this.

Suppose e isonly relevant to a when d istrue, and e isonly
relevantto b when f istrue. Inthiscase, theonly timeweneed
to consider the dependence between @ and b is when both d
and f aretrue. For al of the other contexts, we can treat a
and b asindependent. The algorithm does this automatically.
Consider the following rulesfor a:

a+—dAhe:p (45)
a— dANE:ps (46)
a+—dAc:ps 47)
a+—dAT:p, (48)
Consider therulesfor b:
b fAe:ps (49
b fAE:pg (50)
be—fAg:pr (51)
b fAG:ps (52
Consider therulesfor e:
e+ h:pg (53
e h:pig (>4

Thefirst thing to note isthat the rulesthat don’t mention e are
not affected by eliminating e. Thusrules (47), (48), (51), and
(52) remain intact after eliminating e.

Rules (45) and (49) are both applicable in a context with a,
d, e, band f true. So we need to split them, according to the
first step of the algorithm, creating:

a<—dANeNf :p; (55)
aed/\e/\f:pl (56)
b—dNfNe:ps (57)
be—dAfAe:ps (58)
We can combine rules (55) and (57) forming:
aNb—dANeNf pips (59)
a/\Eed/\e/\f:pl(l—ps) (60)
GAb—dAenf:(1—p)ps (61)
GAb—dAenf:(1—p)(1—ps) (62)

Note also that rules (56) and (58), don’t need to be combined
with other rules. This reflects the fact that we only need to
consider the combination of a and b for the case where both f
and d aretrue.

Similarly we can split rules (46) and (50), and combine the
compatible rules, giving rules for the combination of a and b
inthe context d A € A f, rulesfor a inthe context d A€ A f
and rulesfor b in the context d A f A E.
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Finally we can now safely replace e by itsrules; all of the
dependencies have been eliminated. The resultant rules en-
code the probabilities of {a, b} in the contextsd A f A h and
d A f A h, (8rules). For al other contexts we can consider
a and b separately. There are rules for a in the contextsd A ¢
(rule (47)), d Az (rule (48)), d A f AR, and d A f A h, withthe
last two resulting from combining rule (56), and an anal ogous
rule created by splitting rule (46), with rules (53) and (54) for
¢). Similarly thereare rulesfor b inthe contexts f A g, f A F,
dA fAh,andd A f Ah. Thetotal number of rules (including
rulesfor the negations) is 24.

One could imagine using VE or BEBA with tree-structures
probability tables. Thiswould meanthat, oncee iseliminated,
we need a tree representing the probability on both « and b.
Thiswould entail multiplying out the rulesthat were not com-
bined in the rule representation, for example the distribution
on a and b the contextsd A ¢ A f A g. Thisresultsin atree
with 72 probabilities at leaves. Without any structure, VE or
BEBA needs atable with 27 = 128 values.

UnlikeVE or BEBA, we need the combined effect on a and
b only for the contexts where e is relevant to both a and b.
For al other contexts, we don’t need to combine the rules for
a and b. Thisisimportant as combining the rules is the pri-
mary source of combinatorial explosion. By avoiding com-
bining rules, we can have a huge saving when the variable to
be summed out appearsin few contexts.

5 Conclusion

This paper has presented a method for computing the poste-
rior probability in belief networks with structured probability
tables given asrules. Thisalgorithm lets us maintain the rule
structure structure, only combining contexts when necessary.

The main open prablem is in finding good heuristics for
elimination orderings. Finding a good elimination ordering
is related to finding good triangulations in building compact
junction trees, for which there are good heuristics [Kjaarulff,
1990; Becker and Geiger, 1996]. These are not directly appli-
cableto probabilistic partial evaluation, as animportant crite-
riain this case is the exact form of the rules, and not just the
graphical structure of the belief network.

The two main extensions to this algorithm are to multi-
valued random variables and to allow logical variablesin the
rules. Both extensions are straightforward.

One of the main potential benefits of this algorithm isin
approximation algorithms, where the rule bases allows fine-
grained control over distinctions. Complementary rules with
similar probabilities can be collapsed intoasimpler rule. This
can lead to more compact rule bases, and reasonabl e posterior
ranges [Poole, 1997].
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